
Exploiting the Redundancy in Convolutional Filters for Parameter Reduction

Kumara Kahatapitiya∗

Stony Brook University, Stony Brook, NY

kkahatapitiy@cs.stonybrook.edu

Ranga Rodrigo

University of Moratuwa, Sri Lanka

ranga@uom.lk

Abstract

Convolutional Neural Networks (CNNs) have achieved

state-of-the-art performance in many computer vision tasks

over the years. However, this comes at the cost of heavy

computation and memory intensive network designs, sug-

gesting potential improvements in efficiency. Convolutional

layers of CNNs partly account for such an inefficiency, as

they are known to learn redundant features. In this work,

we exploit this redundancy, observing it as the correlation

between convolutional filters of a layer, and propose an al-

ternative approach to reproduce it efficiently. The proposed

‘LinearConv’ layer learns a set of orthogonal filters, and a

set of coefficients that linearly combines them to introduce

a controlled redundancy. We introduce a correlation-based

regularization loss to achieve such flexibility over redun-

dancy, and control the number of parameters in turn. This

is designed as a plug-and-play layer to conveniently replace

a conventional convolutional layer, without any additional

changes required in the network architecture or the hyper-

parameter settings. Our experiments verify that LinearConv

models achieve a performance on-par with their counter-

parts, with almost a 50% reduction in parameters on av-

erage, and the same computational requirement and speed

at inference. Source is available at https://github.

com/kkahatapitiya/LinearConv .

1. Introduction

Deep Learning has been widely adopted in recent years

over feature design and hand-picked feature extraction.

This development was supported by the improvement in

computational power [30] and large-scale public datasets

[3, 11, 14]. In such a resourceful setting, the research com-

munity has put forth deep learning models with exceptional

performance at the cost of heavy computation and mem-

ory usage [21,26,48,52]. Recent studies suggest—although

the automated feature learning process captures more mean-

ingful and high-level features—that the learned features

of deep learning models inherit a considerable amount of

redundancy [4, 15, 49], which in turn, contributes to un-

wanted storage and computations. Such an inefficiency re-

stricts the deployment of deep learning models in resource-

∗work done at University of Moratuwa, Sri Lanka.

constrained environments. To this end, it is interesting to in-

vestigate the possibility of exploiting the redundancy in fea-

ture extraction to improve the efficiency of deep networks.

CNNs have become the default backbone of deep neural

networks with their success in feature extraction. A set of

convolutional layers extracting rich localized features, fol-

lowed by a set of fully-connected layers linearly combin-

ing these extracted features, makes up a general CNN ar-

chitecture which can achieve state-of-the-art performance

in most computer vision tasks. However, when we train

CNNs, the weights of convolutional layers tend to converge

such that there exists a considerable correlation between

the learned filters [6, 47, 54]. As a consequence, the fea-

ture space spanned by these linearly dependent filters is a

subspace of what could be represented by the correspond-

ing number of filters. Therefore, if carefully optimized, it

is possible to span the same feature space with a smaller

number of filters, at least theoretically. Otherwise speaking,

the same performance could be achieved with fewer param-

eters. However, in practice, an over-complete spanning set

of filters is allowed, to reach fine-grained performance im-

provements. Although this is the case, enabling a better

control over this redundancy may reveal ways of efficiently

replicating the same behavior.

To this end, recent literature has explored the possibility

of inducing sparsity [36, 49] and separability [9, 24, 58] in

convolutional filters. Although some works consider the in-

herent correlation in learned convolutional filters for various

improvements [47, 54], it has been overlooked for parame-

ter reduction in deep networks. Moreover, previous works

fall short in conveniently controlling the feature redundancy

identified as the correlation between features.

In this paper, we discuss a method to exploit the feature

redundancy observed as the correlation between convolu-

tional filters for improving efficiency. The key idea is to

restrict the inherent redundancy between the filters, and re-

introduce a sufficient amount to maintain the performance,

but with a smaller number of parameters. To do this, we

propose a novel convolutional layer, LinearConv (Fig. 1,

2), which consists of two sets of weights per layer (l): pri-

mary weights W
p
l , a set of convolutional filters learned with

a regularized correlation, and secondary weights Ws
l , gen-

1410

https://github.com/kkahatapitiya/LinearConv
https://github.com/kkahatapitiya/LinearConv

fl

(a)Convweights/learnableparameters

αfl

(b)LinearConvweights

(1− α)fl

×

Wl Wp
l

Ws
l

hl × wl × cl hl × wl × cl

Al ∈ R
αfl×(1−α)fl

αfl

(c)LinearConv learnableparameters
(1− α)fl

α · fl
Wp

l
Al

Figure 1: The weights of Conv (conventional convolution) and the proposed LinearConv layers. The key intuition here is

to separate the redundancy and represent it with a smaller number of parameters. Consider a convolutional layer (l) with fl
number of filters of size (hl × wl × cl). (a) Conv weights/learnable parameters Wl. (b) LinearConv weights: the primary

weights W
p
l and, the secondary weights W

s
l generated by linearly combining the former. The proportion of the primary

weights depends on the hyperparameter α. (c) Equivalent LinearConv learnable parameters: the primary weights W
p
l and

the linear coefficients Al. Note that, in LinearConv, we linearly combine the weights of a layer, not the activations.

erated by linearly combining the former1. The linear coef-

ficients Al are co-learned along with the primary weights.

The set of secondary weights is spanned by a smaller num-

ber of parameters, i.e., linear coefficients, which accounts

for the parameter reduction. In contrast to methods which

propose novel or significantly modified architectures for pa-

rameter reduction, we design ours to require no change in

the architecture or the training process. This allows the Lin-

earConv layer to be plugged into any widely-deployed and

tested CNN architectures without any other modifications.

