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Abstract

Unsupervised Domain adaptation (UDA) attempts to

recognize the unlabeled target samples by building a learn-

ing model from a differently-distributed labeled source

domain. Conventional UDA concentrates on extracting

domain-invariant features through deep adversarial net-

works. However, most of them seek to match the differ-

ent domain feature distributions, without considering the

task-specific decision boundaries across various classes. In

this paper, we propose a novel Adversarial Dual Distinct

Classifiers Network (AD2CN) to align the source and tar-

get domain data distribution simultaneously with matching

task-specific category boundaries. To be specific, a domain-

invariant feature generator is exploited to embed the source

and target data into a latent common space with the guid-

ance of discriminative cross-domain alignment. Moreover,

we naturally design two different structure classifiers to

identify the unlabeled target samples over the supervision

of the labeled source domain data. Such dual distinct clas-

sifiers with various architectures can capture diverse knowl-

edge of the target data structure from different perspectives.

Extensive experimental results on several cross-domain vi-

sual benchmarks prove the model’s effectiveness by com-

paring it with other state-of-the-art UDA.

1. Introduction

Deep neural networks (DNNs) have made significant

progress with the help of numerous well-labeled training

data and achieved remarkable performance improvement on

various tasks [20, 35]. However, massive amounts of an-

notated training data are not always available due to the

dramatically expensive data collecting and annotating costs.

Domain adaptation (DA) has attracted extremely increasing

attention because it focuses on a frequent and real-world

issue when we have no access to massive labeled target do-

main training data [27, 23, 30, 40, 18]. Domain adaptation

explores the common factors between the source and tar-

get domain to find a shared latent feature space where both

marginal and conditional distribution mismatch across do-

mains are minimized. Based on this, various domain adap-

tation efforts have been developed, including feature align-

ment and classifier adaptation [37, 14, 42].

Recent research efforts on domain adaptation have al-

ready shown promising performance via seeking an effec-

tive domain-invariant feature extractor across two domains

so that the source knowledge could be adapted to facilitate

the recognition task in the target domain [13, 39, 32, 16, 15].

The idea is to deploy cross-domain matching losses to guide

the domain-invariant feature learning. First of all, the dis-

crepancy loss (e.g., maximum mean discrepancy (MMD))

is one of the most widely-used strategies to measure the

distribution difference across the source and target domains

[1, 11, 17]. Along this, many DA approaches explore to de-

sign a class-wise MMD by incorporating the pseudo labels

of target data [14, 30]. Secondly, the adversarial loss has

been successfully applied to eliminate the domain shifts on

the feature or pixel level [7, 34, 22, 45], where one domain

discriminator or more are trained with a feature generator

in an adversarial manner. Moreover, various reconstruction

penalties are proposed on target samples to obtain the tar-

get specific structures, e.g., iCAN [44]. However, most ex-

isting domain adaptation methods suffer from only consid-

ering the domain-wise adaptation but leaving out the task-

specific category boundaries alignment during the explicit

cross-domain distribution alignment.

To address this issue, some recent DA works aim to

consider the task-specific category-level alignment jointly

[34, 22, 23]. Along this line, Saito et al. present Maximum

Classifier Discrepancy (MCD) with two task-specific clas-

sifiers to detect category boundaries and jointly align fea-

tures distribution and category boundaries across domains

[34]. Following this, Lee et al. propose Sliced Wasser-

stein Discrepancy (SWD) as a new probability distribu-

tion discrepancy measurement to capture the natural notion

of dissimilarity between the outputs of task-specific clas-

sifiers [22]. Later on, [45] promotes Domain-Symmetric

Networks (SymNets) as well as a two-level (feature-level

and category-level) domain confusion scheme to drive the
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Figure 1. Framework overview of our proposed model, where G(·)
is the domain-invariant embedding features generator, CN (·) de-

notes the fully-connected neural networks classifier (solid line)

and CP (·) means the prototypical classifier (dash line). Lm and

Ldis are explored to align the feature and prediction distribution

differences across two domains and dual classifiers, respectively.

learning of intermediate features to be invariant at the cor-

responding categories of the two domains. These method

benefit from various strategies to maximize the disparity

of the dual classifiers prediction results, however, consid-

ering the utterly same architecture classifiers not only lim-

its the features distribution knowledge obtained from differ-

ent perspectives, but also suffers from the risk that the two

task-specific classifiers may result in the similar class-wise

boundaries, especially when the imbalanced data distribu-

tion across various categories.

