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Abstract

Predicting the future trajectories of surrounding vehicles

is a key competence for safe and efficient real-world au-

tonomous driving systems. Previous works have presented

deep neural network models for predictions using a detailed

prior map which includes driving lanes and explicitly ex-

presses the road rules like legal traffic directions and valid

paths through intersections. Since it is unrealistic to assume

the existence of the detailed prior maps for all areas, we use

a map generated from only perceptual data (3D points mea-

sured by a LiDAR sensor). Such maps do not explicitly de-

note road rules, which makes prediction tasks more difficult.

To overcome this problem, we propose a novel generative

adversarial network (GAN) based framework. A discrimi-

nator in our framework can distinguish whether predicted

trajectories follow road rules, and a generator can predict

trajectories following it. Our framework implicitly extracts

road rules by projecting trajectories onto the map via a

differentiable function and training positional relations be-

tween trajectories and obstacles on the map. We also extend

our framework to multimodal predictions so that various fu-

ture trajectories are predicted. Experimental results show

that our method outperforms other state-of-the-art methods

in terms of trajectory errors and the ratio of trajectories that

fall on drivable lanes.

1. Introduction

Predicting the future motion of surrounding vehicles is a

crucial task for path planning by autonomous vehicles and

for early detection of abnormal driving behavior. Safe au-

tonomous driving requires robust trajectory predictions of

surrounding vehicles in a wide variety of traffic scenarios.

For more accurate and long-term predictions, it is nec-

essary to use maps of surrounding environments. Recent

studies [6, 9, 17, 18] have tackled the task of predictions us-

ing a detailed prior map which includes lane centerlines or

road boundaries, as shown in Figure 1-(b). Those methods

(a)

(b) (c)

Figure 1. (a) A top-view image generated from perceptual data (Li-

DAR points) and (b) a detailed prior map. Map (b) includes lane

information (with colors indicating lane directions) regarding road

rules, but this information is not included in (a). We use only (a) as

map information to predict multimodal trajectories following road

rules. Subfigure (c) shows the result of our method. Orange, pink,

and red lines respectively indicate the input, output, and ground-

truth trajectories.

can predict accurate trajectories by using recurrent neural

networks (RNN) or convolutional neural networks (CNN).

However, it is unrealistic to assume availability of such

maps for all areas, and maps may differ from the current

situation due to construction work or traffic accidents.

In contrast, we predict trajectories using a map generated

only from perceptual data. In our setting, we use an occu-

pancy grid map (OGM) generated from 3D points measured

by a LiDAR sensor. OGMs can represent the presence of

obstacles in the area around an ego-vehicle, and they are

commonly used for autonomous driving. A detailed prior

map explicitly denotes road rules such as legal traffic direc-

tions and valid paths through an intersection. However, a

perceptual-data-based map does not explicitly denote road

rules, which makes prediction tasks even more difficult. In

the example of Figure 1, it is necessary to learn from an
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OGM road rules such as wide or tight turns at intersections.

To overcome this problem, we propose a novel GAN-

based framework, which can distinguish whether predicted

trajectories follow road rules and generate predicted trajec-

tories that follow it. Positional relations between trajec-

tories and obstacles on the map are important when ex-

tracting road rules from an OGM. For example, it is nec-

essary to predict wide or tight turning trajectories by cap-

turing an overall road shape from obstacles. However, since

the representation method differs between trajectories (vec-

tor formats) and image maps (array formats), most con-

ventional methods associate them by fully connected layers

and impaired spatiality of the maps. We maintain spatiality

by associating them through a differentiable function that

projects predicted trajectories onto the map. We can im-

plicitly extract road rules by introduce this function into the

generator and the discriminator in our framework.

We also extend our framework to the multimodal pre-

diction task. Prediction tasks generally involve high un-

certainty due to diversity in behavioral characteristics and

road structures. For example, when an oncoming vehicle

approaches an intersection, we cannot uniquely determine

its future trajectory. It is thus appropriate to represent pre-

diction results as multimodal rather than unimodal distri-

butions. If some predicted trajectories ignore road rules,

false collision warnings may arise. We therefore introduce

a novel adversarial loss function for multiple trajectories so

that more predicted trajectories follow road rules.

