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Abstract

In this paper, we aim to tackle the task of Assessing Fu-

ture Moment of an Action of Interest (AFM-AI). The goal of

this task is to assess if an action of interest will happen or

not as well as the starting moment of the action. We aim to

assess starting moments at any time-horizon of the future.

To this end, we tackle the regression task of the starting mo-

ments as a generation task using a Deterministic Residual

Guided Variational Regression Module (DR-VRM), which

is built on a Variational Regression Module (VRM) and a

deterministic residual network. The VRM takes the uncer-

tainty into account and is capable of generating diverse pre-

dictions for the starting moment. The deterministic network

encourages the VRM to learn from deterministic residual in-

formation in order to generate more precise predictions for

moment assessment. Experimental results on three datasets

clearly show that the proposed method is capable of gener-

ating both diverse and precise predictions of starting mo-

ments for query actions.

1. Introduction

While strong progress has been made on action and ac-

tivity recognition [2,17,26,35,37,41], many real-world ap-

plications demand to assess if and when a particular action

of interest will occur. For example, in visual surveillance

and self-driving cars, the systems need to infer dangerous

actions to generate early alerts. In medical care systems,

the system needs to assess fall of the elderly to prevent the

accident. In human-robot interaction, the robot needs to as-

sess if the human will conduct actions that require its as-

sistance or interaction, thus to provide timely response. In

these cases, there is no need to anticipate all the future ac-

tions after the observation. Instead, the system only needs

to know if the action of interest will happen or not, and if

so, when it will happen. We refer to this task as Assessing

Future Moment of an Action of Interest (AFM-AI).

This task is mostly related to action anticipation, which

aims to use the observation to predict the next action or

future actions in a long-term horizon [6, 8, 19, 30, 32, 43].

To solve the AFM-AI task, one can use action anticipation

methods to predict the future action sequence given the ob-

servation, and then use the predicted future sequence to ver-

ify whether the action of interest occurs or not, as well as

the starting moment of the action of interest. While the ac-

tion anticipation methods can be adapted for AFM-AI, the

performance is somewhat unsatisfactory as anticipating ac-

tions for all future frames correctly is very challenging, not

to mention its inefficiency due to intermediate anticipations.

In this paper, instead of solving the task of AFM-AI in

such an indirect manner, we introduce a new framework to

solve this problem. The proposed method treats the action

of interest as query. It takes both the observation and the

query action as inputs and directly outputs the assessment of

whether the query action will happen or not as well as when

it will happen. Compared to previous action anticipation

methods, the proposed method does not need to anticipate

all the other intermediate actions, which avoids intermedi-

ate anticipation errors and results in better performance.

More specifically, we address arbitrary actions of inter-

est that occur at any time-horizon after the observation. For

some actions of interest, especially the long-term ones, the

starting moment in the future is uncertain due to human ac-

tivities that do not follow a fixed action order and vary in

length. For example, to make a salad, one might first put

tomatoes, cheese and then cucumbers after taking a bread,

while the other one might first put cheese, cucumbers and

then tomatoes. In this case, it is necessary to capture the

uncertainty of the data for assessment. There are also some

cases that the action of interest is highly related to the ob-

servation and the starting moment is less uncertain, which

can be assessed in a deterministic manner. For example, af-

ter opening the trash can, the next action is to dispose the

trash. In our model, we take both aspects of the data into ac-

count, and introduce a Deterministic Residual Guided Vari-

ational Regression Module (DR-VRM) for starting moment

assessment. DR-VRM is built on a Variational Regression
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Module (VRM) and a deterministic network. The VRM

is inspired by the Conditional Variational Auto-Encoders

(CVAE) [38]. In particular, we introduce a Temporal Re-

construction Loss to equip CVAE. The Temporal Recon-

struction Loss prevents the network from over-fitting on the

long-term starting moments and makes the network capa-

ble of capturing the uncertainty of the data, leading to di-

verse predictions for the starting moment. The determinis-

tic network encourages the VRM to learn from determinis-

tic residual signal to allow for more precise predictions for

moment assessment.

The contributions of this paper are summarized as fol-

lows: 1) We investigate a new task of assessing future mo-

ment of an arbitrary action of interest that occurs at any

time-horizon after the observation, which is very important

for real-world applications. 2) We introduce a new DR-

VRM, which allows for diverse and precise predictions of

the starting moments. 3) We conduct extensive experiments

and clearly show the advantages of the proposed method.

