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Abstract

Dimensionality reduction plays an important role in

computer vision problems since it reduces computational

cost and is often capable of yielding more discriminative

data representation. In this context, Partial Least Squares

(PLS) has presented notable results in tasks such as image

classification and neural network optimization. However,

PLS is infeasible on large datasets, such as ImageNet, be-

cause it requires all the data to be in memory in advance,

which is often impractical due to hardware limitations. Ad-

ditionally, this requirement prevents us from employing PLS

on streaming applications where the data are being contin-

uously generated. Motivated by this, we propose a novel

incremental PLS, named Covariance-free Incremental Par-

tial Least Squares (CIPLS), which learns a low-dimensional

representation of the data using a single sample at a time.

In contrast to other state-of-the-art approaches, instead of

adopting a partially-discriminative or SGD-based model,

we extend Nonlinear Iterative Partial Least Squares (NI-

PALS) — the standard algorithm used to compute PLS —

for incremental processing. Among the advantages of this

approach are the preservation of discriminative information

across all components, the possibility of employing its score

matrices for feature selection, and its computational effi-

ciency. We validate CIPLS on face verification and image

classification tasks, where it outperforms several other in-

cremental dimensionality reduction techniques. In the con-

text of feature selection, CIPLS achieves comparable results

when compared to state-of-the-art techniques.

1. Introduction

Dimensionality reduction is widely used in computer vi-

sion applications from image classification [11] [2] to detec-

tion of adversarial images [12]. The idea behind this tech-

nique is to estimate a transformation matrix that projects

the high-dimensional feature space onto a low-dimensional

latent space [23][8]. Previous works have demonstrated

that dimensionality reduction can improve not only com-

putational cost but also the effectiveness of the data rep-

resentation [19] [35] [33]. In this context, Partial Least

Squares (PLS) has presented remarkable results when com-

pared to other dimensionality reduction methods [33]. This

is mainly due to the criterion through which PLS finds the

low dimensional space, which is by capturing the relation-

ship between independent and dependent variables. An-

other interesting aspect of PLS is that it can operate as a fea-

ture selection method, for instance, by employing Variable

Importance in Projection (VIP) [24]. The VIP technique

employs score matrices yielded by NIPALS (the standard

algorithm used for traditional PLS) to compute the impor-

tance of each feature based on its contribution to the gener-

ation of the latent space.

Despite achieving notable results, PLS is not suitable for

large datasets, such as ImageNet [6], since it requires all the

data to be in memory in advance, which is often impractical

due to hardware limitations. Additionally, this requirement

prevents us from employing PLS on streaming applications,

where the data are being generated continuously. Such lim-

itation is not particular to PLS, many dimensionality reduc-

tion methods, such as Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA), also suffer from

this problem [36, 2, 39].

To handle the aforementioned problem, many works

have proposed incremental versions of traditional dimen-

sionality reduction methods. The idea behind these meth-

ods is to estimate the projection matrix using a single data

sample (or a subset) at a time while keeping some proper-

ties of the traditional dimensionality reduction methods. A

well-known class of incremental methods is the one based

on Stochastic Gradient Descent (SGD) [3] [2]. These meth-

ods interpret dimensionality reduction as a stochastic opti-

mization problem of an unknown distribution. As shown by

Weng et al. [36], incremental methods based on SGD are

computationally expensive, present convergence problems

and require many parameters that depend on the nature of
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(a) IPLS projection. (b) SGDPLS projection. (c) CIPLS (Ours) projection.

Figure 1. Projection on the first (x-axis) and second (y-axis) components using different dimensionality reduction techniques. Our method

(CIPLS) separates the feature space better than IPLS and SGDPLS, which are state-of-the-art incremental PLS-based methods. For IPLS

and SGDPLS, the class separability is effective only on a single dimension of the latent space, while for CIPLS it is retained on both

dimensions. Blue and red points denote positive and negative samples, respectively.

the data. To address this problem, Zeng et al. [40] proposed

an efficient and low-cost incremental PLS (IPLS). In their

work, the first dimension (component) of the latent space

is found incrementally, while the other dimensions are es-

timated by projecting the first component onto the recon-

structed covariance matrix, which is employed to address

the issue of impractical memory requirements of a full co-

variance matrix.