In this paper, we propose a novel Adversarial Dual

Distinct Classifiers Network (AD2CN) with two different-

architecture classifiers, e.g., Neural Networks Classifier and

Prototypical Classifier, to facilitate the alignment of both

domain distributions and category decision boundaries (Fig.

1). To our best knowledge, it is a pioneering work to ex-

plore dual different structure classifiers in domain adapta-

tion. The general idea is to explore adversarial training over

two different architecture classifiers on the output of one

domain-invariant feature generator. To sum up, we high-

light the three-fold contributions of this paper as follows:

• We exploit dual different architecture task-specific

classifiers over source supervision to exploit the task-

specific decision boundaries on the target domain.

With different properties of dual classifiers in predic-

tion, we have a better chance of capturing ground-truth

classifier decision boundaries for the target domain.

• We propose a novel discriminative cross-domain align-

ment loss and Importance Guided Optimization strat-

egy to mitigate the cross-domain mismatching. This

will facilitate the process of aligning the domain-

invariant embedding features distribution across do-

mains, and eliminate the distraction of misestimated

target samples at the beginning of optimizing.

• We adopt a discrepancy loss to maximally improve the

prediction performance of dual classifiers in coupling

the cross-domain label distributions, which is trained

in an adversarial way with domain-invariant feature

generator and dual classifiers. Thus, they can benefit

from each other to boost the target learning task.

2. Related Work

Domain adaptation (DA) has been extensively studied

recently, which casts a light when there are no or limited

labels in target domain and shows very promising perfor-

mance in different vision applications [45, 23, 28, 41, 22].

With the renaissance of deep neural networks, deep

DA methods successfully embed DA into deep learning

pipelines by either minimizing an appropriate distribution

distance metric [26] or leveraging adversarial technologies

to generate domain-invariant representations [34, 3]. The

cross-domain distribution discrepancy enlarged by tradi-

tional deep learning models can be explicitly alleviated by

incorporating various domain alignment strategies at the top

layers. To name a few, Domain Adaptation Network (DAN)

applies multiple kernel MMD distances on the last three

task-specific layers to minimize the distribution difference

[25]. Long et al. proposed a joint adaptation network (JAN)

and joint MMD criterion to solve the problem [29]. An-

other strategy is to leverage generative adversarial networks

(GAN) [10] to couple the cross-domain discrepancy in an

adversarial manner [7, 34, 44, 45]. Such techniques aim

to train a domain discriminator to differentiate source and

target samples, while the feature generator will deceive the

domain discriminator, such that the domain-invariant fea-

tures will be produced. Ganin et al. proposed DANN to

generate task-specific discriminative while domain-wise in-

discriminative features [8]. Tzeng et al. presented ADDA

for adversarial adaptation [38].

Both discrepancy and adversarial loss based methods at-

tempt to match the whole source and target domain distri-

bution completely, neither of them considers the target do-

main data structure and task-specific decision boundaries.

To address this, Saito et al. adopted the task-specific cat-

egory decision boundaries and proposes a model with two

classifiers as a discriminator to detect the relationship be-

tween the source and target domain data (MCD) [34]. By

maximizing the prediction results of the two classifiers, the

framework is able to screen out target samples that are near

the category decision boundaries and far from the source

domain support. Following this, Lee et al. extended MCD

and proposed a novel Wasserstein metric to capture the nat-

ural notion of dissimilarity between the outputs of two task-

specific classifiers [22]. Most recently, Li et al. claimed that

label distribution alignment is still not enough and proposed

Joint Adversarial Domain Adaptation (JADA) to explore

unified adversarial learning mechanism to align the cross-
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domain domain-wise and class-wise distribution simulta-

neously [23]. Unfortunately, existing works seek to max-

imize the prediction difference between two same archi-

tecture classifiers to explore different task-specific knowl-

edge, limiting the divergence of category decision bound-

aries captured across domains.

Differently, we propose a novel framework with two dif-

ferent structure classifiers, which assist the model to learn

more diverse data distribution patterns and less similar cate-

gory decision boundaries from different perspectives. Inte-

grating task-specific category boundaries and feature-level

cross-domain adaptation, our proposed model is able to nar-

row the data mismatch of source and target domain in the

shared domain invariant embedding space. Moreover, we

explore a cross-domain discriminative distribution align-

ment under the sample Importance Guided Optimization

strategy, which has been experimentally proven to eliminate

the source and target domain shift.

