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Abstract

We present an efficient and effective computational frame-

work for the inverse rendering problem of reconstructing the

3D shape of a piece of glass from its caustic image. Our

approach is motivated by the needs of 3D glass printing,

a nascent additive manufacturing technique that promises

to revolutionize the production of optics elements, from

lightweight mirrors to waveguides and lenses. One important

problem is the reliable control of the manufacturing process

by inferring the printed 3D glass shape from its caustic im-

age. Towards this goal, we propose a novel general-purpose

reconstruction algorithm based on differentiable light prop-

agation simulation followed by a regularization scheme that

takes the deposited glass volume into account. This enables

incorporating arbitrary measurements of caustics into an

efficient reconstruction framework. We demonstrate the ef-

fectiveness of our method and establish the influence of our

hyperparameters using several sample shapes and parame-

ter configurations.

1. Introduction

Few examples in manufacturing have garnered as much

attention as additive manufacturing techniques. Even main-

stream media reports about 3D printed cars and houses

[12, 4]. These techniques promise near limitless control

over geometry, little to no manual post-processing, and fast

adaptability to changing requirements to the extent that even

personalized manufacturing seems possible. Recent research

is very much concerned with expanding the capabilities of

additive manufacturing techniques w.r.t. the utilized materi-

als [20], in particular glass [38], due to its many interesting

mechanical and optical properties. This work is inspired

by the challenges associated with a recent approach to pro-

duce optical grade glass structures with laser-based fused

glass deposition (LGD) [38, 32], which melts quartz fiber

onto glass substrate and can subsequently build more com-

plex structures by layering of small fibers. The resulting

(a) Simulation through light transport (b) Simulation result

Figure 1: Depiction of the experimental setup.

surface is dependent on underlying parameters which influ-

ence is highly nonlinear and, thus, still a current subject of

research. Furthermore, measurements of achieved surface

geometries are not done in-situ, but with dedicated measure-

ment equipment like confocal microscopy or tactile profilom-

etry. Therefore, only indirect shape feedback is feasible at

present. This circumstance prevents smarter approaches that

correct for small errors or discard the workpiece as soon

as irrecoverable shape errors have been encountered. Our

goal is to incorporate caustic cues into shape estimation

tasks arising from glass manufacturing processes. In par-

ticular, we provide an efficient and accurate multi-spectral

caustic renderer, which can be used to predict real-world

measurements inside the manufacturing environment when

considering simple transmitter-workpiece-receiver geome-

tries. The renderer is further equipped to provide gradients

for efficient local search of the workpiece geometry. To this

end, we incorporate knowledge of the production process

into the reconstruction. The main difference between this

work and related work on caustic design is our focus on real-

world production feedback loops. Whereas caustic design

usually asks to find a producible, i.e., low-curvature shape,

we measure the caustic to reconstruct the real shape. To

show the effectiveness of our solution to this problem, we

simulate complex application setups with varying amount

of optical elements. In addition, we demonstrate successful

application to real-world data.

Our main contributions are: first, providing code1 for

1https://bit.ly/3eqSzxR
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a powerful, easy to use out of the box rendering frame-

work; second, employment of a sparsity-based reconstruc-

tion scheme and incorporation of known process conditions,

i.e., the volume of deposited material and the axis-accuracy;

and third, demonstration of the approximation capabilities of

our reconstruction for providing feedback in glass manufac-

turing processes. Furthermore, to the best of our knowledge,

our method is the first to demonstrate reconstruction in com-

plex scenes with arbitrary amount of refraction events and

consistent handling of wavelength-dependent effects.

2. Related Work

Some works to solve the ill-posed inverse refractor prob-

lem use extra information such as structured light [39, 23],

or multi-view cues [26, 34, 23]. In contrast, we use only a

single uniform light source and camera to facilitate integra-

tion into production feedback loops with existing machine

tools. This relatively unconstrained setup relates our work

to the field of caustic design [19, 5, 35] but is different as it

is tailored to the needs of 3D glass printing.

As we consider the features of the produced shape to be

significantly larger than the wavelength of light employed

to measure it, our work is based upon simulation methods

considering light transport using geometric optics [40, 18].

In Ray Tracing and unidirectional Path Tracing [18], rays

are usually traced from the camera through the scene until

arriving at a light source, making them unsuited for caustics.