2. Related Works

Action Anticipation. Action anticipation aims to predict

future unseen actions after the observation. Many efforts

have been made for early action recognition [1,4,14–16,18,

22,23,25,27,34]. Recently, there is an increasing number of

papers for action anticipation [6,8,9,12,19,29,30,32,42,43].

In [9], a new method is introduced to anticipate egocentric

actions. The method contains two LSTMs to summarize

the historical information and perform predictions of the

future action. A novel method based on attention is also

introduced to combine information of different modalities.

In [8], a RNN and a CNN model are introduced to anticipate

long-term action sequences. In [19], a time-conditioned

method is introduced to anticipate long-term future actions.

Time to Event Prediction. In [31], several loss functions

are introduced to predict if and when the shooting will hap-

pen in a basketball dataset, and to predict if and when a car

will stop in a car driving dataset. The prediction horizon is

limited to 10s. Our method is capable of handing arbitrary

actions of interest and the staring moments of the actions

can be at any time-horizon of the future.

Offline Action Detection. In this task, the entire video is

observed and the goal is to detect the start and end time

of each action. In [5], a Temporal Context Network, which

contains a pair-wise sampling layer to capture the local con-

text, is introduced to perform temporal localization. In [3],

a TAL-Net is proposed to generate proposal and classify ac-

tions. In [11], a Cross-modal Temporal Regression Local-

izer is introduced for action localization via language query.

Early Action Detection. This task aims to detect an action

as early as possible from a partial observation of the action.

In [14], a Max-Margin Early Event Detectors built based on

Structured Output SVM is introduced to recognize partial

Figure 1: Architecture of the proposed method. The ob-

served action sequence S and query action a are concate-

nated and passed to a Visual-Query Encoder. The generated

feature v is then fed to two sub-networks to perform bi-

nary classification and regression. The Classification Sub-

network is a Multi-layer Perceptron, which aims to address

if the query action will happen or not in the future. The Re-

gression Sub-network is a Deterministic Residual Guided

Variational Regression Module (DR-VRM), which aims to

address when the query action will happen.

events. In [28], a new ranking loss is introduced to encour-

age LSTM to generate non-decreasing detection score for

correct class with more observation.

Online Action Detection. The goal of this task is to recog-

nize the action of the current frame and generate frame-level

classification in an online manner, i.e., the future frames

are not considered for the classification. In [45], a Tempo-

ral Recurrent Network is introduced to jointly perform ac-

tion detection and anticipation. In [36], a network built on

GAN [13] is introduced to generate hard negative samples

for online detection of action start.

Variational Autoencoders. Variational learning allows

models to learn with Gaussian latent variables [20, 21, 33].

Variational Auto-encoders (VAE) [21] has been used in

[30] for action anticipation. Conditional variational auto-

encoders (CVAE) [38] is built based on VAE [21] to models

conditional distributions to predict diverse outputs. CVAE

has been used for image description [44], future frame syn-

thesis [46] and image colorization [7].

3. Assess Future Moment for Action Query

The overall architecture of the proposed method is

shown in Figure 1. It takes both the observed sequence S
and query action a as inputs, and generates two outputs:

1) a classification score to address if the query action will

happen after the observation, and 2) a regression value to

address when the query action will happen.

More specifically, given an observed action sequence

S ∈ R
c×m (c denotes the number of action classes and

m denotes the length of the observation), the query action

a ∈ R
c×1 is concatenated with the sequence at each time-

step. a is repeated for m time-steps before concatenation.

The concatenation Sa ∈ R
2c×m is fed to the Visual-Query

Encoder to model joint information of the observation and
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the query action. The Visual-Query Encoder consists of

several dilated temporal convolution layers, followed by a

max-pooling layer to output a feature vector v ∈ R
d×1 (d

represents the dimension of the feature vector). v is passed

to: 1) a Classification Sub-network, which outputs the prob-

ability that the query action will happen in the future, and 2)

a Regression Sub-network, which outputs the starting mo-

ment of the query action.

Intuitively, the future is stochastic and uncertain. Given

a past observed action sequence, there could be multiple

possible future sequences. In other words, there is uncer-

tainty in the answers of whether and when a query action

occurs. It is thus necessary and important to generate di-

verse predictions to capture the multi-modal posterior over

the output space. Below we describe the Classification Sub-

network and Regression Sub-network, which are specifi-

cally designed to tackle this problem.

