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Abstract

An important challenge in visual scene understand-
ing is the recognition of interactions between objects in
an image. This task – often called visual relationship
detection (VRD) – must be solved to enable higher un-
derstanding of the semantic content in images. VRD
can become particularly hard where there is severe sta-
tistical sparsity of some potentially involved objects, and
the number of many relationships in standard training
sets is limited. In this paper we show how to transduce
auxiliary text so as to enable recognition of relationships
absent in the visual training data. This transduction is
performed by learning a shared relationship represen-
tation for both the textual and visual information. The
proposed approach is model-agnostic and can be used
as a plug-in module in existing VRD and scene graph
generation (SGG) recognition systems to improve their
performance and extend their capabilities. We consider
the application of our technique using three widely ac-
cepted SGG models [20, 24, 16], and different auxiliary
text sources: image captions, text generated by a deep
text generation model (GPT-2), and ebooks from the
Gutenberg Project. We conduct an extensive empirical
study of both the VRD and SGG tasks over large-scale
benchmark datasets. Our method is the first to enable
recognition of visual relationships missing in the vi-
sual training data and appearing only in the auxiliary
text. We conclusively show that text ingestion enables
recognition of unseen visual relationships, and moreover,
advances the state-of-the-art in all SGG tasks.

1. Introduction

Scene graph generation (SGG) [20, 24] is the task
of inferring a graph given an image. The SGG task,
which relies on both computer vision and natural lan-
guage understanding, belongs to a family of tasks that
requires abstract capabilities that are deeper and much
more challenging than standard image classification or
tracking/detection tasks [5, 6]. A scene graph (SG) is a

Figure 1: Left: An image from VG. Right: A correspond-
ing scene graph. The relationship recognized between
man-1 and woman-1 is looking at. The more informa-
tive relationship we would like to infer, talking with,
is absent from the training data.

topological structure of a scene where the nodes repre-
sent the objects and the edges represent relationships
between pairs of objects. Inferring an SG allows the
extraction of information from the image (e.g., regional
descriptions, global descriptions, labels etc.). For exam-
ple, in Figure 1 we see the SG of an image containing
four relationships among five objects. A straightforward
approach to generate an SG is to decompose the task
into subtasks such that the SG is assembled from a set
of inferred relationships between all object pairs in the
image. This subtask of inferring the interaction or rela-
tionship between a pair of given objects is called visual
relationship detection (VRD). To solve SGG/VRD one
must surmount three challenges: (1) sparse relationships
between objects; given N objects in an image, there
are N × (N − 1) possible (non-symmetric) relationships;
(2) detrimental training bias, where more frequent re-
lationships dominate others, e.g., on dominates above,
and standing on; and (3) models are less relevant in
real-world scenarios because the systems are trained on
a small relationship sets.

In Figure 1, we demonstrate problems (1), (2) and
(3). The localized objects are man-1, woman-1, woman-2,
bag-1, and bag-2. A system designed to perform VRD
would note all 20 possible interactions even though it is
obvious that man-1 and bag-1 do not interact. When
observing the objects man-1 and woman-1, the relation-
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ships talking with and looking at are both reason-
able predictions, but looking at exists in the visual
training data while talking with does not, making it
impossible for a standard SGG system to recognize it.

To address these issues, in this paper we introduce
a method that utilizes auxiliary text and enables: (1)
recognition of unseen visual relationships, and (2) bet-
ter recognition of less frequent relationships. We show,
for the first time, how to successfully ingest auxiliary
text for improving SGG and VRD. We also identify
three points that are key to ensuring successful utiliza-
tion of auxiliary text for VRD and SGG: (1) the text
should be related to visual descriptions, such as image
captions or prose, (2) the fusion of the text should be
implicit and not rely solely on conditional statistics ex-
tracted from the text, and (3) the text must be utilized
to learn representations that are vital for relationship
recognition. We note that the utilization of auxiliary
text for VRD was already considered by [23] who used
subject-relationship-object statistics of text parsed from
Wikipedia, as well as a teacher-student architecture to
distill knowledge from the text. Their attempt, however,
was not successful and their work indicated that parsing
text from Wikipedia does not improve the results on
VRD. The authors suspected that this failure was due
to noisiness of the data acquired from Wikipedia.