3. The Proposed Method

3.1. Preliminaries and Motivation

Given a labeled source domain Ds = {Xs,Ys} =
{(xi

s,y
i
s)}

ns

i=1 which contains ns labeled samples, as well

as an unlabeled target domain Dt = {Xt} = {xj
t}

nt

j=1 of nt

unlabeled samples. Ps(xs) and Pt(xt) denote the source

and target domain different data distributions respectively

(Ps(xs) 6= Pt(xt)). Cs and Ct mean source and target do-

main identical label spaces. Ys ∈ R
ns×C is the source

domain ground truth label set which is accessible for train-

ing, where C = Cs/t = |Cs/t| is the number of total cate-

gories. The goal of domain adaption is to seek a model to

predict the unlabeled target data over the supervision from

the source domain.

Recent domain adaptation works apply adversarial net-

works to generate domain invariant features of the source

and target domain samples, which will make the classifiers

trained only on the source domain data available on the tar-

get domain[7, 9, 44]. Most of them aim to match the dis-

tribution of source and target domain completely, without

considering the task-specific decision boundaries between

different categories. Most recently, the idea of dual adver-

sarial classifiers [34, 22, 45, 23] has been explored to re-

place the original adversarial domain adaptation with a bi-

nary domain discriminator. However, they obtain two same-

type classifiers from scratch over labeled source data. This

would limit the discriminative ability in target prediction

since the same-type classifiers would tend to have similar

properties. Traditional neural networks classifier aims to fit

the training data by achieving optimal objective value, thus

the learned classifier boundaries would capture the global

structure of the data to maximally separate different classes.

Such a decision boundary over source supervision cannot

be well adapted to target samples in different distribution.

Therefore, two same-architecture neural network classifiers

over source supervision are challenging to diversify the de-

cision boundaries.

This motivates us to explore two different architecture

classifiers, and thus we propose a novel adversarial dual

classifiers network with two different structure classifiers,

Neural Networks Classifier CN (·) and Prototypical Clas-

sifier CP (·) [36], which can capture various data distribu-

tion pattern and more diverse task-specific category bound-

aries from different perspectives, and also promote the out

of source support target samples detection process. Interest-

ingly, the prototypical classifier explores the local structure

of the data since prototypes are used to assign labels based

on the similarity between samples and each prototype. The

competition between two different structure classifiers is

more likely to diversify the decision boundaries to benefit

from adversarial training with domain-invariant generator.

3.2. Adversarial Dual Distinct Classifiers Network

We first present the overall framework of our proposed

adversarial dual classifier network in Fig. 1. Given the la-

beled source and unlabeled target domain data, the domain

invariant embedding features are generated and aligned by

the discriminative cross-domain alignment, then the dual

classifiers, which consist of two classifiers with different ar-

chitectures, will promote the task-specific decision bound-

aries further. G(·) is the generator used to map source and

target domain data to a shared embedding feature space,

in which the target samples are close to the support of the

source domain data. The following two different structure

classifiers, fully-connected neural network classifier CN (·)
and prototypical classifier CP (·), will capture diverse and

various task-specific categories knowledge on target do-

main from different perspectives.

3.2.1 Dual Classifiers Over Source Supervision

Since Xs and Xt have different distributions, a domain-

invariant feature generator G(·) is deployed to capture more

enriched information across source and target through hier-

archical structures, followed by our dual classifiers, CN (·)
(fully-connected neural network classifier) and CP (·) (pro-

totypical classifier). With the extracted feature zis/t =

G(xi
s/t) from G(·) as input, we can calculate the corre-

sponding probability prediction with two classifiers CN (·)
and CP (·) as ŷi

N/P,s/t = CN/P (z
i
s/t).

Specifically, CN (·) is the traditional multi-layer non-

linear classifier, while CP (·) is defined as the similarity be-

tween target sample feature zit to each category prototype

µc (i.e., class center), that is, ŷ
i(c)
P,t = Φ

(

zit,µc

)

. For each

class, the prototype µc =
1
nc
t

∑nc
t

i=1 z
i(c)
t , where nc

t and z
i(c)
t
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denote the number of target samples and extracted domain

invariant feature belonging to class c. We apply the CP (·)
prediction ŷi

P,t as the predicted pseudo label to target sam-

ple xi
t to get the category prototypes µc.