Our method is evaluated using two datasets contain-

ing a large variety of real-world traffic scenarios. Experi-

mental results show that the prediction performance of our

method outperforms state-of-the-art methods. Furthermore,

we quantitatively show that predicted trajectories by our

method follow road rules more faithfully than do those by

other methods.

The contributions of this paper are as follows. 1) We

propose a framework for trajectory predictions following

road rules without a detailed prior map. Our framework

trains positional relations between obstacles and projected

trajectories on the map, thereby implicitly extracting road

rules. The discriminator can distinguish whether predicted

trajectories follow road rules, and the generator can predict

trajectories following it. 2) We extend our framework to

multimodal predictions. By introducing a novel adversarial

loss function for multiple trajectories, we can predict more

trajectories that follow road rules. 3) Experiments on two

datasets show that our method outperforms other state-of-

the-art methods in terms of trajectory errors and the ratio of

trajectories that fall on drivable lanes.

2. Related works

Vehicle trajectory prediction using deep models: Predic-

tions of the future trajectories of surrounding vehicles have

been actively studied. The many traditional approaches in-

clude constant velocity, Kalman filters [20, 21], Gaussian

process regression models [33, 34], hidden Markov mod-

els [4, 13], and Bayesian networks [14, 27]. However, these

approaches might not scale to cover prohibitively large vari-

ations in real-world traffic scenes.

In recent works, data-driven deep neural network mod-

els have resolved problems such as lack of expressiveness

and complicated parameter tuning. In particular, RNNs and

their variants, such as long short term memory (LSTM) [16]

and gated recurrent units (GRU) [8], have been used for

sequence prediction tasks. Most methods are built on the

encoder-decoder framework [7] and feed sequential posi-

tional coordinates into the encoder and output predicted fu-

ture positions from the decoder. Further developing this

network structure, several studies have addressed the prob-

lem of modeling constraints from scene contexts [2, 3, 9,

12, 17, 26] or modeling social interactions among multiple

agents [1, 15, 29, 31, 37]. In this paper, we focus on trajec-

tory predictions based on the scene context.

Using map information: Most conventional methods use

a 2D map which are expected to facilitate confident pre-

dictions of future trajectories in complicated scenarios.

We can classify map formats into two types: prior maps

and perceptual-data-based maps. Prior maps are generally

highly-detailed-maps in which elements such as road areas,

road markings, or lane centerlines are embedded. In [9, 17],

spatial features are extracted from highly-detailed maps via

a CNN to predict multimodal trajectories. By using vector

maps of lanes, LAMP-Net [19] can handle any shapes and

number of traffic lanes and predict both future trajectories

along each lane and the probabilities of each lane being se-

lected. Recently, Argoverse [6] and nuScenes [5], which

are datasets for prediction tasks including highly-detailed

maps, have been published. However, it is unrealistic to

prepare such prior maps in everywhere.

A perceptual-data-based map is generated by projecting

sensor data, such as those from cameras or LiDAR equipped

on autonomous robots, onto a top-view image. Such maps

are advantageous in that infrastructure upgrades are not nec-

essary. Lee et al. [26] projected LiDAR points with seman-

tic labels onto a top-view image used for predictions. In our

problem setting, we use an OGM generated from LiDAR

points. OGMs can directly represent drivable areas from

sensor measurements. However, OGMs do not include road

rules such as legal traffic directions and valid paths. We

therefore present a method to predict trajectories following

road rules by using adversarial training.

Adversarial training: Recent studies have applied adver-

sarial training to prediction tasks. Social-GAN [15] pro-

posed a new pooling method over all agents globally in-

volved in a scene, thereby applying adversarial training to

generation of a stochastic human behavior model. MATF-
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Figure 2. Overview of the proposed prediction framework, which consists of a generator G and a discriminator D. Both solid and dotted

arrows are used as forward propagation paths in the training phase, and only solid arrows are used in the inference phase.