The first step in our pipeline is to distill text describ-
ing images or visual scenes, and parse it into a subject-
relationship-object representation. In the second step,
we assemble an object-relationship mapping from the
parsed text, where we define an object-relationship map-
ping as a function from a pair of objects to a set of
predicates. Finally, in the third step, we employ a neural
fusion mechanism that combines the information from
the parsed text with the visual features. By utilizing
the parsed text, we enable SGG models to recognize
relationships even if they appear less frequently or are
completely absent from the training data.

We present an extensive empirical study to evalu-
ate our model and conclude that the infusion of auxil-
iary text enables: (1) recognition of relationships that
were absent from the relationship training set, thus
enabling SGG systems to recognize larger sets of rela-
tionships, (2) better recognition of less frequent relation-
ships, and (3) better recognition of subject-relationship-
object triplets unseen during training. To conduct our
study, we introduce a new visual relationship recogni-
tion task, which we call recognition of unseen visual
relationships (ROUVR). We support our claims by ap-
plying our text transduction model on three well-known
and successful SGG models [20, 24, 16]. In all three
cases, we demonstrate consistently good performance,
indicating that the proposed model is effective, generic

and model-agnostic.

2. Related Work

Visual Relationship Detection. Early studies in
VRD tended to rely on data statistics [10], or adopt
a joint model for subject-relationship-object triplets.
For example, [9] showed how to tackle VRD using a
relationship embedding space from the subject and ob-
ject appearance model for VRD. [27] and [26] used
visual embedding networks, which embed objects in a
low-dimensional space and integrate them as context
for VRD. [8] proposed a deep structural model inte-
grating multiple cues to predict the relationships. All
these models advocated a two-stage approach for VRD:
first working on objects, and then working on relation-
ships. [25] tackled an interesting problem of predicting
undermined relationships, i.e., unlabeled positive rela-
tionships, by utilizing external linguistic features from
Wikipedia. All these recent attempts demonstrated sat-
isfactory success when confronting small relationship
sets, e.g., 50/70 relationships in the VG/VRD datasets,
respectively. In contrast, here we introduce a novel ap-
proach to integrating data from various sources and
enable scaling VRD onto larger relationship sets with-
out additional training.

Scene Graph Generation. Scene graphs were first
introduced by [5], who utilized them for image retrieval.
An SG is a topological description of a scene with the
nodes corresponding to objects and the (directed) edges
corresponding to the relationship between objects. An
earlier approach was to detect all the objects in the
scene and then utilize object appearances to detect re-
lationships between objects [9]. [20] used graph-based
inference to propagate information in both directions,
between objects and relationships. [24] investigated re-
curring structures in VG-SG, and employed a global
context network to predict the graphs. They also intro-
duced a strong frequency baseline based on VG statis-
tics. [4] proposed a permutation-invariant prediction
model, and [2] proposed combining dataset statistics
with a knowledge-embedded routing network. They also
addressed the problem of biased models and proposed
the mean recall at K (mR@k) metric to overcome this
issue. [16] suggested a tree-LSTM architecture and hy-
brid reinforcement learning, which currently achieves
the state-of-the-art (SOTA) results on SGG. [15] tack-
led the issue of unbiasing SGG models by proposing a
causal graph approach and achieved impressive mR@K
results, while compromising the R@K metric.

Fusing Text and of Visuals The many attempts to
integrate language into vision have produced impressive
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results [3, 21, 23]. [3] were the first to utilize modern
language models for vision tasks. [21] used an encoder-
decoder style architecture that utilized a CNN as the
encoder and an LSTM with attention as a decoder for
image captioning. [11] introduced feature-wise linear
modulation as a mechanism that combines vision and
language features for visual question answering (VQA).
Presently, when considering both VRD and SGG, the
most common approach to fusing visual and lingual
features is simply to concatenate them [22, 23].