To tackle this problem, Photon Mapping approaches [16, 17]

have been proposed. Similar to Path Tracing, these methods

emit small energy packets from the light sources and store

resulting irradiances in a spatial data structure at intersec-

tion points with the scene. These methods model caustic

effects well, but usually require a significant number of pho-

tons to produce noise-free results. Furthermore, unlike Path

Tracing or Bidirectional Path Tracing [37], these methods

are not progressive, which has been addressed in later ap-

proaches [15, 14]. Photon Mapping and Bidirectional Path

Tracing methods have been combined into a unified frame-

work called Vertex Connection and Merging [13], which al-

lows to achieve fast global illumination computation includ-

ing caustics in general complex scenes. For our proposed

imaging scenario, however, generalization to very complex

scene geometry is not the most pertinent concern. Instead,

we need to achieve low variance estimates of the imaging

process and their respective gradients w.r.t. the known caus-

tic distribution. At the same time, our goal is to still be

able to model real-world scenarios (like partial occlusion of

the light or stray caustics caused by inter-reflections) inside

the manufacturing machine. Thus, we adopt the method of

Frisvad et al. [11] for rendering our caustics, as it allows

to simulate sharp and detailed caustics for short light paths

with a reduced amount of emitted photons.

Since our problem—the shape reconstruction of printed

(a) Schematic glass printing process (b) Photo of LGD process [38]

Figure 2: LGD process. Process variables are all computer con-

trolled. Color of the mesh (a) depicts total height.

glass—is a nonlinear, ill-posed parameter identification prob-

lem, it is notoriously difficult to solve. To cope with the

ill-posedness, we add penalty terms that are suited to a priori

information about the reconstruction quantity [9]. The con-

sidered inverse rendering problem is related to the inverse

scattering problem, which deals with the reconstruction of

the refractive index, and thus also the shape, of a penetra-

ble medium from the measurements of the waves scattered

from that medium (see, e.g., [6]). We employ terms in the

underlying regularization scheme that enforce sparsity and

are based on physical bounds; in particular, area-based phys-

ical bounds as we take into account the axis accuracy of

the 3D printer. In addition, we employ a term for volume

conservation as we know the correct volume of the printed

glass piece. The positive effect of combining terms that

enforce sparsity in the pixel basis and are based on total

variation as well as on physical bounds is shown in [2, 3].

The corresponding regularization scheme relies on a primal-

dual algorithm. However, as we do not include the total

variation, we achieve this by employing the thresholded,

nonlinear Landweber scheme as a base [8, 21], together with

its extension to area-based physical bounds [1], and a newly

developed heuristic to approach the conservation of the vol-

ume. The Landweber scheme can be used with respect to

the pixel basis or a wavelet basis, see [8]. We will present

both variants and, in addition, use the combined effect of the

sparsity in a wavelet basis and in the pixel basis.

Methods arising from computational caustic design share

similarities to our work. However, the problem formulation

is different to the one considered here: for a given caustic,

these methods find a sensible and manufacturable shape of

the refractor or reflector. This is in contrast to our case,

where the shape (and thus the caustic) is the result of a

specific manufacturing process, which constrains the possi-

ble set of shapes. As one of the earliest works on caustic

design, Finckh et al. [10] use physically based rendering

to find globally optimal shapes from caustics by means of

gradient-free optimization [36]. In this setting the problem

is to find a surface that optimally transports irradiance at

the receiving surface from a source distribution to a target

distribution. This problem has been approximated by de-

composing the image into gaussians and the surface into
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(a) Oblique view (b) Side view (c) Oblique view (d) Side view

Figure 3: Fusion 360 renderings of complex scenes. (a)/(b): Two

added lenses. (c)/(d): Prism and lens array.

micropatches [28], or casting it as a Poisson reconstruc-

tion problem [41]. Schwartzburg et al. [33] directly solve

the optimal transport problem on power diagrams before

computing a conforming surface, which allows for sharper

caustic reproduction. Finally, Meyron et al. [24] extend the

optimal transport formulation to four problems arising in

refractor and reflector design and directly optimize for the

target surface. None of these works consider multiple re-

fractions or non-monochromatic light sources. While recent

work on general differentiable rendering systems [27] also

tackled the problem of caustic design in the presence of

colored light sources we handle multiple wavelengths and

refractions consistently.

3. Methods

In the following, we will discuss the technical details

underlying our simulation and reconstruction. We mainly

focus on a simple setup (Fig. 1(a)) and optimization strategy

that is directly informed by the production process (Fig. 2).

Despite this, our method is general enough to conduct re-

constructions in the presence of additional optical elements

(Figs. 3, 4).

3.1. Simulation

As we wish to obtain shape information from resulting

caustics, we set up our scene as depicted in Fig. 1(a). A

point light source illuminates the scene at position ℓ =
(ℓx, ℓy, ℓz)

T . The glass substrate has a fixed thickness

h ∈ R and added material is modeled as a height field

d ∈ R
m×m. The receiving plane is placed at a distance s

and the frequency-dependent irradiance (with c channels) is

denoted as b ∈ R
c×n×n
+ . We denote the forward simulation

as Fh,s : R
m×m → R

c×n×n
+ . We envision that this setup

can be directly integrated into the production process, as

there is enough space under the substrate to fit an imaging

system (see Fig. 2(b)). To achieve this, we adapt a Photon

Mapping algorithm [11] in PyTorch [30, 31] to gain the ben-

efit of GPU acceleration and compute gradients of a loss

term based on caustics discrepancy (see M1 in Sec. 3.2).