3.1. Classification Subnetwork

As shown in Figure 1, the Classification Sub-network

takes v as the input, and performs binary classification to

output a probability score, which indicates the probability

of the occurrence of the query action.

More specifically, the Classification Sub-network is

a Multi-layer Perceptron, which consists of three fully-

connected (FC) layers followed by a Sigmoid layer. To

allow for diverse predictions in order to capture the multi-

modal posterior over the output space, we use Monte Carlo

dropout (MC-Dropout) [10] to equip the network. MC-

Dropout is shown to be an approximation of the Bayesian

interpretation. More specifically, we insert Dropout [39]

layers before all the hidden layers. The Dropout layers

are used during training and testing for diverse anticipation.

The objective for the Classification Sub-network is to min-

imize the binary cross-entropy between the predictions and

the data labels, which is formulated as:

Lc = −E [yc log(oc) + (1− yc) log(1− oc))] (1)

where oc denotes the output of the Classification Sub-

network and yc denotes the data label. E[·] denotes statisti-

cal expectation.

3.2. Regression Subnetwork

The Regression Sub-network takes v as the input and

performs regression to output a value, which indicates the

starting moment of the query action in the future.

Ideally, we can design a network similar to the Classifi-

cation Sub-network and use MC-Dropout [10] to capture

the uncertainty of the data for regression. However, the

starting moment can be any positive value, rather than 0

or 1 in the binary classification task. This makes the distri-

bution of starting moment more complex and the regression

task more challenging. To effectively capture the data dis-

tribution and generate more precise and diverse predictions,

we introduce a new method to assess the starting moment

of the query action.

More specifically, we first introduce a Variational Re-

gression Module (VRM), which aims to capture the uncer-

tainty of the data and can generate diverse predictions for

the starting moment. Based on VRM, we further introduce

a Deterministic Residual Guided VRM (DR-VRM), which

aims to generate both diverse and precise predictions. VRM

and DR-VRM are inspired by CVAE [38]. Below we intro-

duce the details.

3.2.1 Preliminary: Conditional Variational Auto-

encoders

CVAE is a conditional generative model with Gaussian la-

tent variables [38]. The idea of CVAE is to use the la-

tent variable to model different modes of the distribution

between the input and the output variables, thus to allow

the network to learn one-to-many mapping and generate di-

verse predictions. Specifically, given an input variable x,

CVAE aims to generate an output variable y from the dis-

tribution p(y|x, z), where z is a latent variable. CVAE is

trained to maximize the conditional log-likelihood. How-

ever the objective function is intractable. A surrogate ob-

jective function is the variational lower bound of the log-

likelihood (derivation of the variational lower bound can be

found in [38]):

log p(y|x) ≥−DKL (q(z|x, y) ‖ p(z|x))

+ Eq[log p(y|x, z)]
(2)

where DKL denotes the KL divergence of two distributions.

q(z|x, y) denotes the Gaussian distribution output by the en-

coder of CVAE (which is also referred to as the recognition

network). Specifically, the encoder takes both x and y as

the inputs and generates mean and variance of a Gaussian

distribution where z is sampled from. p(z|x) is the prior

distribution of the latent variable, which is set to standard

normal distribution. p(y|x, z) is the output of the decoder of

the CVAE, i.e., the decoder takes x and z as the inputs and

outputs y. The first part of the objective minimizes the KL

divergence between the distribution output by the encoder

and the prior distribution. The second part maximizes the

data log-likelihood conditioned on and x and z, where z is

sampled from the distribution output by the encoder.

3.2.2 Variational Regression Module

The main idea of VRM is to tackle the regression task of

the starting moment as a variational generation task condi-

tioned on the input information. Basically, VRM is built

based on CVAE [38]. The overall architecture of VRM is
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Figure 2: Architecture of Variational Regression Module

(VRM). v is the output of the Visual-Query Encoder (Figure

1). t is the ground-truth starting moment of the query action.
⊗

denotes element-wise multiplication. µ and σ2 are mean

and variance of the Gaussian distribution where the latent

variable z is sampled. or is the predicted starting moment.