3. Problem Formulation

Following [24] and [2], we define an SG for a given

image I as a directed graph GI
△

= (O, R, B), where

O
△

= {o1, o2, . . . , on} is a set of (visual) objects ap-

pearing in I, R
△

= {r1→2, r1→3, . . . , r(n−1)→n} is a set
of directed edges representing (non-symmetric) rela-
tionships, potentially between all object pairs, and

B
△

= {b1, b2, . . . , bn} is a set of bounding boxes, where

bi
△

= (x, y, w, h) is the bounding box of object oi. The
standard bounding box definition has (x, y) as the cen-
ter coordinates of the box, and w, h its width and

height, respectively. Setting p(G|I)
△

= p(B, O, R|I),
we decompose the probability distribution p(GI |I)
of the graph GI into three components: p(GI |I) =
p(B|I)p(O|B, I)p(R|O, B, I). This decomposition and
the three components motivate three computation
steps that are sufficient for assembling the SG. The
first component, p(B|I) = ΠN

i=1p(bi|I), corresponds to
the first step whereby the bounding boxes in the im-
age are identified. Given these bounding boxes, the
second component, p(O|B, I) = ΠN

i,j=1p(oi|bi), cor-
responds to predicting class labels for the objects
(within their bounding boxes). The third component,
p(R|O, B, I) = ΠN

i=1p(ri→j |oi, oj), corresponds to the
last step where relationships are predicted for object
pairs (namely, VRD). Following [20], [24], and [2], we
consider a supervised structure learning approach to

generating SGs. Given a set of training examples, Sm
△

=
{(I(i), SG(i)), i = 1, . . . , m}, where I(i) is an image and
SG(i) is its corresponding SG, the goal is to train a
model to predict SGs for unseen images. The common
performance measure for both the VRD and SGG tasks
is recall at K (R@K) [9], which computes the frac-
tion of correctly predicted object-relationship-object
triplets among the top-K confident predictions. To fur-
ther emphasize how the fusion auxiliary text facilitates
recognition of relationships in the long tail, we follow
[2], [15] and adopt mean Recall@K (mR@K).

Recognition of Unseen Relationships. We define
the new task of recognition of unseen visual relationships
(acronymed ROUVR), and then describe the evaluation
metrics adopted for this task. ROUVR differs from the
previously defined zero-shot VRD [9] in that the unseen
relationships are not included among the relationships
in the training set. Given a set of training examples
Sm, containing a set of training relationships Rtrain,
and an auxiliary text corpus T containing a set of
relationships RT , we follow the same training protocol
as for any SGG; the only difference is that now we
use T to facilitate detection of unseen relationships not
appearing in Rtrain. We name this subset Runseen, and
by definition, Runseen ∩ Rtrain = ∅. To test our model’s
effectiveness on the task of recognizing unseen visual
relationships, we must use a specialized dataset. In this
paper we propose the VRD dataset, which relies on
a relationship set R containing relationships unseen
in Rtrain. At test time we aim to assign the correct
relationship r∗ to a pair of objects even though r∗ is
not necessarily contained in Rtrain.

4. TranstextNet

Our method, called TranstextNet, provides an effec-
tive way to utilize text for SGG and VRD. TranstextNet
comprises three components: (1) an SGG backbone, (2)
a mapping between subject-object (s-o) pairs to sets of
relationships based on the text, and (3) fusion mecha-
nisms that combine together visual features with textual
features. We first describe a general SGG backbone, and
then how the s-o pairs of relationship sets are acquired.
Thereafter we offer an overview of the proposed fusion
mechanisms, and describe how to modify any SGG back-
bone so as to successfully utilize textual information.

4.1. SGG Backbone

A general SGG backbone [24, 20, 16] comprises three
main components: (1) an object detector (OD), (2) a
context layer (CL), and (3) a relationship recognition
layer (RRL), as schematically illustrated at Figure 2.
The first step in SGG is object detection, where Faster
R-CNN [13] is usually used as the OD. The OD de-
tects object class candidates, estimates their bounding
boxes, and also provides feature extraction for comput-
ing regions of interest (ROI). The task of the CL is to
contextualize the ROI features such that s-o connections
are formed between them. As illustrated in Figure 2,
the CL is a recurrent neural network. A general RRL
takes the contextualized feature vectors and feature
vectors that represent unions of bounding box pairs,
and performs a multi-class classification task, which
we term relationship recognition (RR). The simplest
RRL is achieved by concatenating the contextual fea-
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Figure 2: Schematic view of a general SGG backbone. Green rectangles are neural networks modules, blue rectangles
and circles are features, yellow circles are object class predictions, and red circles are the relationship class predictions.
The module has three main components: (1) an object detector (Faster R-CNN), (2) a context layer, and (3) a
relationship recognition layer. The region of interest input exists only in Pred-Cls and SG-Cls setups.

ture vectors with the union ROI feature vectors and
feeding the result to a fully connected layer for the final
classification. We call this the context head, and denote
by Rc its relationship candidates. For all other RRLs
used in [24], [20, 16], e.g., Highway LSTM layer [24], we
call the relation head R̂.