Even though IPLS achieves better performance than

SGD-based and other state-of-the-art incremental methods,

the discriminability of its higher-order components (i.e., all

except the first) is not preserved, as shown in Figure 1 (a),

where it can be seen that the effectiveness of class separa-

bility of IPLS is restricted to the first dimension of the latent

space. This behavior occurs because the higher-order com-

ponents are estimated using only the independent variables,

that is, they are based on an approximation of the covari-

ance matrix X⊤X (similar to PCA) instead of X⊤Y em-

ployed in PLS. This can degrade the discriminability of the

latent model since preserving the relationship between in-

dependent and dependent variables is an important property

of the original PLS [8]. It is important to emphasize that,

for high-dimensional data, employing several components

often provides better results [33, 9, 10], hence, IPLS might

not be suitable for these cases.

Motivated by limitations and drawbacks in incremen-

tal PLS-based approaches, we propose a novel incremen-

tal method1. Our method is based on the hypothesis that the

estimation of higher-order components using the covariance

matrix, as proposed by Zeng et al. [40], is inadequate since

the relationship between independent and dependent vari-

ables is lost. Therefore, to preserve this characteristic, we

extend NIPALS [1] to avoid the computation of X⊤Y and,

consequently, enable it for incremental operation. Since

our proposed extension is based on a simple algebraic de-

1https://github.com/arturjordao/IncrementalDimensionalityReduction

composition, we preserve the simplicity and efficiency that

makes NIPALS attractive, and we ensure that the relation-

ship between independent and dependent variables is prop-

agated to all components, differently from other methods.

As shown in Figure 1, our method is capable of sepa-

rating data classes better than IPLS, mainly on the second

component (i.e., y-axis). Since the proposed method does

not use the covariance matrix (X⊤X) to estimate higher-

order components, we refer to it as Covariance-free Incre-

mental Partial Least Squares (CIPLS). Besides providing

superior performance, our method can easily be extended

as a feature selection technique since it provides all the re-

quirements to perform VIP. Existing incremental PLS meth-

ods, on the other hand, require more complex techniques to

operate as feature selection [24].

We compare the proposed method on the tasks of face

verification and image classification, where it outperforms

several other incremental methods in terms of accuracy and

efficiency. In addition, in the context of feature selection,

we evaluate and compare the proposed method to state-of-

the-art methods, where it achieves competitive results.

2. Related Work

To enable PCA to operate in an incremental scheme,

Weng et al. [36] proposed to compute the principal compo-

nents without estimating the covariance matrix, which is un-

known and impossible to be calculated in incremental meth-

ods. For this purpose, their method, named CCIPCA, up-

dates the projection matrix for each sample x, replacing the

unknown covariance matrix by the sample covariance ma-

trix xx⊤. While CCIPCA provides a minimum reconstruc-

tion error of the data, it might not improve or even preserve

the discriminability of the resulting subspace since label in-

formation is ignored (similarly to traditional PCA) [23].

To achieve discriminability, incremental methods based

on Linear Discriminant Analysis (LDA) have been pro-
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posed [13] [21]. In particular, this class of methods is less

explored since they present issues such as the sample size

problem [14], which makes them infeasible for some tasks.

Different from incremental LDA methods, incremental PLS

methods are more flexible and present better results [40].

Motivated by this, Arora et al. [3] proposed an incremen-

tal PLS based on stochastic optimization (SGDPLS), where

the idea is to optimize an objective function using a sin-

gle sample at a time. Similarly to Arora et al. [3], Stott

et al. [34] proposed applying stochastic gradient maximiza-

tion on NIPALS, extending it for incremental processing.

Even though they present promising results on synthetic

data, their approach presented convergence problems when

evaluated on real-world datasets. Thus, in this work, we

consider only the approach by Arora et al. [3], which was

the one that converged for several of the datasets evaluated

and presented better results.

While SGDPLS is effective, as demonstrated by Weng

et al. [36] and Zeng et al. [40], SGD-based methods applied

to dimensionality reduction are computationally expensive

and present convergence problems. In addition, this class

of approaches requires careful parameter tuning and their

results are often sensitive to the type of dataset [36].

To address convergence problems in SGD-based PLS,

Zeng et al. [40] proposed to decompose the relationship be-

tween independent and dependent matrices (variables) into

a sample relationship (i.e., a single sample with its label).

This process is performed only to compute the first com-

ponent, while the higher-order components are estimated

by projecting the first component onto an approximated co-

variance matrix using a few PCA components. As we men-

tioned earlier, since traditional PCA cannot be employed

in incremental methods, Zeng et al. [40] used CCIPCA to

reconstruct the principal components of the covariance ma-

trix.