GAN [37] used conditional generative adversarial training

to capture comprehensive social and contextual informa-

tion. GAIL-GRU [25] used generative adversarial imitation

learning to learn a stochastic policy that reproduces human

expert driving behaviors.

Inspired by these works, we introduce adversarial train-

ing for training of road rules. The discriminator in our

framework can distinguish whether predicted trajectories

follow road rules, and the generator can predict trajectories

following it. It is important to understand spatial relations

between trajectories and a map in order to extract road rules

from them. However, conventional methods [15, 37] have

associated them by fully connected layers and impaired map

spatiality because their representation methods are differ-

ent. We maintain map spatiality by associating them via a

differentiable function that projects trajectories on the map.

By introducing this function into the generator and the dis-

criminator, we can implicitly extract road rules.

Multimodal predictions: Several works have addressed

the problem of modeling multimodality in future motion.

Deo et al. [10, 11] proposed single networks that predict

different trajectories for each maneuver. However, these

networks can only predict pre-defined maneuvers. To over-

come this problem, previous studies [2, 3, 17, 18, 26] jointly

modeled multiple future trajectories using a recurrent con-

ditional variational auto encoder (CVAE) [23]. Our multi-

modal generative module is inspired by such CVAE-based

methods. Additionally, in the task of multimodal predic-

tions, we experimentally analyze the best loss function for

enhancing the effectiveness of adversarial training.

3. Proposed method

In this section, we elaborate a novel algorithm for pre-

dicting multimodal trajectories that follow road rules. Fig-

ure 2 shows an overview of our method, which consists of a

generator G and a discriminator D. G predicts multiple tra-

jectories using the observed trajectory and map information

as input. D distinguishes whether the generated trajectories

follow road rules. We describe the problem setting and the

details of the main algorithm bellow.

3.1. Problem setting

We assume access to real-time perceptual data from sen-

sors such as cameras or LiDAR equipped on an autonomous

vehicle. We can obtain the vehicle state xt = (ut, vt, θt)
at each time t, where u, v, θ are 2D positions and an an-

gle in a Cartesian coordinate system, from vehicle detec-

tion and tracking systems using perceptual data. The current

time is t = 0 and observed sequential states until the cur-

rent time are defined as X = {x−Tobs
, ...,x0}. The output

state at each time is defined as yt = (ut, vt), and multiple

sequential predicted states until t = Tpred are defined as

Yk = {yk
1
, ...,yk

Tpred
}, where k is a sampling ID. Ground

truth (GT) is represented as Y∗ = {y∗
1
, ...,y∗

Tpred
}. The co-

ordinate origin is set at (u0, v0), which is the last observed

vehicle position.

Additionally, we can obtain an OGM O generated from

LiDAR points. The ego-vehicle equipped with LiDAR is

positioned at the center of the OGM. Each cell in the OGM

represents occupancy probabilities po ∈ [0, 1]. The OGM

in Fig. 1-(a) depicts obstacles, free space, and unobserved

space in black, white, and gray, respectively.

3.2. Association of trajectory with map

Before explaining our network architecture, we describe

the module which associates trajectories with a map. Since

the representation method differs between trajectories (vec-

tor format) and maps (array format), conventional methods

reduce the dimensions of arrays to match the vector for-

mat and associate them by fully connected layers. However,

connections by fully connected layers cannot consider spa-

tial structures of the map. We therefore effectively pass fea-

3725



tures between them by converting trajectories into a proba-

bility map inspired by the soft-argmax layer [28].

We project vehicle positions onto the OGM using a prob-

ability map which has the same format as the map. Assum-

ing knowledge of a projection equation π(·) from the tra-

jectory coordinate system to OGM coordinate system, the

position on the OGM is represented as (ût, v̂t) = π(yt) =
π(ut, vt). The probability map Ψ which has a maximum

value at (ût, v̂t) is calculated as follows:

Ψ(yt) = PDF (ût − IW )⊙ PDF (v̂t − IH), (1)

where IW and IH are respectively matrices whose elements

are its indices along the x-axis and y-axis, PDF (·) is a

probability density function of normal Gaussian distribu-

tion, and a hadamard operation shows element-wise mul-

tiplication. Figure 3 depicts a graphical representation of

Eq. (1). This differentiable module maintains map spatiality

because the formats of trajectories and map are uniformed.