4.2. Subject-Relationships-Object Acquisition

We now describe the subject-relationship-object (<s,

r, o>) acquisition from the text process. Similarly to
[23], we parse the text to <s, r, o> triplets, using a
scene graph parser [14]. We collect data from three
different sources: (1) sentences from image caption-
ing datasets, (2) Gutenberg ebooks [7], and (3) sen-
tences generated through a natural language genera-
tion (NLG) model [12]. The statistics we collect is a
straightforward counting statistics, i.e., P (ri→j |oi, oj) =
Count(ri→j ,oi,oj)

Count(oi,oj) . We only keep a relationship if it is in

the GloVE vocabulary, and if P (ri→j |oi, oj) > 10−3 (in
which case we say the relationship is valid). To fine-tune
the NLG model so as to generate <s, r, o>, we tried
two strategies. The strategy first is to use caption sen-
tences from image captioning datasets, and the second
is parsing the captions using the scene graph parser and
training on parsed <s, r, o> from an image captions
datasets. We used [19] to fine-tune the NLG model. To
compare the information contained in the different text
sources, we use two measures: (1) coverage, i.e., the %
of object pairs that have one or more valid relation-
ships, and (2) the number of valid relationships in the
resulting relationship set, i.e., |Rorm| (see a detailed
comparison in Section 3 of the appendix). A perfor-
mance comparison of the three text sources appears in

the appendix Section 8.

4.3. Fusion Mechanisms

Fusion mechanisms are the building block we use to
combine visual features with textual features. In our
setting, the input to a fusion mechanism is always visual
features that represent relationships between objects,
and textual features that represent the relationships
from the text. The desired outcome is a visual represen-
tation, which is enriched by the text. We use two fusion
mechanisms that are common in vision and language
models: (1) attention [1], and (2) feature-wise linear
modulation [11]. We later demonstrate the effectiveness
of fusion mechanisms in an ablation study where we
compare models trained with and without fusion mech-
anisms (see Table 4, where we examine more primitive
fusion approaches). Moreover, by utilizing distributed
word representations as inputs instead of the conditional
statistics (as in [23]), we fuse real-world knowledge with-
out explicitly conditioning it on the statistics of the
text.

Attention Mechanism. We now describe how we
utilized attention to fuse visual features with features
from the text. Denote the visual features (called query)
by q, and the textual features (called context) by
T = {ti}

k
i=1. First, we obtain the attention coefficient,

ai: ai = T · q, ai ∈ R. Next, we calculate the attention
weights, wi: wi = Softmax(ai), wi ∈ R. The attention

vector, v =
∑k

i=1 witi, is the weighted sum of the con-
text vector and the attention weights. The final vector,
q′, is a concatenation of the query and attention vec-
tors that we fuse using a linear layer, q′ = Watt · [q, v],
q′ ∈ R

n. Throughout the paper we denote this attention
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procedure by q′ = A(q, T ).
Feature-Wise Linear Modulation. Feature-wise

linear modulation (Film), introduced by [11], and has
been utilized for combining visual and textual features
for several visual reasoning tasks. Early forms of feature
fusion were basic algebraic operations such as summa-
tion and multiplications. Film combines both operations,
and there is a strong motivation to use it for SGG and
VRD because feature multiplications have demonstrated
effectiveness in recognizing relationships between ob-
jects [24]; moreover, summation has been shown to work
well in representation-based tasks. We now describe a
Film block, and formulate a general Film procedure
that meets our needs. A Film block contains two com-
ponents: a generator G and a Film layer. G can be any
neural layer, where for our purposes, we utilize a long-
short term memory (LSTM) unit as it fits our needs for
different lengths of sequences. A Film layer performs
an affine transformation between two sets of features,
and its procedure operates as follows. Let q ∈ R

n be
an image feature and T = [t1, . . . , tk], T ∈ R

k×n be the
features from the text. First, we obtain the modulator
T̂ = G(T ) = [γ(T ), β(T )] where T̂ ∈ R