We verify that our models can be trained from scratch to

achieve a comparable performance, cutting down the num-

ber of parameters almost in half on average, and can be

used in complement with other architectures for network

compression.

The main contributions of this paper are as follows:

• We propose a novel convolutional layer, LinearConv,

which comprises a set of separate primary and sec-

ondary weights. The primary filters are regularized to

be linearly independent, whereas the secondary filters

are generated by a learnable linear combination of the

former. The proposed layer is designed as a plug-and-

play component which can replace the conventional

convolutional layer without any additional change in

the network architecture or the hyperparameter set-

tings. We experimentally validate LinearConv mod-

els to achieve a performance on-par with their counter-

parts, with a reduced number of parameters.

• We introduce a correlation-based regularization loss

which gives the flexibility and control over the correla-

tion between convolutional filters. This regularization

is applied to the primary filters of LinearConv to make

them linearly independent, which in turn, allows a bet-

ter span for the secondary filters.

1Here, we use the terms filters and weights interchangeably. However,

filters correspond to weights grouped as for each convolution, i.e., weight

Wl contains fl filters.

The rest of the paper is organized as follows: section 2

presents previous works in the area, followed by the method

and implementation details in section 3, evaluation details

in section 4, and finally, conclusion in section 5.

2. Related Work

The capacity of deep neural networks was widely recog-

nized after the proposal of AlexNet [33], which achieved the

state-of-the-art performance in ILSVRC-2012 [45]. Since

then, CNN architectures have improved different facets of

deep learning, suggesting deeper [21, 22, 26, 48] and wider

[51, 52, 61] architectures. These networks have introduced

not only better learning and performance, but also a high

demand in computational and storage resources.

Parameter reduction has been of interest to the com-

munity over the years, in parallel to better architectures and

optimization techniques. Group convolutions [37, 58, 62]

and depth-wise separable convolutions [9, 24, 46] propose

to reduce the channel-wise redundancy in learned feature

maps. In [15], authors predict a majority of the weights

using a small subset. Network pruning techniques either

remove non-significant features and fine-tune the network

[4, 19, 20], or choose only a set of representative chan-

nels [23], whereas network quantization methods propose

either weight sharing [7,19] or limited precision of weights

[12, 13, 42] to control the memory requirement of deep net-

works. Furthermore, in [1, 2, 16, 55, 56], authors enforce a

low-rank structure or a filter decomposition to reduce net-

work complexity. More recently, methods such as neural

architecture search [17,41,59,63], SqueezeNet [25,27] and

EfficientNet [53] have improved the state-of-the-art results

with reduced complexity. All these works either propose

novel network architectures or modify existing architec-

tures. In contrast, we introduce a convenient replacement

for convolutional layers, which is applicable to existing net-

work architectures without additional changes.

1411

Correlation in convolutional filters, and the resulting

redundancy have been identified in recent literature. In [47],

authors observe a pair-wise negative correlation in low-level

features of CNNs . A similar property of correlation is iden-

tified in [5, 6, 54], where authors suggest to generate such

features based on a separate set of correlation filters instead

of learning all the redundant features. Moreover, multi-

ple correlation-based regularization methods have been pro-

posed to de-correlate feature activations [10, 44]. From

these directions, we can see that the previous works have

exploited feature correlation for efficiency. In this work,

we enforce a correlation-based regularization loss on con-

volutional filters rather than their activations, which restricts

them to be a linearly independent set of basis filters.

Linear combinations in convolutional filters have been

explored to improve CNNs in multiple aspects. Separable

filters [43] and Sparselet models [49] propose the idea of

approximating a set of convolutional filters as a linear com-

bination of a smaller set of basis filters. One other direction

suggests linearly combining activations instead of the filters

which generate them, to efficiently recreate the feature re-

dundancy [29]. In [6,54], authors generate correlated filters

as a matrix multiplication with a set of correlation matrices:

either hand-designed or learned. Here, each primary filter is

one-to-one mapped to a dependent filter. We follow a sim-

ilar process, but instead of learning a one-to-one mapping,

we learn a set of linear coefficients which combines a set of

learnable filters to generate a set of correlated filters.

Our work is closely related but orthogonal to the recently

proposed Octave convolutions [8] and Basis filters [35], as

well as concurrent work LegoNet [60] and GhostNet [18].

LegoNet [60] assembles a shared set of Lego filters as fil-

ter modules, whereas GhostNet [18] generates new activa-

tions based on cheap operations. Octave convolutions [8]

separate convolutional filters into high-frequency and low-

frequency components, processing the latter in low resolu-

tion to reduce computations, while keeping the same num-

ber of parameters. By design, OctConv is a plug-and-play

component similar to ours. However, we follow an intu-

ition based on correlation instead of frequency, reducing

the number of parameters. Basis filters [35] learn a basis

of split-weights and linearly combine the activations gen-

erated by them, achieving a lower complexity. In contrast,

we linearly combine the filters themselves, not their activa-

tions. Moreover, Basis filters require the weights of original

network for training, which means the cumulative computa-

tional and memory requirement is higher than the network

it replaces. Our method has no such requirement, and can

be trained from scratch without additional resources.