We introduce it into our G and D.

3.3. Generator

Our generator G, as shown in Figure 2, combines

LSTMs with a CVAE encoder-decoder architecture follow-

ing [3, 26]. Our goal is for CVAE to learn the distribution

p(Yk|X,O) of multiple outputs Yk conditioned on the in-

put trajectory X and the OGM O by introducing latent vari-

ables z. In the training phase, various trajectories Y∗ are

encoded into latent variables z. In the inference phase, z

are randomly sampled from the latent space and decoded

through the decoder module to generate a prediction hy-

pothesis. This framework can model stochastic multimodal-

ity in the prediction task.

In our implementation, encoder LSTM (LSTM 1 in Fig-

ure 2) reads an input state X, and a latent vector based on

X and Y∗ is created using the same LSTM (LSTM 1). The

output of LSTM 1 at Tpred passes through the embedding

function (φ1) to generate both mean µz and standard devi-

ation σz over z. The distribution of z is fitted as a Gaus-

sian distribution and is regularized by the KL divergence in

the training phase. Yk is reconstructed by randomly sam-

pling the latent variable from a Gaussian distribution. Since

back-propagation is not possible through random sampling,

we adopt the re-parameterization trick [24] to make it dif-

ferentiable.

Additionally, our framework can more effectively pass

map features to the trajectories. Map features are extracted

from O by VGG-16 [32] like model, and we add a non-local

convolution layer [35] to the final layer in order to take into

account the global characteristics. This feature map is de-

fined as I. Most conventional methods input the flattened

map features to the decoder LSTM, but we recurrently in-

put the map features corresponding to the trajectory posi-

tion yt to the decoder LSTM (LSTM 2 in Figure 2) in order

Trajectory

 ,  

 

Probability map

 

(∙)

Figure 3. Graphical representation of Eq. (1). The input is a 2D

coordinate vector and the output 2D array is a probability map with

a peak at the input coordinate. The gray-scale gradient images

show IW and IH in Eq. (1).
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Figure 4. Network architecture of our proposed discriminator D.

to maintain the spatial structure. The map features corre-

sponding to the position can be extracted by multiplying I
by the probability map Ψ(yt) and calculating the sum of

its elements. This process is synonymous with bilinear in-

terpolation with a wide receptive field. Finally, LSTM 2 is

recurrently conditioned on trajectory feature φ2(yt), map

feature I(yt), and sampled latent variables z. The decoder

output at each time step is transformed into the predicted

position via a common linear embedding function.

3.4. Discriminator

We introduce a novel discriminator D that distinguishes

whether generated trajectories follow the road rules. Po-

sitional relations between trajectories and obstacles / free

spaces on the OGM is key information to distinguish real or

fake trajectories. Our discriminator can train their positional

relations with maintaining spatiality by projecting trajecto-

ries onto the map through a probability map. Figure 4 shows

the detailed architecture of D. First, each position of the in-

put, output, and GT trajectory is converted to the probability

map. Each probability map from t = −Tobs to Tpred and

the feature map given by the OGM are concatenated in the

channel and are input to Convolutional LSTM [36]. Each

output of the Convolutional LSTM from t = 0 to Tpred is

converted via weight-shared convolution layers into a prob-

ability that indicates a real or fake future trajectory. We train

D such that D(X,Y∗) = 1 if the input trajectory is real (GT

trajectory), and D(X,Yk) = 0 if the input trajectory is fake

(generated trajectory).
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3.5. Training

G and D are simultaneously trained in a two-player min-

max game framework which most GAN models employed.