In contrast to existing incremental PLS methods, our

method presents superior performance in both accuracy

and execution time for estimation of the projection ma-

trix, which is an important requirement for time-sensitive

and resource-constrained tasks. In particular, considering

the average accuracy across all tasks in our assessment, the

proposed method outperforms IPLS and SGDPLS by 32.48
and 24.83 percentage points, respectively, when using only

higher-order components. The reason for these results is

the quality of our higher-order components, which keeps

the discriminative properties of traditional PLS.

Another line of research widely employed to reduce

computational cost is feature selection. One of the most

successful feature selection methods is the work by Roffo

et al. [32], which proposed to interpret feature selection as

a graph problem. In their method, named infinity feature

selection (infFS), each feature represents a node in an undi-

rected fully-connected graph and the paths in this graph rep-

resent the combinations of features. Following this model,

the goal is to find the best path taking into account all the

possible paths (in this sense, all the subsets of features) on

the graph, by exploring the convergence property of the geo-

metric power series of a matrix. Improving upon this model,

Roffo et al. [30] suggested quantizing the raw features into

a small set of tokens before computing infFS. By using this

pre-processing, their method (referred to as infinity latent

feature selection — ilFS) achieved even better results than

infFS. Recently, Roffo et al. [31] presented a more effi-

cient version of infFS, which considers supervised (infFSS)

and unsupervised (infFSU) scenarios. Although the frame-

work by Roffo et al. [32, 30, 31] achieved state-of-the-art

results, in the context of neural network optimization, Jor-

dao et al. [17] showed that PLS+VIP attains superior per-

formance. We show that CIPLS+VIP achieves comparable

results when compared to PLS+VIP and other state-of-the-

art feature selection techniques.

3. Proposed Approach

In this section, we start by describing the traditional

Partial Least Squares (PLS). Then, we present the pro-

posed Covariance-free Incremental Partial Least Squares

(CIPLS) and the Variable Importance in Projection (VIP)

technique, which enables PLS and CIPLS to be employed

for feature selection. Unless stated otherwise, let X ∈
R

n×m be the matrix of independent variables denoting n
training samples in a m-dimensional space. Furthermore,

let Y ∈ R
n×1 be the matrix of dependent variables repre-

senting the binary class label. Finally, let xn ∈ R
1×m and

yn ∈ R
1×1 be a single sample of X and Y , respectively.

We highlight that, in the context of streaming data, xn is a

data sample acquired at time n.

3.1. Partial Least Squares

Given a high m-dimensional space, PLS finds a projec-

tion matrix W (w1, w2, ..., wc), which projects this space

onto a low c-dimensional space, where c ≪ m. For this

purpose, PLS aims at maximizing the covariance between

the independent and dependent variables such that, besides

reducing dimensionality, it preserves the discriminability of

the data, which is essential for classification tasks. For-

mally, PLS constructs W such that

wi = maximize(cov(Xw, Y )), s.t‖w‖ = 1, (1)

where wi denotes the ith component of the c-dimensional

space. The exact solution to Equation 1 is given by

wi =
X⊤Y

‖X⊤Y ‖
. (2)

From Equation 2, we can compute all the c components

using either Nonlinear Iterative Partial Least Squares (NI-

PALS) [1] or Singular Value Decomposition (SVD). Most
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works employ NIPALS since it is capable of finding only

the c first components, while SVD always finds all the

m components, being computationally prohibitive for large

datasets [38, 22].

3.2. Covariancefree Incremental Partial Least
Squares

The core idea in our method is to ensure that, as in tra-

ditional PLS, the relationship between independent and de-

pendent variables (Equation 2) is kept on all the c compo-

nents. To achieve this goal, our method works as follows.

First, we need to center the data to the mean of the training

samples X . However, different from traditional methods, in

incremental approaches the mean is unknown since we can-

not assume that all the data are known a priori [36] [40]. To

face this problem, we center the current data sample using

an approximate centralization process [36] which consists

of estimating an incremental mean using the nth sample.