shown in Figure 2. In the case, the input variable of the

CVAE is the output of the Visual-Query Encoder (shown

in Figure 1) v, and the output variable is the ground-truth

starting moment of the query action t. We use only the pos-

itive samples (i.e., the query action happens in the future)

for training. For the negative samples, t is set to a random

number (e.g., 0) and the regression loss is not calculated

during training, i.e., the negative samples are not involved

in training the regression model. Using only the positive

samples to train the regression model ensures that the re-

gression model is learned from the true distribution of the

starting moments. t is fed to an embedding layer and then

merged with v using element-wise multiplication. One can

also use concatenation. The outputs of the encoder are the

mean µ and variance σ2 of the Gaussian distribution, where

z is sampled from during training. z is merged with v and

the combination zv is fed to a regression decoder to gener-

ate or, which is the prediction of the starting moment. or is

a scalar, i.e., each time the network takes one query action

as the input and generates one number as the prediction of

the starting moment.

The objective of VRM is the variational lower bound

shown in Equation 2. In particular, the input variable x in

Equation 2 is v and the output variable y in Equation 2 is t.
Specifically, the data log-likelihood of VRM is formulated

as:

log p(t|v, z) = −
(t− or)

2

2σ2
−

1

2
log(2πσ2) (3)

Minimizing mean square error is equivalent to maximize

the log-likelihood, except that the variance σ2 is ignored.

In our task, we observe that the variance of the starting mo-

ments of long-term query actions are larger than those of the

short-term ones. This could be partially due to the fact that

the observation and long-term query actions are not closely

related, and there could be multiple possible intermediate

actions between them. This makes the starting moment of

the long-term query action more stochastic. We therefore

set the variance of each sample as a function of the start-

ing moment in order to follow the trend of the data, i.e.,

smaller variance for the shorter-term query actions while

larger variance for the longer-term ones. More specifically,

we set σ2 = tτ , where τ is a hyper-parameter.

During training, the loss function of VRM is the negative

form of variational lower bound, i.e., the combination of the

negative data log-likelihood and the KL divergence between

the distribution output by the latent variable encoder and the

prior distribution. Formally,

Lr = ℓr + E [DKL (q(z|t, v) ‖ p(z|v))] (4)

ℓr = E

[

(t− or)
2

2tτ
+

1

2
log(2πtτ )

]

(5)

ℓr is referred to as the Temporal Reconstruction Loss,

which produces less penalty for the long-term query actions

than the short-term ones under the same error term t − or.

This prevents the network from over-fitting and enables the

network converge easily.

Once the network is trained, the encoder is removed.

During testing, z is sampled from the prior distribution as

the approximation, which is then combined with v to assess

the starting moment using the regression decoder. z can be

sampled multiple times to generate diverse predictions.

3.2.3 Deterministic Residual Guided Variational Re-

gression Module

Intuitively, if the query action is highly relevant to the ob-

servation, e.g., next action after the observation, the starting

moment of the query action can be inferred using a deter-

ministic manner. In this case, the diverse predictions gener-

ated by VRM are not precise. In this section, we introduce

a DR-VRM to achieve diverse and precise regressions. Ba-

sically, DR-VRM consists of a deterministic network and

VRM. The main idea of DR-VRM is to guide the learning

of the VRM using the deterministic network. More specifi-

cally, VRM is encouraged to learn the residual information

that cannot be captured by the deterministic network. The

residual is zero if the deterministic network is optimal. This

enables the network to generate more precise predictions.

The overall architecture of DR-VRM is shown in Figure

3. The inputs v and t and the latent variable encoder of DR-

VRM are the same as that of VRM. The regression decoder

consists of two streams. One stream takes the conditional

latent variable z0 as input. This stream combined with the

latent variable encoder has the same architecture of VRM.

This stream is referred to as the variational stream as it is

capable of generating diverse predictions. Another stream

takes v as input, which can only generate point estimates

and it is referred to as the deterministic stream. These two

streams consist of the same architecture. The output of the

deterministic stream at each layer is passed to the corre-

sponding layer of the variational stream to form a new out-
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Figure 3: Architecture of Deterministic Residual Guided

Variational Regression Module (DR-VRM). v is the output

of the Visual-Query Encoder (Figure 1). t is the ground-

truth starting moment of the query action.
⊗

and
⊕

denote

element-wise multiplication and addition, respectively. µ
and σ2 are mean and variance of the Gaussian distribution

where the latent variable z is sampled. ovr is the predicted

starting moment.

put of the corresponding layer of the variational stream. We

denote the functional representation of the ith FC layer of

the variational stream and the deterministic stream as fi(·)
and gi(·), respectively. As shown in Figure 2, the output of

the ith fully-connected (FC) layer of the variational stream

zi is formulated as: zi = fi(zi−1)⊕vi, where vi = gi(vi−1)
denotes the output of the (i)th FC layer of the determin-

istic stream (v0 = v). ⊕ denotes element-wise addition.