In essence, previous works have identified feature cor-

relation and redundancy, utilizing them to improve the ef-

ficiency of CNNs. However, such approaches have limited

control over the correlation and thus, a narrow outlook on

Algorithm 1: Correlation-based Regularization Loss

Input: Primary weights W
p

l={1:n} ∈ R
αfl×hl×wl×cl

1 Lc = 0
2 for 1 ≤ l ≤ n do

3 Reshape W
p
l to produce V

p
l ∈ R

αfl×(hl·wl·cl)

4 Normalize each vector v
p

l,i={1:αfl}
in V

p
l , i.e.,

v
p
l,i ←

v
p

l,i

‖vp

l,i‖2

5 Lc ← Lc +
∥

∥

∥
V

p
l V

p
l

⊤
− Iαfl

∥

∥

∥

1
where Iαfl is the

Identity matrix.

6 end

Output: Lc

the redundancy and its replication. In contrast, we achieve a

finer control over the correlation based on the proposed reg-

ularization loss, and a flexible replication of the redundancy

in a LinearConv layer. We design our method in a form

that can be directly plugged into existing architectures with-

out any additional modifications or hyperparameter tuning,

which enables its fast and convenient adoption.

3. Method

Our proposition is to control the correlation between

convolutional filters in a layer, and in turn, its feature redun-

dancy. To do this, first, we need to restrict the inherent cor-

relation of the convolutional filters that is generally learned

in training. Second, we should efficiently introduce a suf-

ficient amount of redundancy to maintain the performance

of the network. In this regard, we propose a novel convolu-

tional layer LinearConv, with a primary set of filters which

is learned to be linearly independent due to an associated

regularization loss, and a secondary set of filters generated

through a learnable linear combination of the former.

3.1. Correlation­based Regularization Loss

The intuition of the proposed correlation-based regular-

ization loss is to reduce the inherent redundancy in the pri-

mary filters of LinearConv, which we observe as the corre-

lation between the filters. When the correlation is penalized,

the primary filters tend to become linearly independent, i.e.,

orthogonal. This enables the secondary filters to be spanned

in a complete subspace which corresponds to the particular

number of primary filters (refer subsection 3.3). Simply put,

the secondary filters get more flexibility to learn the redun-

dant features.

To do this, we define a loss which penalizes the correla-

tion matrix between the flattened primary filters as shown in

Algorithm 1. First, we reshape the input filters W
p
l which

we wish to make orthogonal, to get a flattened set of filters

V
p
l . Here, we want the correlation matrix to converge to the

identity matrix, and hence, define the ℓ1-norm of the differ-

ence between the two to be our regularization loss Lc. In

1412

Algorithm 2: LinearConv2 Forward Pass

Parameters: Primary weights W
p
l ∈ R

αfl×hl×wl×cl ,

Linear coefficients Al ∈ R
αfl×(1−α)fl

Input: Activations of previous layer Xl−1

1
∗Reshape W

p
l to produce V

p
l ∈ R

αfl×(hl·wl·cl)

2
∗
U

s
l ← A

⊤
l V

p
l

3
∗Reshape U

s
l to produce W

s
l ∈ R

(1−α)fl×hl×wl×cl

4
∗
Wl ← [Wp

l ,W
s
l] where [·, ·] represents

concatenation over the first dimension.

5 Xl ← Activation3(Xl−1 ⊛Wl)
Output: Xl

contrast to the conventional ℓ1 regularization, which is ap-

plied directly to the weights, our regularization is applied to

the difference between the correlation and the identity ma-

trix. At training, λLc is added to the target loss, where λ
corresponds to the regularization strength.

3.2. LinearConv Operation

Once we regularize the inherent redundancy in the con-

volutional filters, we need to re-introduce a sufficient level

of redundancy to maintain the performance. We observe a

considerable performance drop otherwise. The motivation

behind removing and then re-applying the redundancy is to

have a control over it. We do this by proposing the Lin-

earConv layer, which has a set of orthogonal primary filters

and a set of strictly linearly dependent secondary filters.

The LinearConv operation is presented in Algorithm 2.

In the forward pass, it takes in the activations of the previ-

ous layer Xl−1, and outputs the activations to the next layer

Xl, similar to Conv operation. The learnable parameters

of LinearConv are W
p
l and Al, in contrast to Wl in Conv.

The secondary filters are generated as a linear combination

of the primary filters. To update the parameters Al during

backpropagation, we have to perform this linear combina-

tion in every forward pass during training. However, at in-

ference, this is only a one-time overhead at initialization.

This means that LinearConv will have an increased com-

putational cost during training, but a negligible change at

inference. Fig. 2 shows the LinearConv operation.

It is important to note that in LinearConv, the input Xl−1

goes through only a single convolution operation to produce

Xl, similar to Conv operation. All other operations are

performed on weights. Otherwise speaking, no additional

operations are performed on data, having no change in the

data flow through the network, compared to the architecture

where Conv is replaced by LinearConv. The only difference

2Note that the steps marked with ∗ are performed in each forward pass

only during training, to update Al with backpropagation. At inference,

these steps are performed only once at the layer initialization.
3Activation is shown here inside LinearConv layer to keep the consis-

tency of input-output notation. In implementation, it is a separate compo-

nent outside LinearConv.

fl−1 = cl

Wl−1

Hl−1

∗Xl−1 Xl

fl

Wl

Hlcl

hl Wp
l

wl

Ws
l

Activation

hlwlcl

αfl

Vp
l

× Al

(1− α)fl

Us
l

Reshape

Figure 2: LinearConv operation. Each input goes through

the same number of operations as in a Conv layer, having no

change in either the network architecture or the data flow.

The only difference is the weight update process, which is

performed in each forward pass only during training.

is how the weights are defined and updated through back-

propagation. The benefit of having a design with no change

in the architecture is twofold: not only it can be plugged

into existing widely-deployed and tested architectures, but

also it can function in complement with other network com-

pression methods.