As more predicted trajectories are supposed to follow road

rules, we formulate a loss function LG for generator G as

follows:

LG = λ1Ltrj + λ2Lkld + λ3Ladv, (2)

Ltrj = min
k





1

Tpred

Tpred
∑

t=1

‖yk
t − y∗

t ‖2



 , (3)

Ladv =
1

K

K
∑

k=1

1

Tpred

(1− logD(X,Yk)), (4)

where Ltrj , Lkld, and Ladv are respectively the trajectory

loss, the KL divergence loss, and the adversarial loss, and

λ1, λ2, and λ3 are weighting parameters. We use λ1 = 1.0,

λ2 = 3.0, and λ3 = 1.0 in our experiments. Ltrj takes the

L2 loss between the predicted states and GT at each time

step. In Ltrj , we use only the sample k with the smallest

loss, which is called BMS-loss in [3]. BMS-loss allows pre-

dictions of diverse trajectories. On the other hand, Ladv is

calculated using all samples because we expect all predicted

trajectories that follow road rules.

When D is trained, the following function is maximized:

LD = max
D

1

Tpred

(

logD(X,Y∗)

+ (1− logD(X,Yk′

))
)

, (5)

where k′ is an index randomly selected from {1, ...,K}, and

one of the generated multiple trajectories is used to calcu-

late the discriminator loss. We use random sampling for

two reasons. One reason is that this equalizes the balance

between real and fake samples, which is generally sensitive

for training on GAN. The other reason is that it is impos-

sible to select a trajectory ignoring road rules from the loss

magnitude. In order to make more accurate D, fake sam-

ples that ignore it are necessary for training as well as true

samples. However, a trajectory with the highest or lowest

Ltrj does not necessarily follow road rules. For example,

in the lower right result in Figure 7, the loss magnitude of

the trajectory that exists between straight and turning lanes

is intermediate between ones of trajectories on these lanes.

Random selection allows such samples to be used to train

D. Experiments described below quantitatively show that

our calculation method of Ladv and LD achieves the best

performance.

3.6. Implementation

We train both G and D using Adam solver [22] with

learning rate 0.0005 and momentum parameters β1 = 0.5,

(a) (b) (c)

:

:

Figure 5. Illustrations of the PoP metric. The lane centerlines cor-

responding to OGM image (a) are drawn in (b) and (c). The PoP

in (b) is higher than ones in (c) because predicted trajectories in (b)

fall on the lanes.

β2 = 0.999. The LSTMs 1, 2, Convolutional LSTM and the

latent vector have 16 dimensions. The feature map I in G of

size 40 × 40 × 16 are extracted through convolutional lay-

ers with kernel size 3× 3 through the ReLU activation and

max pooling layers. The feature map in D are the same-size

as I and extracted through convolutional layers with leaky

ReLU activation and average pooling layers. The output of

Convolutional LSTM is converted to a 16-dimensional vec-

tor via global average pooling and to a probability via fully

connected layers with a sigmoid function. Our method is

implemented using Tensorflow.

4. Experiments

4.1. Datasets

We evaluate our method on our dataset and a public

dataset including a wide variety of real-world traffic scenar-

ios. Our dataset provides sensor data, including images and

LiDAR point clouds, of driving scenes in a dense urban area

of Tokyo. Inputs and GT trajectories are obtained by detect-

ing and tracking 3D bounding boxes of vehicles and project-

ing center locations of bounding boxes into world coordi-

nates. Input and output sequence lengths are the past 2 sec-

onds and the future 4 seconds at 10 Hz. This dataset consists

of 66 different intersection scenarios, and we trained and

tested our model and the baseline methods using 55 and 11

scenarios, respectively. The number of sequences is 11,242

for training and 2,319 for testing.

The nuScenes dataset [5] is a public dataset for vehicle

trajectory prediction tasks. It consists of raw sensor data,

such as images, LiDAR, and GNSS, of driving scenes in

Boston and Singapore, providing the position of all traffic

agents. The input and output sequence are the past 2 sec-

onds and future 6 seconds at 2 Hz. We extracted other ve-

hicles within 64 m from an ego-vehicle, preparing 20,327

sequences from the training set and 5,399 sequences from

the validation set.