2n, and γ(T ) and
β(T ) are the first and last n components of T̂ , respec-
tively. Then we perform the modulation by utilizing the
Film layer to obtain q′ = γ(T )

⊙
q + β(T ), where

⊙

stands for feature-wise multiplication. We denote this
feature-wise modulation procedure by q′ = Film(q, T ).

4.4. Transducing Relationships

TranstextNet is schematically illustrated in Figure 3.
We now describe an ORM layer, and how we plug it into
SGG backbones. A general ORM layer consists of three
main blocks: a fusion mechanism, a pre-trained GloVE
layer, and a mapping between s-o pairs to relationship
sets. The ORM layer takes s-o class pair predictions de-
tected by the OD, namely Ô, and the visual features
describing them, V (the visual features are projected
to the same dimension as the textual features prior
to the ORM layer). This procedure, applied on a sin-
gle s-o pair, {oi, oj}, is exemplified and illustrated in
Figure 3 (B); here, the s-o mapping returns a set of
relationships Ri→j = {rk

i→j}M
k=1, and we randomly sam-

ple a subset of Ri→j . In our case, the result is R
′

i→j=

{with, holding, wearing} . Next we extract T , the re-

lationships’ embeddings of R
′

i→j . Then, V and T are fed
to the fusion mechanism. The output V ′ = ORM(Ô, V )
of the ORM layer is thus a feature vector enriched with
information parsed from the text. We plug the ORM layer
into an SGG backbone by connecting it in two different
locations: (1) the output of CL, and (2) the output of
RRL (outputs of layers 2 and 3 in Figure 2, respec-
tively). Consider Figure 3 that illustrates TranstextNet

. The first plug-in is at the output of CL, denoted
Ĉ. The ORM outputs are Ĉ ′ = ORM(Ô, Ĉ) such that
the context head predictions are R̂c = WT

c C′ + bc. Ĉ ′

and the union’s visual features, Vi→j , are fed into the
RRL. The outputs of RRL are V ′

i→j , a combination

of the Ĉ ′ and V ′
i→j , and R̂ relationship class candi-

dates. The second plug-in is at the output of the RRL

such that V ′′
i→j = ORM(Ô, V ′

i→j) and the relationship

predictions are R̂r = W T
r V ′′

i→j + br. Additionally we uti-
lize V ′′

i→j to learn relationship representations, namely,

V̂r. The final prediction is a combination of the three
R̂ = Softmax(R̂c + R̂r + R̂ + V̂r). To predict the unseen
relationships we utilize cosine similarity. Two vectors
are considered close if their cosine similarity is close to
one. For each ROI, the model produces a representation

v̂r, and we compute r̂
△

= Softmax(cos(v̂r, V GT
R )), where

V GT
R ∈ R

e×|R| are the GloVE representations of the
relationships in our test set.

4.5. Loss Function

Our loss functions is constructed to achieve three
goals: (1) optimize object detection, (2) optimize seen
relationship detection, and (3) enable unseen relation-
ship recognition. For (1) and (2), we use the standard
cross-entropy (CE) loss function. To enable unseen re-
lationship recognition, we want to learn a relationship
embedding space that would enable our model to rec-
ognize unseen relationships. To this end, we utilize the
cosine loss function, which was selected from various
options (see Section 5). Our final loss function is:

L = CE(Ô, O) + CE(R̂c, R)+

CE(R̂r, R) + CE(R̂, R) + cosine(V̂r, Vr),
(1)

where Vr are the pre-trained GloVE word embeddings
of R. We experiment with alternative loss functions
that we believe would enable recognition of unseen
relationships and compare them with the cosine loss
function.