The representation of our reconstruction variable, i.e. the

height, as a height field limits the expressiveness of achiev-

able structures, especially considering that the height field

representation has to be converted to a surface mesh before

passing it to the Nvidia OptiX libary [29] (see next para-

graph). We still adopt this representation as a concession

to the production process (see Fig. 2), which can only layer

additional material on top of existing structures.

3.1.1 Forward Simulation Operator

Our scene setup follows the same general layout: we place

a point light source at a fixed distance above the refractive

specimen and the receiver or sensor plane below the substrate

at distance s. The light source emits a user-defined number

of photons Nr for reference generation and No for each re-

construction iteration. These photons are then path-traced

through the setup and refracted or reflected at medium tran-

sitions. This continues until they reach the receiver screen at

which point we record their energy into a texture map. To

speed up this process we implemented the scene intersection

calls using the Nvidia OptiX library [29]. We further assign

each photon a wavelength from a user-defined set of wave-

lengths. Additionally, we allow the definition of material-

specific frequency-dependent refractive index curves to be

able to simulate real-world transmissive materials. Note that

the formulation of this operator as full recursive light trac-

ing is a distinction from most other works [19, 28, 33] and

allows us to simulate caustics in less restrictive setups (see

Figs. 3, 4), facilitating the deployment for in-situ measure-

ments in production environments.

To generate the caustic images on the receiver plane,

we adopt the photon differential splatting method of [11].

This allows us to achieve sharp caustics from our print line

structures with fewer photons. Following their work (and

notation) we compute the irradiance at the receiver plane as

E(x) ≈

k
∑

P=1

πK(‖MP (x− xP )‖2)EP , (1)

where x ∈ R
3 and xP ∈ R

3 are a position on the receiver

plane and the position of intersection of photon P with the

receiver plane respectively. MP is the change of basis matrix

which transforms the elliptical into a spherical footprint and

is computed from the photon differential vectors. Finally, K
is the Silverman’s second-order kernel as in [11] and EP is

the irradiance of photon P .

A naive implementation of (1) using PyTorch’s

scatter add method leads to prohibitive memory con-

sumption and run time, when increasing the photon footprint.

Thus, we chose to implement this method in a custom CUDA

kernel. As in the original method, we evaluate this equation

by looping over the photons and splatting their contribu-

tion onto the pixels in the support of the photon footprint

(i.e., x ∈ supp(K,MP , xP )) instead of looping over pixels

and gathering from contributing photons. Our final forward

simulation operator thus consists of chaining a path tracing

operator Ph,s(d) for photons from the light source ℓ and

photon splatting: b ≈ Fh,s(d) = E(Ph,s(d)).
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(a) Low noise ref-

erence

(b) Crop of (a) (c) High noise

reference

(d) (a) with added

noise

Figure 4: Reference caustic of prism and lens array scene as in

Fig. 3(c)/(d) with three wavelengths mapped to RGB: (a) generated

with Nr ≈ 1 · 10
8 photons and intrinsic noise level of 0.6%. (b)

shows fine details and dispersion effects. (c) generated with only

Nr ≈ 6 · 10
6 photons and intrinsic noise level of 2.6%. (d) adds

Gaussian noise to (a) with total noise level of δ = 40%.

3.1.2 Backward Simulation Operator

For the backward splatting operator we need to compute the

partial derivatives of E as follows:

∂E(x)

∂EP

≈ πK(‖MP (x− xP )‖2),

∂E(x)

∂xP

(x̂) ≈ −E′

PMP x̂,

∂E(x)

∂MP

(M̂) ≈ E′

P M̂(x− xP ).

(2)

Note that we have provided the partial derivatives of E w.r.t.

xP and MP as a linear mapping, i.e.,
∂E(x)
∂xP

: R3 → R and
∂E(x)
∂MP

: R2×3 → R. In addition, the derivative of the kernel

function is K ′(x) = − 12
π
x (1−x2) if x < 1 and K ′(x) = 0

otherwise. The term E′

P follows from chain rule:

E′

P = πK ′(‖MP (x− xP )‖2)EP

(

MP (x− xP )

‖MP (x− xP )‖2

)T

.

When evaluating the full backward splatting operator on a

general differentiable loss function L, these partial deriva-

tives have to be summed over all pixels that were affected

by photon P :

∂L

∂DP

=
∑

x∈supp(K,MP ,xP )

∂L

∂E(x)

∂E(x)

∂DP

(3)

for DP ∈ {EP , xP ,MP }. Note that this can be expressed as

gather operation over all affected pixels by each photon and

is thus the inverse of the splat operation defined above (1).