For both datasets, we created an OGM of size 320 ×
320 with a cell size of 0.4 m and max distance of 64 m.

OGMs are composited from 2 seconds of previous scans.

Both datasets provide the lane centerlines which we used
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GT and lanes Ours LSTM-BMS [3] MATF-GAN [37]DESIRE [26] PRECOG [30]

Figure 6. Prediction results by our method and four previous methods on our dataset. Input and output trajectories are shown in orange and

pink, respectively. The first column shows GT trajectories and driving lanes (white areas).

Figure 7. Prediction results by our method and previous methods on the nuScenes dataset [5], similar to Figure 6. In the first column, color

paths show driving lanes and path colors show lane directions.

only for evaluations whether the predicted trajectories are

on the lanes.

4.2. Metrics

We evaluate our methods by three metrics: the minimum

of average displacement errors over K samples (mADEK),

the minimum of final displacement errors (mFDEK), and

the prediction on path (PoP).

mADEK and mFDEK: These metrics have been used in

many prior works [6, 12, 15, 17, 26, 37] for multimodal

trajectory predictions. The mADEK is the minimum of av-

erage prediction performance along the trajectory over K

samples, while the mFDEK considers only the minimum

prediction precision at the end points, as follows:

mADEK = min
k∈{1,...,K}

1

Tpred

Tpred
∑

t=1

‖y∗
t − yk

t ‖2 (6)

mFDEK = min
k∈{1,...,K}

‖y∗
Tpred

− yk
Tpred

‖2. (7)

It can be seen that some predicted trajectories are closer

to GT as they have smaller error. However, these metrics

do not penalize implausible predicted trajectories ignoring

road rules. Thus, they are insufficient for evaluating the per-

formance of multimodal predictive distributions.

PoPK : Inspired by [12], we measure the percentage of all

predicted trajectory location falling on drivable lanes. We

create a mask of drivable lane areas from the lane centerline

included in the datasets, shown in Figure 5. It can be seen

that predicted trajectories follow road rules more faithfully

as PoPK is higher.

4.3. Baselines

We compare our methods with the following baselines:

DESIRE [26]: This is a CVAE-based multimodal trajectory

prediction method. This method predicted trajectories using

past trajectories and a top-view image onto which LiDAR

points with semantic labels are projected. In our experi-

ments, we replace the top-view image with the OGM. Each
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Our dataset The nuScenes dataset [5]

mFDE [m] ↓ mADE [m] ↓ PoP [%] ↑ mFDE [m] ↓ mADE [m] ↓ PoP [%] ↑
Methods K= 3 K= 5 K= 3 K= 5 K= 3 K= 5 K= 3 K= 5 K= 3 K= 5 K= 3 K= 5

DESIRE [26] 4.06 4.00 1.95 1.92 76.4 76.3 6.95 5.93 3.00 2.59 68.3 68.4

LSTM-BMS [3] 3.70 2.93 1.82 1.52 70.7 71.0 6.94 5.42 3.06 2.45 63.1 63.2

MATF-GAN [37] 3.58 2.89 1.80 1.48 73.1 73.0 7.29 5.47 3.17 2.42 65.2 65.0

PRECOG [30] 3.72 2.97 1.82 1.53 72.5 72.7 6.92 5.21 3.16 2.45 69.7 69.9

PRECOG [30] w/ D 3.59 2.88 1.80 1.49 74.8 74.9 6.80 5.09 3.03 2.36 70.2 70.3

Ours w/o D 3.64 2.90 1.80 1.51 74.2 74.3 6.56 4.92 2.93 2.29 70.6 70.7

Ours 3.54 2.85 1.78 1.49 77.2 77.2 6.45 4.97 2.86 2.28 74.4 74.4

Table 1. Quantitative results of all methods on two datasets. The best results are shown in bold.

predicted trajectory tends to be similar because this method

uses average trajectory losses over multiple samples.