The hyperparameter α defines the proportion of primary

filters. The number of learnable parameters in LinearConv

changes based on α. Thus, it plays an important role in pa-

rameter reduction, which we discuss further in the following

subsection. In our experiments, we choose α such that both

αfl and (1 − α)fl are integers, as they correspond to the

number of primary and secondary filters.

We further define a rank-reduced version of LinearConv

to reduce the computational cost. Here, the matrix of lin-

ear coefficients Al is decomposed to two low-rank ma-

trices: Al1 ∈ R
αfl×r and Al2 ∈ R

r×(1−α)fl , where

r < min{αfl, (1− α)fl}.

Al = Al1Al2 , U
s
l ← A

⊤
l2(A

⊤
l1V

p
l) (1)

3.3. Effect of hyperparameter α

The hyperparameter α ∈ (0, 1) plays an important role

in LinearConv. It is defined as the proportion of primary fil-

ters, which directly affects the number of parameters. More-

over, it decides the nature of generated secondary filters as

we show in the following formulation.

On the number of parameters: Let us express the num-

ber of parameters in a Conv layer (pC
l) and an equivalent

LinearConv layer (pLC
l) as,

pC
l = flhlwlcl , pLC

l (α) = αflhlwlcl + α(1− α)f2
l ,

where pLC
l depends on α. To have a parameter reduction in

the proposed LinearConv layer, the following should hold:

pLC
l (α) ≤ pC

l =⇒ α ≤
hlwlcl
fl

1413

In common CNN architectures, usually cl(= fl−1)/fl is

either 0.5 or 1, except at the input layer. Therefore, even

with 1 × 1 convolutions where hl = wl = 1, the above

condition is satisfied for our choice of α = 0.5 (discussed

below). However, for group convolutions, the effective cl
becomes cl/gl where gl is the number of groups, in which

case, this condition may not hold (discussed in subsection

4.3). At the extreme, we would like to maximize the com-

pression, i.e., minimize the number of parameters in a Lin-

earConv layer. This can be formulated as,

α∗ = argmin
α∈(0,1)

[

αflhlwlcl + α(1− α)f2
l

]

, (2)

and considering the concavity of pLC
l (α) , α∗ should be as

small as possible.

On the expressiveness of the filters: For Conv, let

us define the filters Wl flattened as Yl ∈ R
fl×hlwlcl ,

and for LinearConv, the primary filters W
p
l flattened as

V
p
l ∈ R

αfl×hlwlcl , the secondary filters W
s
l flattened as

U
s
l ∈ R

(1−α)fl×hlwlcl , and the matrix of linear coefficients

as Al ∈ R
αfl×(1−α)fl . The filters V

p
l and U

s
l can be rep-

resented as,

V
p
l = [vp

l,1; · · · ; v
p
l,αf] , U

s
l = [us

l,1; · · · ; u
s
l,(1−α)f] ,

where v
p
l,i ∈ R

1×hlwlcl and u
s
l,i =

∑αfl
j=1(A

⊤
l)i,jv

p
l,j ∈

R
1×hlwlcl . We see that the span of the filters in a partic-

ular layer is important to extract better features, because

in subsequent layers, the activations of these filters are re-

combined to generate new features. Now, let us consider the

vector space spanned by the set of Conv filters Yl. If we

have a sufficient set of linearly independent filters, i.e., if

fl ≥ hlwlcl, we can span a space of Rhlwlcl . Otherwise, if

fl < hlwlcl, the spanned subspace can be re-parameterized

as a space of Rfl . However, since the Conv filters can be lin-

early dependent, the spanned subspace can be represented

as,

span(Yl) ⊆ R
min{hlwlcl, fl}.

In contrast, since the proposed regularization (Algorithm

1) is applied to the primary filters in LinearConv, V
p
l can

span a complete space given by,

span(Vp
l) = R

min{hlwlcl, αfl}. (3)

When the primary filters can span a complete space as

above, their linear combinations, i.e., the secondary filters

have the flexibility to learn any filter in the corresponding

space, which in turn results in better activations. However,

the subspace spanned by U
s
l further depends on the rank of

the matrix Al, as we generate (1 − α)fl secondary filters

based on αfl primary filters.

span(Us
l) ⊆

{

span(Vp
l) = R

min{hlwlcl, αfl} if (1− α) ≥ α

R
min{hlwlcl, (1−α)fl}, otherwise

span(Us
l) ⊆ R

min{hlwlcl, αfl, (1−α)fl} (4)

In common CNN architectures, as fl < hlwlcl, we can

see that the subspace spanned by a LinearConv layer de-

pends on α, based on Equations 3 and 4. In other words, α
acts as a decisive factor for the expressiveness of the feature

space. Therefore, we want α to be as large as possible to

have a good basis set of primary filters. At the same time,

we want to generate a sufficient redundancy. Considering

Equations 2, 3 and 4, we can say that α = 0.5 strikes a bal-

ance between the expressiveness of the filters and the num-

ber of parameters. In this case, the subspace spanned by the

filters in a LinearConv layer becomes,

span(Us
l) ⊆ span(Vp

l) = R
min{hlwlcl,

fl
2
},

and the corresponding number of learnable parameters be-

comes,

pLC
l =

1

2
fl

(

hlwlcl +
1

2
fl

)

.