The final output of the variational stream is formulated as

ovr = f3(z2)⊕ odr. As shown in Figure 2, odr = g3(v2) is

the output of the deterministic stream. ovr is a scalar, which

denotes the starting moment of a query action.

During training, we optimize both the variational stream

and the deterministic stream. The cost function of the vari-

ation stream is the same as VRM, which is the combination

of the data negative log-likelihood and the KL divergence

between the encoding distribution and the prior, as shown

in Equation 4 and Equation 5. The cost function of the

deterministic stream is the data negative log-likelihood, as

shown in Equation 5 (in this case, or = odr). During test-

ing, similar to VRM, the latent variable encoder is removed

and z is sampled from prior standard normal distribution.

The output of the variational stream ovr is used as the final

prediction for evaluation.

3.3. Implementation Details

The Visual-Query Encoder contains three dilated tempo-

ral convolutional layers with kernal size 3, and dilated rate

2, 4 and 8, respectively. The sizes of filters are set to 32,

64, 128, respectively. The Classification Sub-network is a

Multi-layer Perceptron, which consists of three FC layers

followed by a Sigmoid layer. The dropout rate is set to 0.5.

The numbers of units in the hidden layers of the Classifi-

cation Sub-network, the latent variable encoder and the re-

gression decoder of VRM and DR-VRM are set to 256 and

512, respectively. In the latent variable encoders of VRM

and DR-VRM, t is fed to a Multi-layer Perception with 64-

unit hidden layer and 128-unit output layer. One can also

use an embedding layer. The numbers of units of the output

layer for mean and variance are set to 128. τ in Equation 5 is

set to 1, which is selected by validation set. We use a sliding

window to process each video to generate sub-sequences as

observations for experiments. The length of observation is

set to 60s. During training, we randomly sample an action

that occurs in the future after the observation to form a pos-

itive pair. An action might occur multiple times after the

observation. We use the first time it occurs as the starting

moment. To generate negative pair, we randomly sample

an action that does not occur in the future from the whole

action set of the dataset. Both the observations and query

actions are ground-truth action classes, i.e., one-hot class

vectors. The objects and scenes can also be used to improve

the prediction performance. We use Adam as the optimizer

in all experiments. The learning rate is set to 0.001 and the

batch size is set to 64.

4. Experiments

We conduct experiments with the following settings:

Deterministic Residual Guided Variational Query Net-

work (DR-VQNet): This network takes both the observa-

tion and the query action as inputs for moment assessment,

as shown in Figure 1. The Regression Sub-network is DR-

VRM. During testing, the encoder of the DR-VRM is re-

moved and z is randomly sampled from the standard nor-

mal distribution for multiple times. The random sampling

process of z leads to diverse predictions for the same input.

Variational Query Network (VQNet): The architecture

is similar to DR-VQNet, except that the Regression Sub-

network is VRM. During testing, z is randomly sampled

from the standard normal distribution for multiple times to

generate diverse predictions.

The comparison methods include:

Deterministic Query Network (DQNet): The architecture

is similar to DR-VQNet, except that the variational stream

in the Regression Sub-network is removed and the Classifi-

cation Sub-networks is a Multi-layer Perceptron.

Anticipation Network (AntiNet) [19]: Given an observed

sequence, this method adapts the anticipation method [19]

to anticipate the future action sequence. Then the future se-

quence is used to check if and when a query action happens.

CVAE [38]: This method is similar to VQNet except that
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Figure 4: The statistical distribution of starting moments of query actions in (a) Epic-kitchen Dataset [6], (b) 50Salads

Dataset [40] and (c) Breakfast Dataset [24]. The x axis represents the temporal interval (in seconds) of the starting moments

(after the observations) of the query actions. For example, ‘61-180’ represents that the starting moments of the query actions

are between 61s and 180s after the observations. The y axis represents the number of samples.

the Regression Sub-network is the original CVAE [38] and

the regression loss is mean square error rather than the Tem-

poral Reconstruction Loss. Similar to VQNet, this method

is capable of generating diverse predictions by randomly

sampling z from the standard normal distribution.