This approach produces correct gradients for the whole

simulation with the exception of areas that rely on differen-

tiable visibility. Therefore, our derivatives are incorrect in

the presence of geometry discontinuities, which could be

remedied by an approach such as the one described in [22].

In practice, this error is mitigated by a light source located

far away and by rather gentle slopes of the height fields,

which is our main application scenario.

3.2. Reconstruction

A real-world dataset will always include errors in mea-

surement to be dealt with during reconstruction. In our

case, the data is the frequency-dependent irradiance (bright-

ness) b ∈ R
c×n×n
+ (Fig. 1(a)). We denote data with noise

by bδ, where δ > 0 indicates the relative noise level, i.e.,

‖bδ − b‖F ≤ δ‖b‖F with ‖ · ‖F being the Frobenius norm.

As already mentioned, the task is to reconstruct the shape

of the printed glass from one or several frequency-dependent

caustic images. Note that we will limit our following dis-

cussion to one wavelength. Hence, we are interested in the

height field d of printed glass on top of a glass substrate

with known height h and known sensor distance s such that

Fh,s(d) matches the data bδ as well as possible. We assume

that the refractive index of the material is uniform and given.

We start all reconstructions with height field d set to zero.

When the desired shape is provided as part of the design pro-

cess, even better results could be achieved, as the specified

shape can serve as a better initial solution.

3.2.1 Naive Approach (M1)

The naive reconstruction approach is to minimize the differ-

ence between Fh,s(d) and bδ by solving mind
1
2‖Fh,s(d)−

bδ‖2F for d ∈ R
m×m. It is straightforward to employ the

gradient descent method with step size τp > 0 to receive a

result. However, the result contains oscillations and differs

strongly from the original.

As already mentioned, the underlying problem is ill-posed

and we have to add penalty terms to receive a sensible re-

construction. A well-known approach is to minimize the

following Tikhonov functional with penalty terms in the con-

vex functional P , i.e., d 7→ 1
2‖Fh,s(d) − bδ‖2F + P(d). In

the following, we successively add penalty terms taking into

account a priori information about the shape of the printed

glass. These terms enforce sparsity, keep the result within

physical bounds and take into account the conservation of

the volume of the printed glass. So, we start with a sim-

ple cost function and successively add more sophisticated

terms. At the same time we introduce suitable reconstruction

schemes and extend them to our needs.

3.2.2 Pixel-Based Landweber Approach (M2)

We assume that the height field d is sparse, i.e., described by

few non-zero coefficients, in the pixel basis. This is taken

into account by a penalty term weighted by a regularization

parameter αp > 0, αp ‖d‖1. Then, we have to solve the

minimization problem

min
d∈Rm×m

1

2
‖Fh,s(d)− bδ‖2F + αp‖d‖1. (4)
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Figure 5: Height field and vertical center slice comparison of

reconstruction methods in the case of one (W1) wavelength for

simulated data with 5% noise (N05). For better comparison, the

center slices contain the predefined height field (blue) and the

reconstruction (red).

This can be solved with the well-known thresholded, nonlin-

ear Landweber scheme, see, e.g., [8, 21],

d[n+1] = S

(

d[n] − τ [n]p ∇fdis,p(d
[n]), τ [n]p αp

)

, (5)

where τ
[n]
p > 0 is the step size, fdis,p(d) :=

1
2‖Fh,s(d) −

bδ‖2F, i.e., ∇fdis,p(d) = [F ′

h,s(d)]
∗[Fh,s(d) − bδ], and S

is the soft-shrinkage operator: S(d(x), κ) is d(x) + κ if

d(x) ≤ −κ, it is 0 in the case of d(x) ∈ (−κ,+κ), and

d(x) − κ for d(x) ≥ κ. For the derivation of the already

known Landweber scheme, we refer to the supplementary

material.

Extended Thresholded, Nonlinear Landweber Scheme In

addition to enforce sparsity, it is useful to take into account

further a priori information about the height field d of printed

glass. We assume that we know physical bounds, i.e., lower

and upper bound. Therefore, an indicator function δ[p1,p2] is

defined: δ[p1,p2](d) equals infinity if one or more entries of

d are outside a reasonable interval [p1, p2] and it equals zero

otherwise, see [2]. Then, the minimization problem is

min
d∈Rm×m

1

2
‖Fh,s(d)− bδ‖2F + αp‖d‖1 + δ[p1,p2](d).

This problem can be solved by the extended thresholded,

nonlinear Landweber scheme, see [2] for a more general

case and [1] for this case. Similar to (5) it is

d[n+1] = I[p1,p2]

(

S

(

d[n] − τ [n]p ∇fdis,p(d
[n]), τ [n]p αp

))

,

where I[p1,p2] is the interval projection operator defined for

real-valued x and p1 ≤ p2 by I[p1,p2](x) resulting in p1
if x < p1, in x in the case of x ∈ [p1, p2], and in p2 for

x > p2. Of course, the element-wise application is assumed

if x is a vector. For the derivation of the extended Landweber

scheme, we refer to the supplementary material.