4. Evaluation

4.1. Implementation details

We want to evaluate the performance of LinearConv in

common CNN architectures. Therefore, we replace the

Conv layers in a variety of architectures with LinearConv

(details in Appendix A). Except for a baseline CNN, all

the others are well-known models proposed in the litera-

ture [21, 46, 48, 50, 58]. AllConv [50] is a fully convolu-

tional network. The rest of the models have a single fully-

connected (fc) layer each, which outputs logits. ResNeXt-

29 is based on group convolutions [33, 58], whereas in Mo-

bileNetV2 [46], it becomes depth-wise separable convolu-

tions [9] as the number of groups is equal to the number

of input feature maps. In all configurations, convolution

is followed by batch normalization [28] and ReLU activa-

tions [38], except for AllConv, which omits batch normal-

ization. As for pooling, Base and VGG11 use max-pooling,

whereas the others use strided convolutions with stride of

2. We carefully selected these specific models to show

the behavior of LinearConv in vanilla CNNs, and the net-

works with skip-connections and group convolutions. All

our models are implemented on PyTorch [40].

We evaluate our models in multiple classification

datasets: CIFAR-10,100 [32], Street View House Numbers

(SVHN) [39], MNIST [34] and Fashion MNIST [57]. All

datasets are channel-wise normalized at the input. The im-

ages in MNIST and Fashion MNIST are zero padded and

randomly cropped. In CIFAR-10,100 and SVHN we per-

form random horizontal flips and random crops. All inputs

are of 32 × 32 resolution. We trained the models for 250

epochs with Adam optimizer [31] and cross-entropy loss.

The proposed regularization loss is added to the target loss,

with a regularization strength of λ = 10−2. We use an in-

put batch size of 64 in all experiments. The initial learning

rate is selected to be one of
{

10−3, 10−4
}

by observation,

1414

Table 1: Performance of the regularized LinearConv model

VGG11-Lr on CIFAR-10 [32] for different α. The accura-

cies are given w.r.t. Conv model VGG11 [48], which cor-

responds to α = 1 (not regularized). We present FLOPs

for training. At inference, all configurations have the same

computational cost as α = 1. This verifies our claim in

subsection 3.3, that α = 0.5 is a reasonable selection for

the hyperparameter. Since the increment in FLOPs is pro-

portional to the size of the matrix Al, i.e., α(1 − α)f2
l , we

see a maximum at this setting, which can be remedied with

the rank-reduced version of LinearConv as we discuss in the

following subsection.

α ratio 0.125 0.25 0.5 0.75 0.875 1

Accuracy (%) −1.2 −0.1 +0.0 −0.1 −0.3 90.4

Parameters (M) 1.30 2.54 4.92 7.15 8.21 9.23

FLOPs (B) 1.139 1.838 2.398 1.842 1.146 0.171

with a step-wise decay of 10−1 once every 100 epochs. For

each configuration, we report the maximum accuracy on test

data, model size (number of learnable parameters) and the

computational requirement.

4.2. Ablation study

In our ablation studies, we investigate different aspects

of LinearConv. Specifically, we verify how the hyperparam-

eter α affects the performance, which we discussed previ-

ously, and the significance of generating redundant features

in the proposed layer.

The hyperparameter α controls the number of primary

filters in a LinearConv layer. For smaller α, LinearConv

will have a larger proportion of secondary filters, extracting

more redundant features. When α = 1, LinearConv with-

out regularization is equivalent to Conv. Table 1 presents

the change in performance with α. We see a stable accu-

racy when α = 0.5, which verifies our claim in subsection

3.3. This setting allows a better flexibility for the spanned

redundant filters, striking a balance between parameter re-

duction and performance degradation. In terms of the com-

putational requirement at training, we see a peak in the same

setting as well. This is due to the increased dimensions of

the matrix of linear coefficients Al. As this is undesirable,

we propose a rank-reduced version of the matrix in the fol-

lowing subsection.

We want to evaluate whether the proposed LinearConv

layer and regularization can provide a performance stabil-

ity in parameter reduction. To do this, we compare differ-

ent versions of Conv and LinearConv models. We regular-

ize Conv layers without regenerating any redundancy (-r) to

see the importance of secondary filters in LinearConv. We

consider Conv models with an equivalent amount of param-

eters as LinearConv (-e) to understand if the proposed layer

is actually required in reducing parameters. To evaluate if

the regularization provides any advantage in LinearConv,

Table 2: Comparison of different versions of Conv and Lin-

earConv models: -r (regularized), -e (equiv-parameter) and

-L (LinearConv) (Details in subsection 4.2). The accura-

cies are given w.r.t. corresponding Conv model. The values

same as above are indicated by |, and FLOPs correspond

to (inference) training. The degraded accuracy in the regu-

larized Conv model shows the importance of the redundant

features. Similarly, the version with an equivalent number

of parameters as LinearConv is not able to achieve the same

performance. The regularized version of LinearConv show

a better performance stability in comparison.

Model CIFAR-10

(%)

CIFAR-100

(%)

Parameters

(M)

FLOPs (B)

Base 87.2 61.0 0.40 0.017

Base-r -0.9 -1.0 | |

Base-e -1.0 -1.9 0.22 0.010

Base-L -0.2 -1.0 0.23 (0.017) 0.060

Base-Lr -0.1 -0.1 | |

VGG11 [48] 90.4 65.4 9.23 0.171

VGG11-r -1.1 -0.7 | |

VGG11-e -1.5 -1.1 4.93 0.093

VGG11-L -0.2 -1.0 4.92 (0.171) 2.398

VGG11-Lr +0.0 +0.0 | |

we consider un-regularized (-L) and regularized (-Lr) ver-

sions of LinearConv. Table 2 shows the performance of

these models. The regularized and equiv-parameter ver-

sions of Conv models verify that we need redundant fea-

tures to maintain a stable performance, and simply reduc-

ing the number of parameters would not help. Among Lin-

earConv models, the regularized version shows a better sta-

bility, verifying our claim in subsection 3.3 that it provides

a better flexibility in spanning redundant filters, and feature

subspace in turn.