According to Weng et al. [36], we can compute the incre-

mental mean µn w.r.t. the nth data sample as

µn =
n− 1

n
µ(n−1) +

1

n
xn. (3)

Once we have centralized the sample, the next step in our

method is to compute the component wi following Equa-

tion 2. As we mentioned, X and its respective Y are un-

known or are not in memory in advance, which prohibits

us to apply Equation 2 directly. However, as suggested by

Zeng et al. [40], we employ the following decomposition:

XTY =

n−1
∑

k=1

xT
k yk + xT

nyn. (4)

By replacing X⊤Y in Equation 2 by Equation 4, it is pos-

sible to calculate the ith component of PLS considering a

single sample at a time. In other words, Equation 4 enables

to compute wi incrementally.

To compute the higher-order components (wi, i > 1), we

employ a deflation process that consists of subtracting the

contribution of the current component on the sample before

estimating the next component. Following the NIPALS al-

gorithm, the deflation process works as follows

t = Xwi, (5)

p = X⊤t, q = Y ⊤t, (6)

X = X − tp⊤, Y = Y − tq⊤, (7)

where t denotes the projected samples onto the current com-

ponent wi, and p and q represent the loadings of this projec-

tion. It should be noted that while t works in an incremental

scheme (since we can project one sample at a time), p and q
cannot be computed since X and Y are neither known nor

are in memory in advance. However, in light of Equation 4,

we can decompose p and q as

p =

n−1
∑

k=1

x⊤
k tk + x⊤

n tn, q =

n−1
∑

k=1

y⊤k tk + y⊤n tn. (8)

By embedding Equation 8 in the deflation process, we can

remove the contribution of the current component and re-

peat the process to compute a single component wi (as we

argued before). Observe that Equation 7 deflates each sam-

ple by its reconstructed value. This way, Equation 7 can

be computed sample-by-sample, working in an incremental

scheme. With this formulation, we are now capable of com-

puting the c components incrementally. Algorithm 1 sum-

marizes the steps of our method. It should be mentioned

that the matrices W , P and Q are initialized with zeros.

According to Algorithm 1, the proposed method main-

tains the property of capturing the relationship between X
and Y for all components (step 4 in Algorithm 1). In addi-

tion, since we compute all components at once, our method

has a time complexity of O(ncm), where n, c and m de-

note the number of samples, number of components, and

dimensionality of the data, respectively.

Algorithm 1: CIPLS Algorithm.

Input : nth data sample xn and its label yn
Number of components c
Projection matrix W(n−1) ∈ R

m×c

Loading matrix P(n−1) ∈ R
m×c

Loading matrix Q(n−1) ∈ R
1×c

Output: Updated matrices W , P and Q

1 Update µn using Equation 3

2 x̄n = xn − µn

3 for i = 1 to c do

4 wi = x̄⊤
n yn + wi(n−1), where wi ∈ W

5 tn = x̄nwi

‖x̄nwi‖

6 pi = x̄⊤
n tn + pi(n−1), where pi ∈ P

7 qi = y⊤n tn + qi(n−1), where qi ∈ Q

8 x̄n = x̄n − tnp
⊤
i

9 yn = yn − tnq
⊤
i

10 end

3.3. CIPLS for Feature Selection

An advantage of PLS is that, after estimating the projec-

tion matrix W , it is possible to estimate the importance of

each feature, enabling PLS to operate as a feature selection

method. For this purpose, it is possible to employ Variable
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Importance in Projection (VIP), which estimates the impor-

tance of each feature fj based on its contribution to yield the

low dimensional space. According to Mehmood et al. [24],

VIP is defined as

fj =

√

√

√

√m

c
∑

i=1

q2i t
⊤
i ti(wij/‖wi‖2)/

c
∑

i=1

q2i t
⊤
i ti. (9)

Once we have estimated the score of each feature, we can

remove a percentage of features based on their scores. As

can be verified in Algorithm 1, CIPLS preserves the abil-

ity of traditional PLS to be employed as a feature selection

method via VIP (Equation 9). It is important to emphasize

that IPLS and SGDPLS cannot be used to compute VIP as

they do not provide the loading matrix Q (q1, q2, ..., qc).

4. Experimental Results

In this section, we first introduce the experimental setup

and the tasks employed to validate the proposed method.

Then, we present the procedure conducted to calibrate the

parameters of the methods. Next, we compare the proposed

method with other incremental partial least squares methods

as well as with the traditional PLS. Afterwards, we present

the influence of higher-order components on the classifica-

tion performance. Finally, we discuss the time complexity

of the methods, their performance on a streaming scenario

and compare our method on the feature selection context.