Gaussian Mixture Model (GMM) [31]: This method is

introduced in [31] to predict time of a future action and

has achieved the best performance. We compare with this

method to show the advantage of the proposed method.

During testing, the diverse predictions can be generated by

randomly sampling values from the output distribution.

MC-Dropout [10]: This method is similar to the proposed

framework in Figure 1, except that the Regression and Clas-

sification Sub-networks have the same architecture, with

MC-Dropout [10] layers inserted before each layer. The

basic idea is to use dropout to approximate the Bayesian

variational inference. Specifically, the dropout is enabled

during training and testing, i.e., when the network processes

an input, some connections in the layers are randomly dis-

connecting. Consequently, feeding the same input to the

network for multiple times can result in diverse predictions.

4.1. Datasets

Epic-kitchen Dataset [6] is a large first-person video

dataset. This dataset contains 125 classes, which are cap-

tured by 28 subjects. We follow [19] to randomly split

the videos into 7 splits, and use 7-folder-cross-validation

for evaluation. The videos have been segmented into 89600

video sequences using temporal sliding windows, which are

used as observations. For each sequence, we query the most

common 20 actions in the dataset. The statistical distribu-

tion of the starting moments of the query actions averaged

across the splits is shown in Figure 4 (a).

50Salads Dataset [40] contains 50 videos of making salads

performed by 25 subjects. There are 17 fine-grained action

classes. This dataset has been split into 5 splits. The exper-

iments are conducted using five training/testing splits and

the results averaged across the five splits are reported. We

use a temporal sliding window to segment the videos and

generate around 15000 sequences, which are used observa-

tions. For each sequence, we query all the actions in the

dataset. The statistical distribution of the starting moments

(after the observations) of the query actions averaged across

the splits is shown in Figure 4 (b).

Breakfast Dataset [24] contains 1712 videos, which are

performed by 52 subjects preparing breakfast. There are

47 fine-grained action classes and a starting/ending action.

This dataset has been split into 4 splits. We use the four

training/testing splits for experiments, and report the re-

sults averaged across the four splits. Similar to the previous

two datasets, we use a temporal sliding window to gener-

ate around 6500 sequences, which are as observations. For

each sequence, we query the 47 actions in the dataset. The

statistical distribution of the starting moments (after the ob-

servations) of the query actions is shown in Figure 4 (c).

These three datasets are about food preparation in the

kitchen environment, which are popularly used for action

anticipation. However, our method has no constraint of the

query actions and can also be used in other scenarios.

4.2. Evaluation Metrics

To evaluate the performance of regression, we use root-

mean-square error (RMSE) as the metric to measure the

difference between the predicted and ground-truth starting

moment (in second) for all the positive actions (actions that

occur in the future). During testing, for the stochastic meth-

ods, we generate 100 predictions, and then calculate the

mean of the predictions to evaluate RMSE. We also calcu-

late the negative log-likelihood (NLL) to evaluate how well

a model fits the data. A smaller value of NLL indicate a

better model. The value can also be used to evaluate the

uncertainty quality [10]. To evaluate the classification per-

formance, we use the area under ROC curve (AUC) and the

average per-class accuracy (ACC) as the metrics. For the
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Epic-kitchen Dataset 50Salads Dataset Breakfast Dataset

Method RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑

DQNet 202.88 14.87 0.75 67.96% 75.81 12.28 0.85 76.22% 78.16 11.94 0.98 92.70%

AntiNet [19] 217.67 17.15 - 54.14% 114.73 16.62 - 67.53% 100.34 13.61 - 86.54%

GMM [31] 184.05 5.78 0.75 67.64% 82.89 8.10 0.84 72.39% 102.75 8.38 0.99 94.55%

MC-Dropout [10] 205.23 13.09 0.73 66.76% 76.05 10.04 0.85 75.84% 76.20 10.19 0.98 92.72%

CVAE [38] 178.94 11.71 0.69 65.06% 84.75 3.91 0.69 63.55% 108.84 4.57 0.92 85.87%

VQNet (ours) 177.20 4.62 0.74 66.32% 86.08 3.75 0.89 79.05% 83.02 3.64 0.98 94.45%

DR-VQNet (ours) 169.94 4.36 0.76 68.40% 67.51 3.69 0.89 78.84% 70.62 3.71 0.98 94.04%

Table 1: Results of different methods. ↑ denotes higher value is better. ↓ denotes lower value is better.