4.3. Classification Results

Here, we compare a variety of CNN architectures which

highlight different aspects of network design, replacing

their Conv layers with the proposed LinearConv layers. For

fair comparison, we evaluate all the configurations in our

experiment settings, and present the maximum accuracies

achieved in Table 3. The LinearConv models show a com-

parable performance with the respective baselines with a

reduced number of parameters. Specifically, the regular-

ized LinearConv (-Lr) models achieve an average of 44%
and a minimum of 29% reduction in parameters (except

in MobileNetV2) with performance variations ranging from

−2.1% to +2.6%. However, in terms of the computational

requirement, this version shows a maximum increment of

×13 in VGG11-Lr, which is undesirable. To remedy this,

we introduce a rank-reduced, regularized version of Lin-

earConv (-LRr) as described in Eq. 1. We set the rank of the

matrix Al to be 10 for all layers in every configuration by

observation. These rank-reduced versions achieve an aver-

1415

Table 3: Comparison of selected common CNN architectures where the Conv layers are replaced by LinearConv layers. Here,

we present the accuracy w.r.t. corresponding baselines, the number of learnable parameters and the computational require-

ment for training (and relative change). For fair comparison, all the results presented here are for our experiment settings.

LinearConv models perform on-par with the respective baselines with a reduced number of parameters. The regularized,

rank-reduced LinearConv models (-LRr) show almost a 50% reduction in parameters on average, with a maximum of ×1
increment in FLOPs at training, except for the case of MobileNetV2 with depth-wise separable convolutions (discussed in

subsection 4.3). A few cases with a significant accuracy drop (> 2%) is shown in gray.

Model CIFAR-10 CIFAR-100 SVHN MNIST Fashion Parameters (M) FLOPs (B)
(%) (%) (%) (%) MNIST (%)

Base 87.2 61.0 92.0 99.3 93.5 0.40 0.017

Base-Lr -0.1 -0.1 +0.6 -0.1 -0.2 (×0.43↓) 0.23 (×2.5↑) 0.060

Base-LRr -0.6 -0.6 +0.2 -0.2 -0.8 (×0.48↓) 0.21 (×0.5↑) 0.025

VGG11 [48] 90.4 65.4 95.4 99.3 93.8 9.23 0.171

VGG11-Lr +0.0 +0.0 +0.1 +0.1 -0.2 (×0.47↓) 4.92 (×13↑) 2.398

VGG11-LRr -0.6 -1.1 +0.0 +0.1 -0.2 (×0.50↓) 4.65 (×1↑) 0.350

AllConv [50] 85.0 42.7 94.5 99.0 92.6 1.37 0.315

AllConv-Lr -0.9 -0.2 +0.1 -0.1 +0.1 (×0.46↓) 0.74 (×0.4↑) 0.440

AllConv-LRr -3.1 -1.6 -1.9 -0.2 -0.4 (×0.49↓) 0.70 (×0.1↑) 0.344

ResNet-18 [21] 91.9 66.2 96.2 99.4 94.6 11.17 0.558

ResNet-18-Lr -0.8 +2.6 +0.1 +0.0 -0.2 (×0.46↓) 6.03 (×4.5↑) 3.074

ResNet-18-LRr -1.9 +1.5 -0.2 -0.1 -0.2 (×0.50↓) 5.64 (×0.4↑) 0.775

ResNeXt-29 [58] 92.9 76.3 96.2 99.3 94.5 9.13 1.424

ResNeXt-29-Lr +0.5 -2.1 -0.3 +0.0 -0.1 (×0.29↓) 6.48 (×2.6↑) 5.089

ResNeXt-29-LRr +0.8 -2.9 -0.7 +0.1 -0.3 (×0.48↓) 4.71 (×0.2↑) 1.691

MobileNetV2 [46] 93.1 73.5 96.1 99.5 93.5 2.30 0.098

MobileNetV2-Lr -0.3 -1.8 -0.1 -0.1 +0.2 (×0.70↑) 3.92 (×166↑) 16.398

MobileNetV2-LRr -1.7 -3.0 -0.1 -0.1 +0.4 (×0.41↓) 1.35 (×8.5↑) 0.931

age of almost 50% and a minimum of 41% reduction in pa-

rameters with performance variations ranging from −3.1%
to +1.5%. The increment in computational requirement for

training is contained to a maximum of ×1 since the ma-

trix multiplication which generates the secondary filters is

decomposed to be lightweight. Under this setting, vanilla

CNNs, and CNNs with skip connections, group convolu-

tions and even depth-wise separable convolutions show a

desirable parameter reduction with a comparable perfor-

mance, when LinearConv is introduced. At inference, Lin-

earConv models have the same computational requirement

as the respective Conv models, since the extra cost will be

only a one-time cost at initialization, which becomes negli-

gible in the long run.

It is worth noting only a 29% reduction in parame-

ters in ResNeXt-29-Lr and an interesting 70% increment

in MobileNetV2-Lr, both of which use group convolutions

[33, 58]. This behavior can be explained based on Eq. 2.

The requirement for parameter reduction is adjusted as the

effective input channels cl becomes cl/gl where gl is the

number of groups. In MobileNetV2-Lr, this requirement

is violated, resulting an increment in parameters. It further

shows a notable increment of×166 in FLOPs, since the ma-

trix dimensions become very large in this architecture with

a large number of filters per layer, which does not affect the

cost of depth-wise separable convolutions [9] much. How-

ever, this behavior can still be contained in the rank-reduced

version MobileNetV2-LRr, which shows a 41% reduction

in parameters with ×8.5 increment in FLOPs.