Experimental Setup. Following previous works [7, 28, 4,

18], we employ linear classifiers when using features from

convolutional networks. Specifically, we use a linear SVM

as employed by our main baseline [40]. For multi-class

problems (image classification), on the other hand, we pre-

fer to use a multilayer perceptron since it handles the multi-

class problem naturally, avoiding the need for employing

a binary classifier (e.g., SVM) on a one-versus-rest fash-

ion, which would be computationally expensive. All experi-

ments and methods were executed on an Intel Core i5-8400,

2.4 GHz processor with 16 GB of RAM.

To assess the differences in efficacy and efficiency

among the compared methods, throughout the experiments

we perform statistical tests based on a paired t-test using

95% confidence [16]. We highlight that the statistical tests

were conducted only for face verification due to the com-

putational cost of retraining (i.e., fine-tuning) the convolu-

tional network for image classification, which is consider-

ably high since we employ large-scale datasets.

Face Verification. Given a pair of face images, face verifi-

cation determines whether this pair belongs to the same per-

son. For this purpose, we use a three-stage pipeline [27, 5]

as follows. First, we extract a feature vector of each face

using a deep learning model. In this work, we use the fea-

ture maps from the last convolutional layer of the VGG16

model, learned on the VGGFaces dataset [26], as feature

vector. Then, we compute the distance between the two

feature vectors employing the ℓ1-distance metric. Finally,

we present the result of the distance metric to a classifier.

We conduct our evaluation on two face verification

datasets, namely Labeled Faces in the Wild (LFW) [15] and

Youtube Faces (YTF) [37].

Image Classification. For this task, we use features maps

from the last layer of a VGG16 network as features. More-

over, we consider two versions of the ImageNet dataset,

with images of size 224 × 224 and 32 × 32 pixels. The

former is used since it is the original version of the dataset,

while the latter is used because it has been demonstrated to

be more challenging than the original version [29, 20, 25].

It is worth mentioning that the single difference between

these versions of ImageNet is the image size.

Number of Components. One of the most important as-

pects of dimensionality reduction methods is the number of

components c of the resulting latent space. Therefore, to

choose the best number of components for each method,

we vary c from 1 to 10 and select the value for which the

method achieved the highest accuracy on the validation set

(10% of the training set). Once the best c is chosen, we use

the training and validation set to learn the projection method

and the classifier. We repeat this process for each dataset.

Comparison with Incremental Methods. This experi-

ment compares the proposed CIPLS with other incremen-

tal dimensionality reduction methods. Table 1 summarizes

the results and shows that, on LFW, our method outper-

formed SGDPLS and IPLS by 1.18 and 1.48 percentage

points (p.p.), respectively. Similarly, on YTF, CIPLS out-

performed SGDPLS and IPLS by 0.88 and 1.88 p.p..

Finally, on the ImageNet dataset, the difference in accu-

racy compared to IPLS was of 0.07 and 1.35 p.p., for the

32 × 32 and 224 × 224 versions, respectively. It is impor-

tant to mention that we do not consider SGDPLS on these

datasets due to convergence problems and high computa-

tional cost. Furthermore, due to memory constraints, it was

not possible to run the traditional PLS on ImageNet.

Comparison with Partial Least Squares. As suggested by

Weng et al. [36], we compare the incremental methods with

the traditional approach as baseline (in our case, traditional

PLS). According to Table 1, besides providing better results

than IPLS and SGDPLS, CIPLS achieved the closest results

to traditional PLS. For instance, on LFW, the difference in

accuracy between PLS and CIPLS was 0.69 p.p. while on

YTF it was 1.86 p.p.. In contrast, the difference in accu-

racy between PLS and SGDPLS is higher — 1.87 p.p. on

LFW and 2.74 p.p. on YTF. In addition, the difference in

accuracy between PLS and IPLS is among the highest, 2.17
and 3.74 p.p. for the LFW and YTF datasets, respectively.

In particular, the results for PLS and CIPLS are statistically
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Table 1. Comparison of existing incremental methods in terms of accuracy. The symbol ’–’ denotes that it was not possible to execute the

method on the respective dataset due to memory constraints or convergence problems (see the text). PLS denotes the use of the traditional

PLS. The closer to the accuracy of the baseline (PLS), the better. The numbers enclosed in square brackets denote confidence interval

(95% confidence).