LSTM-BMS [3]: This is a CVAE-based multimodal pre-

diction method. This method introduces BMS loss, which

uses the minimum loss over multiple samples, to provide

diverse predictions. Our method also uses BMS loss. In

LSTM-BMS, map features are flattened and concatenated

with trajectory features.

MATF-GAN [37]: This is a conditioned GAN-based mul-

timodal predictions method. In this generator and discrim-

inator, map features are flattened and connected to trajec-

tory features. This method used average trajectories loss

for multiple samples as in DESIRE, but we replace its loss

with BMS-loss for easy comparison with our method.

PRECOG [30]: This is a CVAE-based multimodal predic-

tion method. This method extracts spatial features from the

feature map by bilinear interpolation centered on the pre-

dicted position at each time. We evaluated the performance

of this method. Additionally, in order to know our discrimi-

nator works on other network, we checked RORECOG with

our discriminator.

4.4. Qualitative results

Figure 6 and 7 show prediction results by our method and

baseline methods on our dataset and the nuScenes dataset

[5], respectively. We can see that our method predicts di-

verse multimodal trajectories, such as going straight and

turning left and right, depending on the intersection geome-

tries. Additionally, our method predicts trajectories exactly

on lanes more frequently than other methods do.

In Figure 6, since trajectories predicted by other meth-

ods are on the white areas (free spaces) on the OGM,

these methods can also recognize that there are no obsta-

cles in the white areas. However, some predicted trajecto-

ries would collide with obstacles (black areas) if their tra-

jectories were naturally extended in a few seconds, sug-

gesting that these methods cannot accurately extract road

rules. MATF-GAN [37] can also predict trajectories fol-

lowing road rules at a typical intersection (the first row in

Figure 6), but the predicted trajectories in the second rows

are not on the lanes. These results show the effects of in-

troducing a GAN architecture to prediction tasks, and our

proposed discriminator further contributes to learning road

rules by maintaining spatiality.

In the first row in Figure 7, predicted trajectories by our

method and PRECOG [30] are in white areas, but predic-

tions by other methods (DESIRE [26], LSTM-BMS [3],

MATF-GAN [37]) collide with obstacles. These previous

methods cannot handle rare scenes such as forked roads be-

cause they flatten map information and lose spatiality. In

contrast, our method and PRECOG [30] recurrently give

the decoder LSTM map information corresponding to pre-

dicted positions, so they can recognize such areas without

obstacles. The second row in Figure 7 is a roundabout sce-

nario. Our method can predict trajectories following road

rules even in such a scenario.

Figure 8 shows failure examples in which some pre-

dicted trajectories by our method are not on lanes. Since

most OGM cells around the target vehicles are “unob-

served” (gray areas), the map information is insufficient. In

such scenarios, the variability of predicted trajectories be-

comes large.

4.5. Quantitative results

Table 1 shows mADEK , mFDEK , and PoPK by all

methods. Our method outperforms the other methods for

most metrics on the two datasets. In particular, we can see

that our method has the highest PoP, which shows that the

predicted trajectories by our method follow road rules more

faithfully than do those by other methods.

There is an overall tendency for large differences in

mFDEs (and mADEs) between the two datasets because our

dataset and the nuScenes dataset [5] set different prediction

horizons (4 and 6 seconds), and the former has primarily

typical intersection scenarios while the latter has more var-

ied traffic scenarios. When K is changed from 3 to 5, mFDE

and mADE become smaller. That is because a larger num-

ber of candidates allow more diverse predictions. The vari-

ation range on DESIRE [26] is small because it does not use

the loss that expresses diversity. On the other hand, chang-
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Figure 8. Examples of prediction failure by our method on the

nuScenes dataset [5].

2 sec 4 sec 6 sec

Methods mFDE PoP mFDE PoP mFDE PoP

Ours w/o D 0.94 91.6 2.59 81.8 4.92 70.7

Ours 0.93 92.1 2.61 84.0 4.97 74.4

Table 2. The mFDE and PoP of our method over future time steps

on the nuScenes dataset [5] with K = 5.