Area-Based Physical Bounds As additional a priori in-

formation we use the knowledge of the axis-accuracy, i.e.,

where the material was approximately deposited. Hence, we

extend the physical bounds to area-based physical bounds:

we separate the suspected print area from the suspected un-

printed area; see [1] for a more general case. The physical

bounds must be zero in the unprinted area. The printed part

of the height field d ∈ R
m×m of printed glass is denoted by

ď, the unprinted part by d̊. In the same sense we separate the

indices (j1, j2) of the height field d into pairs j := (j1, j2)
of printed glass by Ň and unprinted glass by N̊ . Then, the

minimization problem is

min
d∈Rm×m

1

2
‖Fh,s(d)− bδ‖2F + αp‖d‖1

+δ[p1,p2](ď) + δ[0,0](d̊).

(6)

We define w[n] := d[n] − τ
[n]
p ∇fdis,p(d

[n]). Then, the solu-

tion is

d
[n+1]
j =







I[p1,p2]

(

S(w
[n]
j , τ

[n]
p αp)

)

if j ∈ Ň ,

I[0,0]

(

S(w
[n]
j , τ

[n]
p αp)

)

if j ∈ N̊ .
(7)

The implementation of I[p1,p2] (S(w, κ)) for κ > 0 is simply

max{p1,min{p2, sign(w)max{|w| − κ, 0}}}.

Conservation of the Volume A further useful a priori in-

formation is the volume of the deposited material as it de-

livers information about the height field d of the printed

glass. Let V be the volume of the glass used for printing

and Vε the corresponding relative uncertainty. We define

v(d) :=
∑

j dj and denote the area of a pixel (on the glass

substrate) by a. Then, we know that v(d) must be between

q1 = V · (1− Vε)/a and q2 = V · (1 + Vε)/a. To enforce

this conservation of the volume, we add the penalty term

δ[q1,q2](v(d)). However, this penalty term remains elusive

to establish in the Landweber scheme. Thus, we develop

a heuristic to enforce the conservation of the volume. The

effect will be an acceleration of the growing. The main idea

is to enforce a slow growing of the volume at the beginning

and the end, i.e., if v(d) is close to zero and close to q1.

In between, a fast growth is accepted. Therefore, the sine

function will be employed. Of course, a similar behaviour

is useful if v(d) is too high. Then, the heuristic has to de-

crease d slowly if v(d) is close to q2. In addition, we ensure

that the heuristic does not affect the unprinted area, i.e., we

only modify dj with j ∈ Ň . We define the parameter γ to

influence the growing of the volume. Furthermore, as we

are interested in a robust heuristic, we use the mean value

of a pixel itself and the surrounding pixels with a radius of

rV pixels and denote it by d̄. In the following heuristic, we

omit the number of iteration to avoid overloading notation.
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#wave-

lengths

Noise

level

Recon.

method

Fig.

5

Run time

(min)

Rel.

dis.

Rel.

err.
#iter τdis τp αp τw αw Vε γ

1 5%

(M2V1) (b) 2.95 .0504 .0648 72 1.01 .1 .002 .25 .1

(M3V1) (c) 2.77 .0505 .0658 65 1.01 .1 .0005 .1 .01 .25 .1

(M1) (d) 6.62 .0549 .1800 162 1.1 .1

(M2V0) (e) 4.72 .0600 .1086 114 1.2 .1 .002

(M3V0) (f) 4.38 .0598 .1065 102 1.2 .1 .0005 .1 .01

Table 1: Run times, relative discrepancies, and errors as well as chosen parameters for numerical experiments shown in Fig. 5. In M2 and

M3 the physical bounds are limited between p1 = 0 and p2 = 0.3. In V1 we set the radius rV to 2.

This heuristic is intended to be used after each reconstruction

iteration (7) and is defined for j ∈ Ň by

dj :=







dj + d̄j γ sin
(

π v(d)
q1

)

if v(d) ≤ q1,

dj − d̄j γ sin
(

π
[

v(d)
q2

− 1
])

if v(d) ≥ q2.
(8)

Stopping Criterion Following the best practice for in-

verse problems, we stop the reconstruction iteration by Mo-

rozov’s discrepancy principle, see [25], i.e., if ‖Fh,s(d) −
bδ‖F/‖b

δ‖F ≤ τdis δ with tolerance parameter τdis > 1.

Solution of the Multi-Frequency Problem The recon-

struction of the shape of the printed glass from one caustic

image is given by the minimization of (6) by (7) and (8).