LFW YTF
ImageNet

32×32

ImageNet

224×224

CCIPCA [36] 89.87 [89.17, 90.55] 81.48 [80.07, 82.88] 40.30 52.58

SGDPLS [3] 90.60 [89.95, 91.24] 83.22 [82.07, 84.36] – –

IPLS [40] 90.30 [89.60, 90.99] 82.22 [80.96, 83.47] 43.24 65.74

CIPLS (Ours) 91.78 [91.08, 92.47] 84.10 [82.82, 85.37] 43.31 67.09

PLS 92.47 [91.87, 93.05] 85.96 [84.47, 87.44] – –

Table 2. Accuracy of existing incremental methods when using

only higher-order components. Values computed considering the

average accuracy across all tasks in our assessment.

Average Accuracy

CCIPCA [36] 63.48

SGDPLS [3] 58.41

IPLS [40] 50.76

CIPLS (Ours) 83.24

equivalent, while IPLS and SGDPLS present results statis-

tically inferior compared to PLS.

It should be noted that the results of IPLS are closer to

CCIPCA than PLS since only the first component of IPLS

maintains the relationship between independent and depen-

dent variables. On the other hand, the proposed method pre-

serves this relation along higher-order components, which

provides better discriminability, as seen in our results.

Higher-order Components. This experiment assesses the

discriminability of the higher-order components of CIPLS

compared to each of the other incremental methods. For this

purpose, we follow a process suggested by Martinez [23],

which consists of removing the first component of the la-

tent space before presenting the projected data to the classi-

fier. This evaluates the performance of the remaining com-

ponents, not only the first one which tends to be better.

Table 2 shows the results. According to Table 2, the pro-

posed method outperforms IPLS by 32.48 p.p.. Observe

that when all the components are used, CIPLS outperforms

IPLS by 1.17 p.p.. This larger difference when removing

the first component is an effect of the better discriminabil-

ity achieved by the components extracted by CIPLS. As

we have argued, CIPLS preserves the relationship between

dependent and independent variables across higher-order

components, yielding more accurate results. Compared to

SGDPLS, CIPLS outperforms it by 24.83 p.p. when using

only the higher-order components.

Time Issues. To demonstrate the efficiency of CIPLS, in

this experiment, we compare its time complexity to com-

Table 3. Comparison of incremental dimensionality reduction

methods in terms of time complexity for estimating the projec-

tion matrix. m, n denote dimensionality of the original data and

number of samples, while c, L and T denote number of PLS com-

ponents, number of PCA components and convergence steps.

Time Complexity

CCIPCA [36] O(nLm)

SGDPLS [3] O(Tcm)

IPLS [40] O(nLm+ c2m)

CIPLS (Ours) O(ncm)

pute the projection matrix with the incremental methods

evaluated. Following Weng et al. [36] and Zeng et al. [40],

we report this complexity w.r.t. dimensionality of the origi-

nal data m, number of samples n, number of components c
and number of PCA components L (required only by IPLS

and CCIPCA). Table 3 shows the time complexity of the

methods.

According to Table 3, CIPLS presents a low time com-

SGDPLS IPLS CCIPCA CIPLS (Ours)

0

0.005

0.01

0.015

Method

T
im

e
 (

in
 s

e
c

o
n

d
s)

Figure 2. Average prediction time (in seconds) for estimating the

projection matrix, lower values are better. Black bars denote the

confidence interval.
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Figure 3. Comparison of incremental methods on a streaming scenario. The x-axis denotes the data arriving sequentially.

plexity for estimating the projection matrix. The complexity

of CIPLS is not only on the same class as CCIPCA, which

is the fastest among the compared methods, but it also has a

very small constant factor. This constant factor is the num-

ber of components, c for CIPLS and L for CCIPCA. Ex-

perimentally, we found that the optimal constant factor for

PLS is negligible, c = 2 resulted in the highest accuracies.

While, for fairness, the same number of components was

adopted for all methods in Table 3, typically c < L on prac-

tical applications. This is a known advantage of PLS – it

has been shown to require substantially less components to

achieve its optimal accuracy than PCA [33].