We further compare LinearConv models with some

methods in literature for network compression as presented

in Table 4. Our proposed method is intended for param-

eter reduction without having any change in the network

architecture—in which Conv layers are replaced—or the

hyperparameter settings. With such an implementation, our

method is widely applicable to many existing architectures

as a convenient plug-and-play module. Based on this design

rule, we compare our work against the methods in literature

with minimal changes in architecture [8, 35]. However, we

show that our method can also be complementary in archi-

tectures specifically designed for parameter reduction, such

as SqueezeNet [25]. VGG11-OctConv [8] reduces compu-

tational requirement, having the same number of parame-

ters, whereas VGG11-Basis [35] reduces both the number

of parameters and FLOPs. However, VGG11-Basis requires

the weights of the respective baseline for training, as it tries

to approximate weights of the baseline. Therefore, in prac-

tice, the actual number of parameters and the computational

1416

Table 4: Comparison of LinearConv models with some

methods in literature. We show that LinearConv can be

applied in complement with other architectures proposed

for parameter reduction, such as SqueezeNet [25]. How-

ever, our method which requires no change in the archi-

tecture or the hyperparameter settings is more meaningful

to be compared against such designs with minimal changes.

LinearConv models show comparable performance with pa-

rameter reduction. Here, the values denoted with ∗ are the

requirements in addition to the baseline values, as the Ba-

sis filters [35] require already trained baseline weights for

training. This means it has a cumulative complexity more

than that of the baseline. In contrast, our method can be

trained from scratch with the reported complexity.

Model CIFAR-10

(%)

SVHN

(%)

ImageNet

(%)

Parameters

(M)

FLOPs

(B)

SqueezeNet [25] 83.8 95.1 71.4 0.73 0.069

SqueezeNet-LRr (ours) -1.5 +0.2 -0.9 0.49 0.079

VGG11 [48] 90.4 95.4 70.2 9.23 0.171

VGG11-OctConv [8] -1.1 -0.5 -0.7 9.23 0.077

VGG11-Basis [35] -0.1 +0.2 -0.2
∗1.99 ∗0.101

VGG11-LRr (ours) -0.6 +0.0 -0.3 4.65 0.350

requirement for training are the cumulative amounts includ-

ing those of the baseline. In contrast, LinearConv models

have no such requirement and can be trained from scratch

with the presented complexity. SqueezeNet-LRr shows fur-

ther parameter reduction compared to its baseline, verifying

that LinearConv can be complementary to other architec-

tures for parameter reduction. We further apply LinearConv

in EfficientNet [53], where it behaves as in MobileNetV2

due to depth-wise separable convolutions.

Fig. 3 (Left) visualizes the performance graphs of Conv

and LinearConv models in the CNN architectures that we

selected. LinearConv models achieve a similar performance

as the respective baselines with almost a 50% reduction in

parameters on average. The increment of computational

requirement in LinearConv can be contained with the pro-

posed rank-reduced implementation. Fig. 3 (Right) shows

the correlation matrices corresponding to a few layers in

Conv and LinearConv models. This visualizes the effect

of regularization in the primary filters of LinearConv. The

secondary filters generated as linear combinations show in-

creased correlations as expected. We observe some artifacts

in the correlation matrix which corresponds to the primary

filters in Layer 1. This is due to a small non-zero regular-

ization loss at the end of training.

5. Conclusion

In this work, we exploited the feature redundancy in

CNNs to improve their efficiency. Based on the intuition

of restricting the inherent redundancy and re-applying a

sufficient amount to maintain performance, we proposed

a novel layer: LinearConv, which can replace the conven-

Conv -L -Lr -LRr Conv -L -Lr -LRr Conv -L -Lr -LRr

La
ye

r 1
La

ye
r 3

Conv

La
ye

r 5

-L -Lr
-1

1

Figure 3: (Top) Performance of LinearConv models on

CIFAR-10. The regularized, rank-reduced version (-LRr)

shows a performance similar to the baseline, with almost

half the number of parameters and a similar computational

requirement. (Bottom) Correlation matrices corresponding

to the weights in Conv, LinearConv (-L) and regularized

LinearConv (-Lr). In LinearConv versions, the first and

the second halves of each dimension in correlation matri-

ces correspond to W
p
l and W

s
l respectively. When regular-

ized, we can see that the primary filters become orthogonal

(except for some artifacts in Layer 1).

tional convolutional layers with a smaller number of param-

eters. We design LinearConv as a plug-and-play module to

allow convenient adoption in existing CNNs with no change

in the architecture or the hyperparameter settings. In com-

bination with the proposed correlation-based regularization

loss, LinearConv layers flexibly reproduce the redundancy

in convolutional layers with almost a 50% reduction in pa-

rameters on average, and the same computational require-

ment at inference. We evaluate its performance in common

architectures and show that it can function in complement

with other methods in literature. The control over feature

correlation and redundancy opens-up room for improving

the efficiency of CNNs.

Acknowledgments: The authors thank D. Samaras,

C.U.S. Edussooriya, P. Dharmawansa, M. Pathegama and

D. Tissera for helpful discussions. The authors acknowl-

edge the computational resources received from the QBITS

Lab and the Faculty of Information Technology, University

of Moratuwa. K. Kahatapitiya was supported by the Senate

Research Committee Grant no. SRC/LT/2016/04.

1417

References

[1] Jose Alvarez and Lars Petersson. Decomposeme: Sim-

plifying convnets for end-to-end learning. arXiv preprint

arXiv:1606.05426, 2016.