5. Empirical Study

In all our experiments we consider the application of
TranstextNet (our method) on three best-known SGG
models that are used as backbones: IMP [20], Motifs
[24], and VCTree [16]. We demonstrate performance of
these baselines with and without TranstextNet. Both
Motifs and VCTree were trained using training scripts
provided by their authors, and IMP was trained using
the script provided by the authors of Motifs (see training
protocols details in the appendix, Section 7). The three
TranstextNet-extended models were trained using the
same (respective) scripts.
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Figure 3: General Notations: Same as in Figure 2.(A) A schematic overview of TranstextNet . The ORM layer is
plugged-in at two intersections, the output of the context layer and the output of the relationship recognition layer.
The final relationship recognition is based on three prediction heads: the context head, the relationship recognition
head, and the relationship recognition ORM layer. The predicted scene graph is illustrated on the right, and the
unseen relationship recognized by TranstextNet is in bold. (B) An overview of an ORM layer. The layer receives s-o
pairs and visual features Vi→j , and it maps the s-o pairs to relationship sets, extracts relationship embeddings for
each, T and fuses the visual features with the relationship embeddings.

Datasets. We consider two datasets, VG-200 and
VRD dataset. Introduced by [20], VG-200 is a filtered
version of VG containing the most frequent 150 ob-
jects and most frequent 50 relationships. The VRD
dataset (VRDD) was introduced by [9] and contains
5,000 training images and 1,000 test images. It has
100 object classes and 70 relationship classes, 57 of
which are unseen during training. We further demon-
strate TranstextNet’s effectiveness on unseen relation-
ship recognition by evaluating on VRDD without addi-
tional training.

Tasks. We consider three tasks, two standard tasks
commonly used for evaluating SGG and VRD models,
and a new task designed for testing recognition of un-
seen relationships.
Recognition of Unseen Relationships ROUVR
tests the model’s ability to recognize relationships that
were absent from the relationship training set. To eval-
uate ROUVR, we use VRDD. Similar to SGG, we com-
pare results across models and fusion mechanisms. We
focus on predicting visual relationships; thus, at test
time we provide ground truth boxes and object labels.
We use the VRDD test set instances without additional
training. Scene Graph Generation For VG-200, we
use the same evaluation protocol used by [24], [2] who
considered three tasks in two setups. In the first task,
denoted Pred-Cls, the goal is to predict relationship
labels, given the correct labels for subjects and objects.
The objective in the second and harder task, denoted
SG-Cls, is to predict subject and object labels, given

their correct bounding boxes as input. In addition, cor-
rect relationships must be predicted. The last task is
called SG-Det. Here the input is an image and the out-
put is a prediction of the object boxes and labels, and
the relationships. The first setup considered is graph
constrained evaluations, which allows only one rela-
tionship per object pair, while the second omitted this
constraint. In our study we consider both versions and
refer to them as constrained and unconstrained.
Zero-Shot Scene Graph Generation. This task was
introduced by [9], and first evaluated on VG by [15].
We consider zero-shot scene graph generation (ZS-SGG)
whereby a triplet, <s, r, o> is absent during train-
ing but appears during testing. This task differs from
ROUVR where all test relationships are introduced dur-
ing training. The evaluation protocol is the same as in
SGG.

5.1. Results

Scene Graph Generation. In Table 1 we present
our results. The table is divided into two sections, con-
strained and unconstrained, and the metrics reported
are R@K and mR@K. The results in the table clearly
indicate that text ingestion enhances SGG, and that
auxiliary text reduces the training bias and improves
recognition of relationships in the long tail (see elab-
oration on mR@K in the appendix, Section 5). The
results also indicate that attention mechanisms slightly
outperform feature-wise linear modulations on SGG.
For example, consider the last row of the constrained
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Setup Model SG-Det SG-Cls Pred-Cls
R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100

IMP 20.7 24.5 3.8 4.8 34.6 35.4 5.8 6 59.3 61.3 9.8 10.5
IMP + TranstextNetF 21.9 25.4 4.4 5.5 35.1 35.9 6.3 6.5 60.5 62.6 10.4 11.6
IMP + TranstextNetA 22.4 25.8 4.6 5.9 35.8 36.3 6.4 6.8 60.8 62.9 10.9 12.3

Motifs 27.2 30.3 5.3 6.1 35.8 36.5 7.1 7.6 65.2 67.1 13.3 14.4
Motifs + TranstextNetF 28 31.1 5.6 6.8 36.3 37.1 8.4 9.1 66.9 68.3 16.8 18.4