In order to obtain task-specific discriminative features

from generator G(·), while keeping classification perfor-

mance on source domain, we add the supervision from

source to learn the parameters of CN (·) and G(·). Since

CP (·) does not contain any trainable parameters, the super-

vision over CP (·) prediction on the source domain tends to

optimize the generator G(·) only. To this end, we aim to

minimize the cross-entropy loss over Ys and predicted la-

bels from CN (·) and CP (·), defined as follows:

Ls =
1

ns

ns
∑

i=1

L(ŷi
N,s,y

i
s) +

1

ns

ns
∑

i=1

L(ŷi
P,s,y

i
s), (1)

where L is the cross-entropy loss. ŷi
N,s and ŷi

P,s are the

probability outputs of classifier CN (·) and CP (·), while yi
s

is the ground-truth label of source sample xi
s, respectively.

3.2.2 Adversarial Dual Classifiers

The dual classifiers are capable of recognizing target do-

main samples close to the support of the source domain. For

those target domain samples which are far from the source

domain support, the two classifiers would tend to obtain dif-

ferent probability outputs. To detect target samples outside

of the support from source supervision, we propose to mea-

sure the disagreement of the classifiers prediction results

with distribution discrepancy measurement [22, 34].

Existing works exploit varying the dual classifiers by

maximizing the divergence between the predictions. How-

ever, the same classifier structure with slightly different ran-

dom initializations [34, 22] will weaken the ability to cap-

ture diverse task-specific knowledge and decision bound-

aries from different perspectives. In our model, we build

two different architecture classifiers, which are more likely

to capture the inconsistent information from various per-

spective. Thus, adversarial training would further enhance

the target prediction performance, and the classifier discrep-

ancy is defined as:

Ldis = F(ŷi
N,t, ŷ

i
P,t), (2)

where ŷi
N/P,t represent the probability prediction obtained

from the two classifiers for the sample xi
t respectively.

F(·, ·) denotes the discrepancy measurement function,

which is able to capture distribution geometric information

to calculate the discrepancy between the probability pre-

diction distributions, and solve gradient vanishing problems

occurred in adversarial learning methods.

3.2.3 Discriminative Cross-Domain Alignment

So far, our model only aligns cross-domain distributions in

terms of label space, we further exploit feature distribution

alignment to boost the domain-invariant feature learning.

Maximum Mean Discrepancy (MMD) has been sufficiently

explored as a promising strategy to reduce the domain-wise

distance between the mean of source and target domain fea-

tures, or class-wise distances between each class source

and target features with the pseudo labels for target sam-

ples [27]. The domain-wise MMD to measure marginal

distribution across domains is defined as H(E
x
i
s∼Ds

[zis] −

E
x
j
t∼Dt

[zjt ]) [27], where H(·) is the function used to evalu-

ate the distribution difference. Furthermore, existing works

[5] also seek to explore the class-wise MMD to align con-

ditional distribution disparity across domain:

Lc =
1

C

C
∑

c=1

H
(

E
x
i
s∼Dc

s
[zis]− E

x
j
t∼Dc

t
[zjt ]

)

, (3)

where C denotes the total number of categories, z
i/j
s/t denote

the generated embedding representations of source sample

xi
s and target sample x

j
t belonging to class c.

However, conventional DA algorithms only seek to min-

imize the distribution difference between source and target

domains when samples are from the same class. We further

propose to explicitly take the information of different cat-

egories into account and measure the diff-class divergence

across domains defined as:

Ld =
1

C

1

C − 1

C
∑

c=1

C
∑

c′=1,
c′ 6=c

H
(

E
x
i
s∼Dc

s
[zis]− E

x
j
t∼Dc′

t
[zjt ]

)

,

(4)

where the diff-class divergence Ld calculates the average

distances of all different class center pairs across domains.

To sum up, our discriminative cross-domain alignment is

defined as Lm = Lc − Ld.

Due to the lack of target domain labels, we explicitly

assign ŷi
P,t, the prediction of CP (·), as pseudo labels to

the target samples xi
t. To exploit more effective knowledge

transfer iteratively, we propose an Importance Guided Opti-

mization strategy to only consider those target samples with

high prediction confidences during the cross-domain align-

ment since lower-confident samples would mislead the op-

timization. That is, only samples with {(xi
t, ŷ

i(c)
P,t ) | ŷ

i(c)
P,t >

σ1,x
i
t ∈ Dt} are accepted to construct the cross-domain

alignment Lm, where ŷ
i(c)
P,t is the CP (·) probability predic-

tion of xi
t belonging to class c, and σ ∈ [0, 1] is a con-

stant threshold. It is noteworthy that we do not impose al-

ways covering the whole label space during training, since

only considering those classes with high-confident samples

is prone to result in effective cross-domain alignment by
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avoiding too many mis-classified target samples, especially

in the early training stage.