We also report the average computation time (consider-

ing 30 executions) of the methods for estimating the pro-

jection matrix for one new sample. To make a fair com-

parison, we set c = 4 for all methods and for the other pa-

rameters we use the values where the methods achieved the

best results in validation. According to Figure 2, SGDPLS

is the slowest incremental PLS method, which is a con-

sequence of its strategy for estimating the projection ma-

trix, where for each sample the convergence step is run T
times. Our experiments showed that T ≥ 100 is required

for good results. The computation time for estimating the

projection matrix of our method was statistically equivalent

(according to a paired t-test) to that of CCIPCA, which is

the fastest among the incremental dimensionality reduction

methods assessed. Moreover, CIPLS was statistically faster

than IPLS and SGDPLS, demonstrating that it is the fastest

among the compared incremental PLS methods.

Incremental Methods on the Streaming Scenario. As

we argued earlier, incremental methods can be employed

on streaming applications, where the training data are con-

tinuously generated. To demonstrate the robustness of our

method on these scenarios, we evaluate the methods on a

synthetic streaming context, as proposed by Zeng et al. [40].

The procedure works as follows. First, the training data is

divided into k blocks, where k = 20. The idea behind this

process is to interpret each block as a new instance of arriv-

ing data. Then, we create a new training set and insert each

kth block at a time. Each time we insert a new block, we

learn the projection method and evaluate its accuracy on the

testing set. For instance, when adding the tenth block, all

the 1, 2, ..., 10 blocks are being used as training. It is impor-

tant to mention that a block contains more than one sample,

however, this does not modify the strategy of the incremen-

tal methods, which is to estimate the projection matrix by

using a single sample at a time.

Figure 3 (a) and (b) show the results on the LFW and

YTF datasets, respectively. On the LFW dataset, until the

fifth block, it is not possible to determine the best method

since the accuracy presents high variance, however, from

the sixth block onwards, CIPLS outperforms all other meth-

ods. On the YTF dataset, our method achieves the highest

accuracy for all blocks. These results show that the pro-

posed method is more adequate for streaming applications

than existing incremental PLS methods.

Comparison with Feature Selection Methods. Our last

experiment evaluates the performance of CIPLS as a feature

selection method. Table 4 shows the results for different

percentages of kept features on the LFW and YTF datasets.

According to Table 4, CIPLS is on par with the state-of-

the-art feature selection techniques. For example, on LFW

the difference in accuracy, on average, from CIPLS to infFS

and ilFS is of 0.15 and 0.25 p.p., respectively. Compared

to infFSS and infFSU, this difference is 0.05 and 0.26 p.p.,

in this order. Interestingly, on YTF for some percentages

of kept features (e.g., 15% and 50%), CIPLS outperforms

ilFS, infFSS and infFSU. We highlight that these methods

were designed specifically for feature selection.

Finally, the difference, on average, between CIPLS and
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Table 4. Comparison of feature selection methods using different percentages of kept features.

LFW YTF

Percentage of Kept Features Percentage of Kept Features

10 15 20 50 10 15 20 50

infFS [32] 91.92 91.58 92.03 92.23 86.64 86.68 87.14 87.30

ilFS [30] 92.03 91.67 92.25 92.23 86.60 86.94 86.84 87.54

infFSU [31] 92.08 91.70 92.30 92.15 86.36 86.60 87.14 87.16

infFSS [31] 91.80 91.62 91.62 92.33 86.12 86.50 86.80 87.22

PLS+VIP 92.05 91.67 92.13 92.38 86.70 86.82 87.18 87.68

CIPLS (Ours)+VIP 91.63 91.55 91.80 92.18 86.48 86.92 87.02 87.40

PLS is of 0.26 and 0.14 p.p. on the LFW and YTF datasets.

Moreover, the largest accuracy difference between PLS and

CIPLS is only 0.4 p.p., on LFW with 10% of features kept.

This result reinforces that the proposed decompositions to

extend the NIPALS and enable the employment of VIP are

a good approximation of the original method.

Based on the results shown, it is possible to con-

clude that, besides dimensionality reduction, the proposed

method achieves state-of-the-art results in the context of

feature selection.

5. Conclusions

This work presented a novel incremental partial least

squares method, named Covariance-free Incremental Par-

tial Least Squares (CIPLS). The method extends the NI-

PALS algorithm for incremental operation and enables

computation of the projection matrix using one sample at

a time while still presenting the main property of tradi-

tional PLS, namely preserving the relation between depen-

dent and independent variables. Compared to existing in-

cremental partial least squares methods, CIPLS achieves su-

perior performance besides being computationally efficient.

In addition, different from previous incremental partial least

squares, CIPLS can easily to operate as a feature selection

method. In this context, the proposed method is able to

achieve comparable results to the state of the art.
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