Motifs + TranstextNetA 28.2 31.3 5.9 7 36.5 37.3 8.2 9 67 68.5 16.1 18.3
VCTree 27.7 31.1 6.9 8 37.9 38.6 10.1 10.8 66.1 67.4 17.9 19.4

VCTree + TranstextNetF 27.9 31.6 7.2 8.6 38.3 39.2 10.5 11.4 66.8 68.5 18.3 20.3

Constrained

VCTree + TranstextNetA 28.1 31.7 7.4 8.9 38.3 39.3 10.6 11.7 66.9 68.7 18.5 20.6

IMP 22 27.4 5.4 8 43.4 47.2 12.1 16.9 75.2 88.3 20.3 28.9
IMP + TranstextNetF 22.2 27.6 5.9 8.3 44.6 47.9 12.8 17.7 79.7 85.3 24.6 33.3
IMP + TranstextNetA 22.1 27.6 6 8.5 44.7 48.1 12.8 17.8 79.9 85.4 24.7 33.4

Motifs 30.5 35.8 9.3 12.9 44.5 47.7 15.4 20.6 81.1 88.3 27.5 37.9
Motifs + TranstextNetF 30.8 36 9.7 13.3 46.1 48.3 15.8 21.3 83.3 90.1 31.5 45.3
Motifs + TranstextNetA 31 36.2 9.9 13.5 46.4 48.8 16.1 21.5 83.7 90.2 32.6 46.2

VCTree 31.3 36.9 11.8 16.2 47.1 49.2 20.1 26.5 82.3 89.4 36.8 49.2
VCTree + TranstextNetF 31.5 37.2 11.9 16.4 48.6 51.1 20.6 27.1 84.1 90.3 37.8 52.3

Unconstrained

VCTree + TranstextNetA 31.6 37.4 12 16.45 48.8 51.2 20.8 27.3 84.4 90.6 38.9 53.4

Table 1: Recall@K and mean Recall@K SGG results on VG-200. Top: Constrained setup. Bottom: Unconstrained
setup. TranstextNetA denotes the use of our attention mechanism, TranstextNetF denotes the use of Film.

setup, i.e., VCTree +TranstextNetA. The results show
a consistent improvement across all metrics and tasks
when compared with the VCTree baseline. For qualita-
tive results, consider Figure 4 that illustrates different
SGs generated by the different models. We compare
results across fusion mechanisms.
Zero-Shot Scene Graph Generation. In Table 3
we present our results for ZS-SGG. The results clearly
show that TranstextNet outperforms all baseline mod-
els on this task by a huge margin. We also compare our
results to the results reported in [15]. We outperform
the results on the same baselines while using an inferior
object detector (they used Mask-RCNN). These results
emphasize the importance of text ingestion in ZS-SGG.
Recognition of Unseen Relationships. Our results
for all models appear in Table 2. The results clearly
support our hypothesis that transduction of auxiliary
text facilitates ROUVR, as models that utilize auxiliary
text outperform their baseline models by an extreme
margin. We also note that models that utilized auxiliary
text were able to recognize 40 out of 57 unseen relation-
ships (see our elaboration on the ROUVR results in the
appendix, Sections 6) The results of both fusion mecha-
nisms are similar where feature-wise linear modulation
outperforms attention mechanisms by a small margin.

5.2. Ablation Studies

Loss Function. To demonstrate the effectiveness of
the cosine loss, we investigate two additional loss func-
tions. The first is Large Margin Cosine Loss (LMCL)
[18], which was employed for face recognition. The au-
thors presented an interesting result where the face
embeddings space held similar properties as word em-

Model R@5 R@10
IMP 2.2 4.6

IMP + TranstextNetF 14.3 19.9
IMP + TranstextNetA 15.04 23.1

Motifs 8.5 13.3
Motifs + TranstextNetF 16.1 20.3
Motifs + TranstextNetA 16.8 23.7

VCTree 6.3 9.2
VCTree + TranstextNetF 15.8 21.6
VCTree + TranstextNetA 16.65 23.3