Of course, this single-frequency case can be extended to

the multi-frequency case, i.e., we take several frequency-

dependent caustic images into account. We provide a chan-

nel for each frequency. Hence, for c channels, the forward

operator Fh,s has the codomain R
c×n×n
+ instead of Rn×n

+

and the brightness b is in R
c×n×n
+ instead of R

n×n
+ . To

avoid overloading notation we will not consider the multi-

frequency case in the following.

3.2.3 Wavelet-Based Landweber Approach (M3)

The Landweber scheme can be used with respect to a wavelet

basis instead of the pixel basis, see [8]. In addition, we use

the combined effect of the sparsity in a wavelet basis with

the sparsity in the pixel basis.

We introduce the discrete wavelet transform W and its

inverse W−1. The corresponding wavelet coefficients are

denoted by wd, i.e., wd = Wd and d = W−1wd. Then, the

minimization problem (4) with respect to a wavelet basis

instead of the pixel basis is minwd

1
2‖Fh,s(W

−1wd)−bδ‖2F+
αw‖wd‖1, with regularization parameter αw > 0 to enforce

the sparsity in a wavelet basis. The choice of the wavelet

family depends on the application. In the case of printed

glass we decided on Daubechies 3 wavelets.

Analogous to the definition of fdis,p, we define

fdis,w(wd) := 1
2‖Fh,s(W

−1wd) − bδ‖2F . Then, the cor-

responding Landweber scheme is similar to (5),

w
[n+1]
d = S

(

w
[n]
d − τ [n]w ∇fdis,w(w

[n]
d ), τ [n]w αw

)

, (9)

where τ
[n]
w > 0 is the step size. We implement this scheme

using the PyTorch-wavelets library for W and W−1 [7].

To take into account sparsity in the pixel basis, area-based

physical bounds and the conservation of the volume, we do

the following steps after each reconstruction iteration (9).

First, we compute the corresponding height field d of printed

glass for the wavelet coefficients wd. Second, we use (7)

with d[n] instead of w[n] as input. Third, the heuristic for

conservation of volume as described in (8) is employed.

Finally, we compute the corresponding wavelet coefficients

from the result for the next reconstruction iteration.

4. Results

In this section we will discuss the results of our meth-

ods, including forward simulations by Fh,s, and reconstruc-

tions with multiple algorithmic variations. Our experiments

were executed and run times taken on a workstation PC

with an Intel i9-7980XE CPU with 2.6 GHz and 128 GB
of RAM. The GPU was a Nvidia Titan RTX with 1.35 GHz
and 24 GB of VRAM.

4.1. Simulation Results

Resulting caustic images from our simulations with the

complex prism and lens-array scene from Fig. 3(c)/(d) can

be seen in Fig. 4. This setup reveals light dispersion effects

by our multi-spectral approach as well as inherent noise of

the estimator in (1). We roughly estimate this intrinsic noise

by computing the simulation twice as well as the correspond-

ing relative discrepancies. We then add further Gaussian

noise up to the user-defined noise level δ to generate a sensor

readout that mimics the sensor response in a real-world pro-

duction system. This is then used in all our reconstruction

experiments as input data, excepting Sec. 4.5.

4.2. Ablation Study

As mentioned in Sec. 2, sparsity is well-known and area-

based physical bounds have already been studied. There-

fore, we focus our ablation study on the additional effect of

the novel penalty terms (Fig. 5). We perform our ablation

study on a predefined height field, that is depicted in Fig. 5

(cf. Fig. 1(a) for the full setup) as ground truth (GT) along

with reconstruction results of our algorithm variations. This

synthetic height field was generated to illustrate several prob-

lems in glass 3D printing like interruptions in the printing
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(a) GT caustic (b) M2V1 caustic
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(g) Slice comparison

Discrepancies Errors

w.r.t. (a) w.r.t. (d)

Lines A Lines A

[33] 0.0693 0.0862 1.0217 0.5596

M2V1 0.0544 0.0548 0.0702 0.1760

(h) Measured deviations

Figure 6: Comparison of reconstructed caustics (first two rows)

and surfaces (rows 3 and 4) from the Lines and A height fields. The

last row shows: (g) the center slices of the reconstructions (blue:

GT, green: [33], and red: ours); as well as a table (h) with the

reconstruction errors from both algorithms.

line and lines of different thickness. Furthermore, recon-

structing the thinnest print line is particularly challenging,

as the receiver screen lies behind the focal point generated

by the strong curvature. We compare three algorithmic varia-

tions: M1 naive gradient descent, M2 pixel-based Landweber

and M3 wavelet-based Landweber with disabled (V0) and

enabled (V1) volume heuristic, where applicable. We set

the noise level δ = 5% to simulate real-world sensor data.

Corresponding numerical results and the chosen parameters

are indicated in Tab. 1. Here discrepancy refers to the error

in caustic images and error denotes height field errors. As

expected, the reconstruction with M1 differs strongly from

the ground truth and has the longest run time. Note that here

the reconstructed form is partly below the substrate height of

0.1 and exhibits oscillating features outside the print regions.