[2] Jose M Alvarez and Mathieu Salzmann. Compression-aware

training of deep networks. In Advances in Neural Informa-

tion Processing Systems, pages 856–867, 2017.

[3] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video

benchmark for human activity understanding. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 961–970, 2015.

[4] Sinjan Chakraborty, Sayantan Paul, Ram Sarkar, and Mita

Nasipuri. Feature map reduction in cnn for handwritten digit

recognition. In Recent Developments in Machine Learning

and Data Analytics, pages 143–148. Springer, 2019.

[5] Lijun Chen, Qinyu Li, Hanli Wang, and Yu Long. Static cor-

relative filter based convolutional neural network for visual

question answering. In 2018 IEEE International Conference

on Big Data and Smart Computing (BigComp), pages 526–

529, 2018.

[6] Peiqiu Chen, Hanli Wang, and Jun Wu. Correlative filters for

convolutional neural networks. In 2015 IEEE International

Conference on Systems, Man, and Cybernetics, pages 3042–

3047, 2015.

[7] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-

berger, and Yixin Chen. Compressing neural networks with

the hashing trick. In International Conference on Machine

Learning, pages 2285–2294, 2015.

[8] Yunpeng Chen, Haoqi Fang, Bing Xu, Zhicheng Yan, Yan-

nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Jiashi

Feng. Drop an octave: Reducing spatial redundancy in con-

volutional neural networks with octave convolution. arXiv

preprint arXiv:1904.05049, 2019.

[9] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1251–1258, 2017.

[10] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry

Zitnick, and Dhruv Batra. Reducing overfitting in deep

networks by decorrelating representations. arXiv preprint

arXiv:1511.06068, 2015.

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3213–3223, 2016.

[12] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Advances in Neural

Information Processing Systems, pages 3123–3131, 2015.

[13] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks:

Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,

2016.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 248–255. IEEE, 2009.

[15] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Fre-

itas, et al. Predicting parameters in deep learning. In Ad-

vances in Neural Information Processing Systems, pages

2148–2156, 2013.

[16] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-

Cun, and Rob Fergus. Exploiting linear structure within con-

volutional networks for efficient evaluation. In Advances

in neural information processing systems, pages 1269–1277,

2014.

[17] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui

Yang, Han Wu, Xinghao Chen, and Chang Xu. Hit-detector:

Hierarchical trinity architecture search for object detection.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11405–11414, 2020.

[18] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing

Xu, and Chang Xu. Ghostnet: More features from cheap

operations. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1580–

1589, 2020.

[19] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[20] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in Neural Information Processing Systems, pages

1135–1143, 2015.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In European

Conference on Computer Vision, pages 630–645. Springer,

2016.

[23] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017.

[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[25] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7132–7141, 2018.

[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4700–4708, 2017.

1418

[27] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[28] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[29] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.

Speeding up convolutional neural networks with low rank

expansions. arXiv preprint arXiv:1405.3866, 2014.

[30] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-

son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-

mance analysis of a tensor processing unit. In Proceedings

of the 44th Annual International Symposium on Computer

Architecture, pages 1–12, 2017.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[32] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,

et al. Gradient-based learning applied to document recogni-

tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[35] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte.

Learning filter basis for convolutional neural network com-

pression. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 5623–5632, 2019.

[36] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen,

and Marianna Pensky. Sparse convolutional neural networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 806–814, 2015.

[37] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 116–131, 2018.

[38] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning, pages

807–814, 2010.

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. 2011.

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. 2017.

[41] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018.
[42] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European Conference

on Computer Vision, pages 525–542. Springer, 2016.

[43] Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pas-

cal Fua. Learning separable filters. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2754–2761, 2013.

[44] Pau Rodrı́guez, Jordi Gonzalez, Guillem Cucurull,

Josep M Gonfaus, and Xavier Roca. Regularizing

cnns with locally constrained decorrelations. arXiv preprint

arXiv:1611.01967, 2016.

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-

thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,

and Li Fei-Fei. ImageNet Large Scale Visual Recogni-

tion Challenge. International Journal of Computer Vision,

115(3):211–252, 2015.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.

[47] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak

Lee. Understanding and improving convolutional neural net-

works via concatenated rectified linear units. In International

Conference on Machine Learning, pages 2217–2225, 2016.

[48] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[49] Hyun Oh Song, Stefan Zickler, Tim Althoff, Ross Girshick,

Mario Fritz, Christopher Geyer, Pedro Felzenszwalb, and

Trevor Darrell. Sparselet models for efficient multiclass ob-

ject detection. In European Conference on Computer Vision,

pages 802–815. Springer, 2012.

[50] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas

Brox, and Martin Riedmiller. Striving for simplicity: The

all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–9, 2015.

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2818–2826, 2016.

[53] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[54] Hanli Wang, Peiqiu Chen, and Sam Kwong. Building

correlations between filters in convolutional neural net-

works. IEEE Transactions on Cybernetics, 47(10):3218–

3229, 2017.

[55] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao

Xu. Cnnpack: Packing convolutional neural networks in the

frequency domain. In Advances in neural information pro-

cessing systems, pages 253–261, 2016.

1419

[56] Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. Coordinating filters for faster deep neural

networks. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 658–666, 2017.

[57] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

mnist: a novel image dataset for benchmarking machine

learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[58] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1492–

1500, 2017.

[59] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,

Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars: Con-

tinuous evolution for efficient neural architecture search. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 1829–1838, 2020.

[60] Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen,

Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Legonet:

Efficient convolutional neural networks with lego filters.

In International Conference on Machine Learning, pages

7005–7014, 2019.

[61] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016.

[62] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6848–6856, 2018.

[63] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

1420