3.3. Overall Objective and Optimization

To eliminate the side effect of uncertainty on unlabeled

target prediction, we also explore the entropy minimization

regularization [45, 26, 28]:

Lem = −
1

nt

nt
∑

i=1

C
∑

c=1

(ŷi
N,c log ŷ

i
N,c + ŷi

P,c log ŷ
i
P,c), (5)

where ŷi
N,c and ŷi

P,c denote the prediction of xi
t belonging

to class c obtained by CN (·) and CP (·), respectively.

To sum up, we integrate adversarial dual classifiers train-

ing and cross-domain discriminative alignment together,

and propose our overall objective function as:

min
G

Ls + Lem + λ1Ldis + λ2Lm,

min
CN

Ls − λ1Ldis,
(6)

where λ1 and λ2 are hyper-parameters to balance the con-

tribution of loss terms Ldis, Lm, respectively.

Similar to existing adversarial networks training strat-

egy, we freeze the generator G(·) to train classifiers, then

freeze the parameters of the classifiers to update the genera-

tor G(·). It is noteworthy that only CN (·) contains trainable

parameters because CP (·) only relies on the embedding fea-

tures produced by the generator G(·). Meanwhile, inspired

by [34], in order to keep the performance of the networks on

the source domain and detect target samples far from source

domain support, we train our framework by three steps:

Step A. We train the feature generator G(·) and classifier

CN (·) only on source domain Ds which is the same as su-

pervised learning tasks. Due to CP (·) does not have any

trainable parameters, only parameters in G(·) and CN (·)
would be updated. Our model aims to detect target samples

which are outside of source support from those which are

close to support of source domain, keeping good ability and

performance on classifying the source domain samples cor-

rectly is crucial and necessary. The optimization objective

is defined as min
G,CN

Ls.

Step B. We need to assign unlabeled target domain sam-

ples pseudo labels by classifiers we already have. In our

experiments, we explore the prediction results of CP (·) to

obtain pseudo labels of the target samples, which are ex-

perimentally proven to achieve better performance, and we

will discuss it in the ablation analysis section. We fix the

feature generator G(·) and update the classifier CN (·) to

maximize the distribution discrepancy between the classi-

fication results of CN (·) and CP (·) on the target domain,

which can detect the target samples excluded by the source

domain data support, and we obtain the training objective

function as min
CN

Ls − λ1Ldis.

Step C. We freeze the parameters of the classifier CN (·) and

update generator G(·) to minimize the distribution discrep-

ancy between the predictions of CN (·) and CP (·) on the

target domain, through which both CN (·) and CP (·) classi-

fiers will have more similar and correct prediction on target

domain samples. Furthermore, together with the discrimi-

native cross-domain alignment, the generator G(·) tends to

couple the source and target domain closer but discrimina-

tive in the embedding feature space. The optimization ob-

jective is min
G

Ls + Lem + λ1Ldis + λ2Lm.

These three steps repeat once in each iteration in our ex-

periments. The generator G(·) and classifier CN (·) are ini-

tialized and pre-trained on source domain data.

4. Experimental Results

4.1. Datasets & Experimental Setup

Office-Home [39] consists of 15,500 images from 65 cat-

egories in 4 different domains: Artistic images (Ar), Clip

Art (Cl), Product (Pr), and Real-World images (Rw). In to-

tal, by choosing any two domain as one task, we can build

12 cross-domain tasks to evaluate our proposed model.

Office-31 contains 4,110 images of 3 domains: Amazon

(A), Webcam (W), and DSLR (D) and each domain con-

sists of 31 categories. We evaluate our method on 6 cross-

domain tasks to testify the validation of our model.

Comparisons. We compare our proposed method with sev-

eral state-of-the-art unsupervised domain adaptation mod-

els: Deep Adaptation Networks (DAN) [25], Reverse Gra-

dient (RevGrad) [7], Joint Adaptation Networks (JAN)

[29], Self-Ensembling (SE) [6], Multi-adversarial Domain

Adaptation (MADA) [31], Conditional Adversarial Domain

Adaptation Networks (CDAN) [26], Disentangled Seman-

tic Representation (DSR) [2], Domain-specific Whitening

Transform & Min-Entropy Consensus (DWT-MEC) [33],

Minimum Centroid Shift (MCS) [24], Adaptive Feature

Norm Approach (AFN) [41], Domain Symmetric Networks

(SymNets) [45], Bi-Directional Generation (BDG) [43].