This clearly indicates that regularization is necessary for

physically plausible reconstruction results. Both pixel-based

(M2) and wavelet-based Landweber (M3) enforce physical

bounds as well as sparsity, thus delivering close to optimal re-

constructions. Our experiments indicate that both techniques

perform similarly well. (Further comparisons of (M2) and

(M3) are in the supplementary material.) A significant posi-

tive impact can be observed from the volume heuristic (V1),

as it decreases the height field error from 11% to 7% and the

run time from 5 min to 3 min. None of the method variations

here are able to fully reconstruct the smallest printline. Nev-

ertheless, experiments using three wavelengths shows hints

of the thinnest printline as discussed in the supplementary

material.

Of course, using three images (one image for each wave-

length) provides more information than the case we usually

consider (one image with one wavelength). Note that a setup

with images from multiple viewing angles would increase

the amount of data and improve the reconstruction quality

but cannot be realized for the intended in-situ measurements

in production. Therefore, the problem requires a specific nu-

merical algorithm and the input of some known parameters.

4.3. Comparison with Caustic Design

We compare our reconstructed shapes against the caustic

design approach from Schwartzburg et al. [33]. Even though

caustic design has a different objective from our method,

the approach has common inputs and outputs, facilitating

quantitative and qualitative comparisons in Fig. 6. This

figure shows two datasets, one denoted as Lines depicting

different sizes and orientations of printed lines and the other

denoted as A, which was chosen to emphasize the effect

of line features that are not aligned to the grid as well as

steeper slopes of the height field. For these results we use

the reference simulation as in M2V1 with the same amount

of noise δ = 5% as input to both methods. Further infor-

mation about the Schwartzburg parameters can be found in

the supplementary material. Both approaches are able to

construct shapes which produce caustics with low errors for

the sample height fields. However, there are clear differences

in the surface reconstruction as demonstrated by the lower

surface error of our method. On the one hand, this further

highlights the ill-posedness of the problem. On the other

hand, it shows two possible solutions: Schwartzburg et. al.

solve it by constructing a shape which is closer to the light

source and smoother overall. Our regularization, however,

prevents us from finding shapes, which are implausible in

the 3D printing context.

(a) GT caus-

tic
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0.08

(b) Predicted

caustic

(c) GT surface

0.125

0.150

0.175

0.200

0.225

0.250

(d) Reconstructed

surface

Figure 7: Reconstruction for the two lenses setup

4.4. Unrestricted Setups

We provide additional reconstructions for more complex

scenes with two lens elements in the light path as depicted
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in Fig. 3(a)/(b). In Fig. 7 we show the reference surface

and caustic image as well as our results using M2V1. These

lenses result in a zoom-in effect on the caustic image and

produce a visible ring due to their outer border. Even in

this challenging scenario we achieve reconstruction error

of 17.1%, which is similar to the scene without the lenses.

Due to the additional intersection events and decreased step

size, the run time increases from 2.05 min to 8.55 min. In

contrast to this example, the scene in Fig. 3(c)/(d) poses

a greater challenge (see supplementary material). This is

mainly due to light paths which deposit the energy far from

their origin and paths which do not intersect the sensor plane

(see Fig. 4(a)) and thus do not contribute to the loss. In these

cases additional measurements will be needed to reach the

same quality. However, to the best of our knowledge, we are

the first to demonstrate shape reconstruction in the presence

of arbitrary number of refraction events.

4.5. RealWorld Sample

Finally we provide a result on a real-world sample as

depicted in Fig. 8. While the sample suffers from production

artifacts such as a broken edge and a weld on the backside

of the substrate, we are still able to obtain a reconstruction

result on a suitable crop of the piece. The photograph of the

workpiece was obtained with a Sony α7R IV mirrorless cam-

era and a Sony 90 mm F2.8 Macro lens focused on a semi-

transparent paper screen. The light source was a single flash

light with a diffuser and a green filter of 525 nm, with which

we roughly approximate an equivalent point light source for

reconstruction. As can be seen in the reconstructed height

field in Fig. 8(b), the overall shape and position of the printed

feature is accurate, but the small detail at the end of the line is

not reconstructed and the overall width of the line is less con-

sistent than in reality. Furthermore, the height of the printed

structure is generally underestimated, with the reconstructed

piece having a maximal height of 4.14 mm (approximately

0.67 units in Fig. 8(b)) and the real piece having a maxi-

mal height of 4.20 mm (without printing 4.08 mm). The run

time for this reconstruction was 1.78 min and final relative

discrepancy 0.1740. Further information can be found in

the supplementary material. Considering the feature size of

the printing material, which is only 0.4 mm in diameter, this

may already enable some feedback loops in production, but

for final deployment improvements such as a better screen

material and optimized light sources are necessary to achieve

the required accuracy for applications such as adaptive layer

height adjustments.