Table 2: Results of ROUVR in VRDD
Task Pred-Cls SG-Cls SG-Det

Model R@50 R@100 R@50 R@100 R@50 R@100
IMP 15.7 17.9 2.4 3.8 0.13 0.25

IMP + TranstextNetF 25.3 30.3 3.6 5.3 0.19 0.37
IMP + TranstextNetA 23.8 30.5 3.9 5.7 0.2 0.37

Motifs 10.9 14.5 2.2 3 0.1 0.2
Motifs + TranstextNetF 25.4 31.9 4.4 6.3 0.17 0.3
Motifs + TranstextNetA 26.7 32.1 4.5 6.7 0.19 0.33

VCTree 10.8 14.3 2.5 3.3 0.2 0.24
VCTree + TranstextNetF 23.7 29.9 4.1 6 0.16 0.33
VCTree + TranstextNetA 24.98 30.2 4.3 6.2 0.17 0.33

Table 3: Results of ZS-SGG in VG-200.

SGG ZS-SGG ROUVR
Pred-Cls

Loss Function R@100 R@50 mR@100 mR@50 R@100 R@50 R@10 R@5
Loss Functions

LMCL 71.5 66.7 12.4 9.7 31.3 24.6 14.8 9.9
LMGM 68.8 67.2 22.6 18.3 31.3 25.4 19.1 13.6

Without fusion Mechanisms
Sum 67.6 65.8 14.8 12.9 19.5 16.7 6.9 16.5

Concat 67.7 65.9 15.7 13.6 19.8 17 7.4 17.1

Table 4: Comparing loss functions for representation
learning (rows 5 and 6). TranstextNet without fusion
mechanisms (rows 8 and 9). All results obtained with
Motifs backbone.
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Figure 4: Qualitative results of three baseline models. Images appear (in column 1) with detected objects and
bounding boxes, the respective SGG results (in columns 2-4, in yellow rectangles), and recognized unseen relationships
(in the blue rectangles). The different colors of relationships signify the different detection results across fusion
mechanisms.

bedding spaces, where faces belonging to the same face
were inside the same sphere. The other loss function
we considered is the Large Margin Gaussian Mixture
Loss (LMGM) of [17], which was utilized for image
classification, and also demonstrated a representation
with similar properties to LMCL. We experimented
with all the SGG and ROUVR tasks, specifically in a
Pred-Cls setup, to demonstrate their effectiveness on
relationships. The quantitative results are in Table 4 in
rows 5 and 6. The results indicate that LMCL works
very well on SGG and ZS-SGG. In fact, TranstextNetA

applied with the Motifs backbone and LMCL, achieves
SOTA performance on SGG and ZS-SGG (in a Pred-
Cls setup) by a wide margin. Nevertheless, w.r.t. the
mR@K metric, LMCL achieves results inferior to other
models. LGML performs very well on SGG and ZS-
SGG, and is also marginally better on mR@K, and is
able to recognize infrequent relationships very well. It is
also clear that both loss functions fail to transduce un-
seen relationships, which is our main focus here. These
results supports our choice of cosine loss for learning re-
lationship representations. With vs. Without Fusion

Mechanisms. To show the positive effects of utilizing
fusion mechanisms, we train Motifs with auxiliary text
without our fusion mechanism, and to combine visual
and textual features we take the weighted average of
VR =

∑
t=1M pt

i→jvt
i→j , and try to fuse it in two sim-

ple ways: (1) summation, and (2) concatenation. To
test the effectiveness on recognition of relationships,
we compare those approaches on SGG, ZS-SGG, and
ROUVR in the Pred-Cls setup. The results are shown
in Table 4 (two bottom rows), and clearly indicate that
fusion mechanisms benefit SGG, ZS-SGG, and ROUVR.
Omission of fusion mechanisms degrades performance
on all tasks.

6. Concluding Remarks

TranstextNet is a novel model for ingesting auxiliary
text, which can easily extend to existing SGG back-
bones, leading to improved SOTA on all SGG tasks
(previous SOTA achieved by [16]). Importantly, in this
paper we introduced the task of recognizing unseen rela-
tionships and demonstrated how TranstextNet impres-
sively transduces relationship knowledge from text to
images by effectively fusing textual and visual features.
Another distinct benefit achieved by TranstextNet is
the reduction of the training bias due to imbalances in
the training data.
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