All our experiments follow standard unsupervised domain

adaptation protocols: all labeled source domain data and la-

bels, as well as unlabeled target domain data are used for

training. All comparisons are back-boned with ResNet-50

or using ResNet-50 features [12].

Implementation Details. We implement our model with

PyTorch and adopt ResNet-50[12] as the backbone. Specif-

ically, a ResNet-50 network is pre-trained on ImageNet [4]

and fine-tuned on the source domain, then applied to both

source and target domain data to obtain the feature represen-

tation with dimension 2,048 without the last fully connected

layer. G(·) is a two-layer fully-connected neural network,
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Table 1. Comparisons of Recognition Rates (%) of Unsupervised Domain Adaptation on Office+Home Dataset (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Res-50 [12] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 51.2 59.9 46.1

DAN [25] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

RevGrad [7] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [29] 45.9 61.2 68.9 50.4 59.7 60.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

SE [6] 48.8 61.8 72.8 54.1 63.2 65.1 50.6 49.2 72.3 66.1 55.9 78.7 61.5

DSR [2] 53.4 71.6 77.4 57.1 66.8 69.3 56.7 49.2 75.7 68.0 54.0 79.5 64.9

DWT-MEC [33] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6

CDAN+E [26] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

MCS [24] 55.9 73.8 79.0 57.5 69.9 71.3 58.4 50.3 78.2 65.9 53.2 82.2 66.3

AFN [41] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

SymNets [45] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 81.6 67.6

BDG [43] 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7

Ours 57.4 77.3 80.0 63.4 76.4 76.4 64.2 52.4 80.7 69.6 57.2 83.9 69.9

Table 2. Comparisons of Recognition Rates (%) of Unsupervised Domain Adaptation on Office-31 Dataset (ResNet-50).

Method Res-50 [12] DAN [25] RevGrad [7] JAN [29] MADA [31] CDAN+E [26] AFN [41] SymNets [45] BDG [43] Ours

A→W 68.4±0.2 80.5±0.4 82.0±0.4 86.0±0.4 90.0±0.1 94.1±0.1 90.1±0.1 90.8±0.1 93.6±0.4 93.6±0.3

D→W 96.7±0.1 97.1±0.2 96.9±0.2 96.7±0.3 97.4±0.1 98.6±0.1 98.6±0.2 98.8±0.3 99.0±0.1 98.9±0.2

W→D 99.3±0.1 99.6±0.1 99.1±0.1 99.7±0.1 99.6±0.1 100.0±0.0 99.8±0.0 100.0±0.0 100.0±0.0 99.8±0.0

A→D 68.9±0.2 78.6±0.2 79.7±0.4 85.1±0.4 87.8±0.2 92.9±0.2 90.7±0.5 93.9±0.5 93.6±0.3 95.4±0.3

D→A 62.5±0.3 63.6±0.3 68.2±0.4 69.2±0.3 70.3±0.3 71.0±0.3 73.0±0.2 74.6±0.6 73.2±0.2 74.9±0.3

W→A 60.7±0.3 62.8±0.2 67.4±0.5 70.70.5 66.4±0.3 69.3±0.3 70.2±0.3 72.5±0.5 72.0±0.1 75.0±0.5

Avg. 76.1 80.4 82.2 84.6 85.2 87.7 87.1 88.4 88.5 89.6

with hidden layer output as 1,024 followed by ReLU ac-

tivation function, and the dropout probability retaining is

0.5. The output embedding features zs/t dimension is 512.

CN (·) is a two-layer fully-connected neural network with

512 as the input and hidden layer dimension, the output

dimension is the same as the number of categories in the

whole label space C. Cosine similarity is accepted as the

measurement metric Φ(·, ·) in CP (·). All parameters are

updated with Adam optimizer [19] and the learning rate is

set as 0.001 on Office-Home and Office-31 dataset. G(·)
and CN (·) are pre-trained and initialized on source domain

data only with the learning rate as 0.1 for 2,000 iterations.