5. Conclusion

In this paper we presented a reconstruction approach for

feedback loops in glass printing processes, which is beyond

the realm of usual caustic design methods. Although 3D

glass printing is a forward-looking application of our recon-

(a) Measurement setup

(b) Photo of caustic and reconstructed height field of specific crop

Figure 8: Measurement setup, input and reconstruction

struction framework, it is not limited to this area. Its modular

and flexible design, the robustness against highly perturbed

data and the ability of the simulation to deal with arbitrary

scattering obstacles facilitate its use in a wide range of ap-

plications. For example, by extending the method to deal

with complex absorption coefficients, one could simulate

and reconstruct a wider range of materials. Our experiments

demonstrate the effectiveness of our approach on predefined

shapes, perturbed data and 3D printable glass geometries.

Moreover, we are able to successfully simulate caustics and

reconstruct their corresponding shapes in scenarios contain-

ing additional elements such as various lenses. To the best

of our knowledge, we are the first to successfully reconstruct

shape from caustics in the presence of arbitrary number of

refractions.
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[13] I. Georgiev, J. Krivánek, T. Davidovic, and P. Slusallek. Light

transport simulation with vertex connection and merging.

ACM Trans. Graph., 2012.

[14] T. Hachisuka and H.W. Jensen. Stochastic progressive photon

mapping. ACM Trans. Graph., Dec. 2009.

[15] T. Hachisuka, S. Ogaki, and H.W. Jensen. Progressive photon

mapping. ACM SIGGRAPH Asia 2008 papers, 2008.

[16] H.W. Jensen. Global illumination using photon maps. Ren-

dering Techniques’ 96, 1996.

[17] H.W. Jensen. Realistic image synthesis using photon mapping.

AK Peters/CRC Press, 2001.

[18] J.T. Kajiya. The rendering equation. In Proceedings of the

13th Annual Conference on Computer Graphics and Interac-

tive Techniques, SIGGRAPH ’86, pages 143–150, New York,

NY, USA, 1986. ACM.

[19] T. Kiser, M. Eigensatz, and M. Pauly. Architectural caustics

— controlling light with geometry. Advances in Architectural

Geometry 2012, pages 91–106, 2013.

[20] P. Kürnsteiner, M. B. Wilms, A. Weisheit, B. Gault, E. A.
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F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems 32, pages 8024–8035.

Curran Associates, Inc., 2019.

[32] K. Rettschlag and S. Kramprich. Printing complex glass

structures in 3d using the laser, Apr. 2020. [Online; Last

accessed 17-April-2020].

[33] Y. Schwartzburg, R. Testuz, A. Tagliasacchi, and others. High-

contrast computational caustic design. ACM Transactions on

Graphics, 2014.

[34] Q. Shan, S. Agarwal, and B. Curless. Refractive height fields

from single and multiple images. In 2012 IEEE Conference

on Computer Vision and Pattern Recognition, pages 286–293,

2012.

[35] V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Hei-

drich, F. Heide, and G. Wetzstein. End-to-end optimization of

optics and image processing for achromatic extended depth

of field and super-resolution imaging. ACM Trans. Graph.,

37(4):1–13, July 2018.

[36] J.C. Spall. A stochastic approximation algorithm for large-

dimensional systems in the Kiefer-Wolfowitz setting. In Pro-

2885



ceedings of the 27th IEEE Conference on Decision and Con-

trol, pages 1544–1548 vol.2, Dec. 1988.

[37] E. Veach and L.J. Guibas. Optimally combining sampling

techniques for monte carlo rendering. In Proceedings of the

22nd annual conference on Computer graphics and interac-

tive techniques, pages 419–428, 1995.

[38] P. von Witzendorff, L. Pohl, O. Suttmann, P. Heinrich, A.

Heinrich, J. Zander, H. Bragard, and S. Kaierle. Additive

manufacturing of glass: CO2-Laser glass deposition printing.

Procedia CIRP, 74:272–275, Jan. 2018.

[39] G. Wetzstein, D. Roodnick, W. Heidrich, and R. Raskar. Re-

fractive shape from light field distortion. In 2011 Interna-

tional Conference on Computer Vision, pages 1180–1186,

2011.

[40] T. Whitted. An improved illumination model for shaded

display. In Proceedings of the 6th annual conference on

Computer graphics and interactive techniques, SIGGRAPH

’79, page 14, New York, NY, USA, Aug. 1979. Association

for Computing Machinery.

[41] Y. Yue, K. Iwasaki, B. Chen, Y. Dobashi, and T. Nishita.

Poisson-based continuous surface generation for goal-based

caustics. ACM Trans. Graph., 33(3), June 2014.

2886