Epic-kitchen Dataset 50Salads Dataset Breakfast Dataset

t/s RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑

t ≤ 5 66.99 3.32 0.80 74.67% 35.05 5.28 0.67 62.45% 36.38 4.56 0.95 90.24%

5 < t ≤ 30 71.68 2.97 0.78 72.32% 42.82 3.65 0.73 67.48% 35.93 3.10 0.96 91.28%

30 < t ≤ 60 65.81 3.30 0.70 64.67% 46.28 3.21 0.72 66.42% 36.47 3.05 0.96 91.81%

60 < t ≤ 180 59.72 3.79 0.62 57.42% 45.51 3.10 0.76 69.58% 55.98 3.65 0.97 93.84%

180 < t ≤ 300 130.35 4.69 0.54 50.10% 106.14 4.40 0.78 70.78% 107.53 4.64 0.97 93.65%

t > 300 415.40 9.38 0.49 44.16% 169.73 7.30 0.84 73.43% 180.13 5.72 0.96 94.25%

Table 2: Results of DR-VQNet over different time windows of the starting moment t.

methods with MC-Dropout, we compute the mean of the

100 predictions to evaluate the classification performance.

4.3. Results

Table 1 compares the results of different methods. The

proposed VQNet and DR-VQNet achieve much better per-

formance than the anticipation method (AntiNet [19]). In

particular, the RMSE values of the AntiNet [19] for as-

sessing starting moments of long-term query actions (start-

ing moment t > 300s) are 536.02, 275.56 and 303.11 on

the Epic-kitchen Dataset, 50Salads Dataset and Breakfast

Dataset, respectively, which are much worse than the long-

term anticipation results of the DR-VQNet as shown in the

last row of Table 2. The AntiNet [19] assesses the future

moment by anticipating the future sequence, which is time-

consuming and challenging. The incorrect anticipated fu-

ture sequence leads to the worse performance in moment

assessment. Note that the AntiNet [19] does not directly

perform binary classification, thus there is no AUC value for

this method. Compared to the DQNet, the VQNet achieves

a much better (smaller) NLL value. This means that the

VQNet is capable of capturing the uncertainty of the data.

However, the predictions of the VQNet is not precise, re-

sulting in worse RMSE than the DQNet in the 50Salads

Dataset and Breakfast Dataset. The DR-VQNet achieves

a comparable NLL value with the VQNet, while the RMSE

value of the DR-VQNet is much lower than the VQNet. The

DR-VQNet incorporates a deterministic network to encour-

age the variational stream to learn from deterministic resid-

ual information. This enables the network to generate more

precise predictions. The RMSE of the VQNet is smaller

than the DQNet in the Epic-kitchen dataset as this dataset is

more challenging and assessing the future moment with un-

certainty is more beneficial. We have provided some qual-

itative examples in the supplementary material. Table 2

shows the performance of the DR-VQNet when the start-

ing moment t is at different time windows. When t > 300s,

the performance on the Epic-kitchen dataset is much worse

than that on the other two datasets. As shown in Figure 4,

the portion of t > 300s and the maximum value of t of the

Epic-kitchen dataset are much larger than those of the other

two datasets. This makes it more challenging for long-term

future moment assessment on the Epic-kitchen dataset.

From Table 1 we can also see that the NLL values of

VQNet and DR-VQNet are much better (smaller) than MC-

Dropout [10] and GMM [31]. Both the VQNet and DR-

VQNet leverage the starting moment t to model the distri-

bution during training, which can fit the data and capture

the uncertainty better, resulting in better NLL values. The

VQNet and DR-VQNet also outperform CVAE [30]. Com-

pared to the CVAE [30], the VQNet and DR-VQNet uses

Temporal Reconstruction Loss for regression. The Tempo-

ral Reconstruction Loss produces less penalty for the long-

term query actions, which prevents the network from over-

fitting and results in better performance.