K= 1 K= 5 K= 10

Methods mFDE PoP mFDE PoP mFDE PoP

Ours w/o D 12.32 71.1 4.92 70.7 3.81 70.7

Ours 11.65 74.3 4.97 74.4 3.77 74.4

Table 3. The mFDE and PoP of our method on the nuScenes

dataset [5] at 6 seconds for several K settings.

Methods mFDE [m] ↓ PoP [%] ↑
G: mean, D: random (ours) 4.97 74.4

G: mean, D: mean 5.17 71.9

G: mean, D: min 5.09 69.9

G: random,D: random 5.01 72.0

G: random, D: mean 5.01 71.4

G: random, D: min 5.09 71.4

G: min, D: random 5.14 68.3

G: min D: mean 5.18 68.5

G: min, D: min 5.04 71.1

Table 4. Ablation studies on adversarial loss for multiple samples.

“Mean” indicates that Ladv or LD is calculated using the average

of all samples, “random” indicates that losses are calculated using

a sample randomly selected from all samples, and “min” indicates

that losses are calculated using only a sample corresponding to

ones with the smallest trajectory loss Ltrj , as with BMS-loss [3].

These ablation studies were performed on the nuScenes dataset [5]

with K = 5.

ing K results in nearly no change in PoPs for most methods.

We believe this is because three in five are the same samples

and are used to calculate the metrics. Additionally, trained

models do not predict trajectories completely randomly, but

rather with regularity based on the map.

We next compare our method with PRECOG [30]. Com-

paring both models without D (the 4th and 6th rows in Ta-

ble 1), we can see that our method is superior under all

metrics. Since our G uses non-local convolution [35] and

a probability map, the receptive field in the map feature ex-

tractor of our G is wider than that in PRECOG. Our method

can thus consider the entire map and obtain more accurate

results. The 5th and 7th rows in Table 1 show the results

of adding our D to these models. Prediction performances

are improved in both models, so the effectiveness of D is

clarified.

We conducted further experiments varying K and future

time steps, as shown in Tables 2 and 3.

4.6. Ablation studies on the adversarial loss

In our adversarial loss for multiple samples, Ladv in

Eq. (4) uses the mean of all samples {1, ...,K} and LD in

Eq. (5) uses randomly selected k′. To perform ablation stud-

ies on the adversarial loss for multiple samples, we compare

the combinations shown in Table 4.

Our proposed combination of losses provided the highest

prediction performance (the first row in Table 4). Expecting

all predicted trajectories to follow road rules, we chose the

“mean” for Ladv , which allowed losses to back-propagate

across all trajectories. However, performance did not be im-

proved without using a randomly selected sample for LD.

Random selection provides two advantages: the real-fake

quantitative balance is equalized because GANs learning is

generally sensitive to the balance of the samples, and pre-

dicted trajectories ignoring road rules should be used for

training. If LD is calculated using only the sample with

the smallest trajectory loss, only predicted trajectories close

to GT are used and the remaining trajectories are ignored

for D. In order to create more accurate D, fake samples

that ignore road rules are necessary for training as well as

true samples. Random selection allows such fake samples

to be used to train D. Our proposed combination of losses

is therefore effective.

5. Conclusion

We tackled the problem of predicting multimodal ve-

hicle trajectories using only perceptual data without a de-

tailed prior map. Since perceptual-data-based maps do not

explicitly denote road rules, the prediction task becomes

more difficult. We therefore proposed a novel GAN-based

framework. The discriminator in our framework can dis-

tinguish whether predicted trajectories follow road rules,

and the generator can predict trajectories that follow it.

We maintained spatiality by associating trajectories and the

map through a probability map. By training positional rela-

tions trajectories and obstacles / free spaces on the map, our

framework allowed implicitly extracting road rules. We also

extended our framework to multimodal prediction tasks, in-

troducing a novel adversarial loss function for multiple tra-

jectories so that more predicted trajectories followed road

rules. Experiments on two datasets showed that our method

outperformed other state-of-the-art methods. We also quan-

titatively showed that predicted trajectories by our method

followed road rules more faithfully than did those by other

methods.
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