We deploy SWD distance [22] as the discrepancy measure-

ment function F(·, ·), and accept L-2 norm as H(·) to eval-

uate the distribution divergence. λ1 and λ2 are fixed as 0.1

for all tasks. σ is set to be 0.03. For the prototypical classi-

fier CP (·), we initialize the class prototypes with the source

domain features class centers µ
s
c = 1

nc
s

∑nc
s

i=1 z
i
s, then up-

date the prototypes with target domain category centroids

representation µ
t
c = 1

nc
t

∑nc
t

j=1 z
j
t after obtaining the target

domain samples pseudo labels ŷP,t iteratively till reaching

convergence or the max step (which is set as 3), and return

the last step CP (·) prediction. All results reported in Tables

1 and 2 are the average of three random experimental results

obtained by classifier CP (·), and we will discuss the perfor-

mances of CN (·) and CP (·) in the ablation study section.

4.2. Comparison Results

Table 1 and Table 2 report the classification results on

target domain data of our proposed model and other com-

parative methods on Office-Home and Office-31 datasets re-

spectively. All comparison results are from their original

paper or quoted from [21, 45, 43], as we adopt exactly the

same settings. It is noteworthy that our proposed model out-

performs state-of-the-art methods on all benchmark datasets

in terms of average accuracy, and obtains the best or compa-

rable performances to the state-of-the-art domain adaptation

methods in most cases. Although the Office-Home dataset

is more challenging than Office-31 due to more categories

and samples, as well as significant distribution dissimilarity,

our proposed model still improves the performance on most

tasks, which demonstrates the efficiency and effectiveness

of our proposed framework.

DAN and JAN are both MMD-based methods, which

seek to eliminate the cross-domain distribution disparity

and match the whole source and target domain to a shared

domain-invariant feature space. DAN attempts to align fea-

ture representations from multiple layers through a multi-

kernel variant of MMD. JAN aims to transfer joint distri-

butions of multi-layers’ activation of the networks across

domains. With the help of additional domain adaptation

terms (e.g., MMD), DAN and JAN lead to a significant

performance boost over the source-only-trained model (i.e.,
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Figure 2. Ablation experiments about various loss terms contribution on Office+Home Dataset (ResNet-50).
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Figure 3. Accuracies of CN and CP on Office+Home. red and blue results are obtained with ŷN,t as target pseudo labels for Lm, the

others are based on ŷP,t as pseudo labels.

Table 3. CN v.s. CP accuracies (%) on Office+Home Ar → Cl

Balanced Imbalanced

Y Clock Helmet Knives Bed Couch Folder Marker Pen

ns 74 79 72 39 40 20 20 20

nt 60 69 53 98 64 99 71 99

CN 75.0 71.0 52.8 53.1 67.2 25.3 18.3 51.5

CP 73.3 69.6 49.1 55.1 68.8 28.3 21.1 53.5

Table 4. Comparisons of Dual Classifiers Structure Influence to

Recognition Rates (%) of Unsupervised Domain Adaptation on

Office-31 Dataset (ResNet-50).

Method A→W D→W W→D A→D D→A W→A Avg.

MCD [34] 88.6 98.5 100.0 92.2 69.5 69.7 86.5

SWD [22] 90.4 98.7 100.0 94.7 70.3 70.5 87.4

Ours (same) 93.3 98.8 100 94.7 72.4 73.6 88.8

Ours 93.6 98.9 99.8 95.4 74.9 75.0 89.6

ResNet-50) on most adaptation tasks.

RevGrad implements adversarial networks and applies

gradient reversal layer to train a domain discriminator.

CDAN and MADA both exploit the multiplicative combi-

nation of feature embeddings and task-specific predictions

as high-order representations to promote adversarial opti-

mization. SE studies the self-ensembling to boost the vi-

sual domain adaptation performance. DSR assumes that

the data generation process is controlled by the semantic la-

tent variables and domain latent variables independently, so

employs a variational auto-encoder in order to reconstruct

them. MCS designs a unified framework without accessing

the source data and iteratively assigns pseudo labels to the

target samples by an alternating minimization scheme.

DWT-MEC proposes domain alignment layers with fea-

ture whitening to match source and target domain distribu-

tions and applies the Min-Entropy Consensus loss to unla-

beled target data. AFN proposes a novel Adaptive Feature

Norm approach to adapting the source and target domain

feature norms to a specific range of values progressively.

SymNets exploits a novel adversarial classifiers networks

and a two-level domain confusion scheme driving the learn-

ing of categories invariant intermediate features across do-

mains. BDG bridges source and target domain through con-

sistent classifiers interpolating two intermediate domains.