Analysis on τ . As shown in Equation 5, we set the vari-

ance σ2 equal to tτ , where t is the starting time of the query

action and τ is the hyper-parameter which is set to 1. The
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Epic-kitchen Dataset 50Salads Dataset Breakfast Dataset

τ RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑

0 317.69 14.95 0.65 61.25% 79.17 4.80 0.76 68.63% 76.48 4.88 0.92 84.21%

0.5 213.19 5.33 0.68 63.67% 74.06 3.72 0.87 77.05% 81.38 3.74 0.97 92.42%

1 169.94 4.36 0.76 68.40% 67.51 3.69 0.89 78.84% 70.62 3.71 0.98 94.04%

2 213.77 16.31 0.78 69.94% 99.62 14.77 0.90 80.06% 94.33 13.74 0.99 94.89%

Table 3: Results of DR-VQNet with different values of τ in Equation 5.

Epic-kitchen Dataset 50Salads Dataset Breakfast Dataset

DRL RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑ RMSE ↓ NLL ↓ AUC ↑ ACC ↑

Hid 170.16 4.35 0.74 66.23% 70.64 3.81 0.89 78.75% 70.10 3.76 0.98 94.37%

Output 173.61 4.51 0.74 66.49% 74.59 4.24 0.87 76.59% 71.74 3.97 0.98 93.23%

Proposed 169.94 4.36 0.76 68.40% 67.51 3.69 0.89 78.84% 70.62 3.71 0.98 94.04%

Table 4: Results of DR-VQNet with different deterministic residual layers (DRL) in the regression decoder.

z RMSE ↓ NLL ↓ AUC ↑ ACC ↑

prior 206.63 13.75 0.73 66.53%

Proposed 169.94 4.36 0.76 68.40%

Table 5: Results of DR-VQNet with different sampling

methods of the latent variable z on the Epic-kitchen dataset.

weights RMSE ↓ NLL ↓ AUC ↑ ACC ↑

0.01 176.48 4.67 0.74 66.69%

0.1 175.03 4.56 0.74 66.15%

0.5 173.78 4.50 0.74 66.04%

1 169.94 4.36 0.76 68.40%

5 178.17 6.28 0.74 66.61%

Table 6: Results of DR-VQNet with different weights of the

deterministic residual information on Epic-kitchen dataset.

results on the other values of τ are shown in Table 3. Us-

ing a smaller τ , the variance is smaller and the network is

over-fitting. In contrast, the network is under-fitting for the

regression task with a larger τ . In this case, the network

focuses on the classification task, resulting in better classi-

fication performance and worse regression performance.

Analysis on Deterministic Residual Layers. As shown

in Figure 3, in the regression decoder of the DR-VRM,

the residual module consists of hidden layers and output

layer, i.e., the hidden features and output of the determin-

istic stream are passed to the variational stream. We have

conducted the following two baselines that pass only the

hidden features (Hid) and only the output (Output) of the

deterministic stream to the variational stream. The results

are shown in Table 4. Using only the hidden features or

output leads to worse performance in most cases.

Analysis on the Latent Variable z. To show the benefit

of sampling the latent variable z from the encoder during

training, we have conducted the following baseline (prior):

using the prior standard normal distribution to sample z in

DR-VQNet. The results on the Epic-kitchen dataset are

shown in Table 5. Sampling z from the prior distribution

requires a large number of samples to accurately estimate

the Monte Carlo log-likelihood, which is usually impossi-

ble and results in worse performance. Instead, the proposed

method uses the encoder to perform importance sampling,

which can reduce the sampling space and model the data

distribution more accurately, leading to better performance.

Analysis on the weight of the deterministic information.

In the DR-VQNet, the deterministic information are directly

added to the variational information, i.e., the weight of the

deterministic information is equal to 1. We have applied a

weight to the deterministic information before adding to the

variational information. The results are shown in Table 6.

The performance is smaller with a larger or smaller weight,

while setting the weight to 1 results in the best performance.

It shows the equal importance of both the variational and

deterministic information.

5. Conclusion

In this paper, we have addressed a new task of anticipat-

ing future moment of an arbitrary action of interest which

occurs at any time-horizon after the observation. We have

proposed a Variational Regression Module (VRM), which is

capable of generating diverse predictions. Furthermore, we

have proposed a Deterministic Residual Guided Variational

Regression Module (DR-VRM), which incorporates a de-

terministic network into the VRM for both diverse and pre-

cise predictions. We have conducted extensive experiments

and analysis to show the capacity of the proposed method

for generating more precise and diverse predictions.
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