4.3. Ablation Analysis

In this section, we analyze the contribution and influence

of several important terms and hyper-parameters sensitivity

in our proposed model.

First, we discuss the influence of each component in

our framework. By removing one of Ldis, Lm, and Lem,

while keeping other terms same as original AD2CN, we ob-

tain three variants AD2CN w/o Ldis, AD2CN w/o Lm, and

AD2CN w/o Lem. From Fig. 2, we notice that all three

components contribute to improving the domain adapta-

tion performance, while our proposed discriminative cross-

domain alignment Lm plays a more crucial role than others,

i.e., discrepancy and entropy minimization loss.

Secondly, we compare the performances of CN (·) and

CP (·) while accepting ŷN,t or ŷP,t as target domain pseudo

labels for Lm. From the results in Fig. 3, we observe that

results with ŷP,t as pseudo labels are better than the re-

sults with ŷN,t in most cases. Compared to CN (·), which is

trained on the source domain, CP (·) is based on the target

prototypes and keeps better performance even on the early

training stage. Fig. 4 shows several test samples that CP (·)
classifies correctly while CN (·) cannot handle, which em-

phasizes the superiority of CP (·).

Thirdly, we discuss the necessity and effectiveness of

two different types of classifiers in our framework. Table

3 shows the selective target domain class-wise recognition

accuracy on OfficeHome Ar → Cl case produced by the

two classifiers CN and CP in our proposed model, as well

as the number of samples in each class from the source

and target domains. From the results we notice that for

the categories having sufficient well labeled source sam-
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Figure 4. Ten Samples from Office-Home Ar→Cl. Y row denotes the ground-truth labels, CN row shows the mis-classified labels, while

CP means the correctly prediction.
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Figure 5. t-SNE visualization of source and target samples features before (left column) and after (right column) domain adaptation through

our proposed model. (a) shows the task of Ar→Cl from Office-Home and (b) reports the task of A→W from Office-31.
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Figure 6. Parameters sensitivity analysis on 4 different tasks from

Office-Home dataset of (a) λ1 and (b) λ2

ples as well as balanced target domain samples for train-

ing, CN have better performance than CP , while for other

categories with imbalanced distribution across domains and

insufficient labeled source samples for training, CP always

performs better than CN . The observation proves that for

imbalanced dataset, CN and CP have different speciality

for different categories with various cross-domain distri-

butions. More over, we show the comparison results of

MCD [34], SWD[22], and our proposed model on Office-31

dataset in Table 4. MCD and SWD are two dual classifier

adversarial frameworks for domain adaptation, but using

two completely same structure neural networks classifiers.

We also replace the CN and CP in our proposed model with

two same structure neural networks classifiers and report

the results as Ours(same). It is noteworthy that our proposed

model achieves the best performance on most cases as well

as the average accuracy compared to other same classifier

structure methods, which proves the effectiveness and ne-

cessity of applying two distinct architecture classifiers.

Fourthly, we visualize the t-SNE embeddings (Fig. 5)

of feature representations generated by G(·) before and af-

ter the domain adaptation through our proposed model, in

which each category is represented as a cluster and differ-

ent colors denote the different domains. Before adaptation,

the source and target domains are totally mismatched, while

our method shows the promising ability to make inter-class

separated and intra-class clustered tightly.

Finally, we analyze the sensitivity of λ1 (Fig. 6 (a))and

λ2 (Fig. 6 (b)) by listing four tasks from Office-Home

dataset (Ar → Cl, Cl → Pr, Pr → Rw, Rw → Ar). Specif-

ically, we set the ranges of λ1 and λ2 from 0.001 to 0.2,

and evaluate one by fixing the other one as 0.1. From the

results, we notice the accuracy curves are almost flat and

stable, which indicates our proposed model is not sensitive

to the values of λ1 nor λ2.

5. Conclusion

We presented a novel Adversarial Dual Distinct Classi-

fier Networks (AD2CN) for unsupervised domain adapta-

tion to align source and target domain distribution discrep-

ancy as well as task-specific category boundaries. Specif-

ically, we designed two different architecture classifiers

to detect target samples excluded by the source domain

support by aligning the task-specific decision boundaries

obtained by the two classifiers. Meanwhile, a domain-

invariant feature generator was proposed to embed source

and target domain data to a shared feature space under the

guidance of discriminative cross-domain alignment. We

evaluated our proposed model on two cross-domain visual

benchmarks and obtained better performance over state-of-

the-art methods, proving the effectiveness of our method.
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