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Abstract

We extend the blindspot model for self-supervised de-

noising to handle Poisson-Gaussian noise and introduce an

improved training scheme that avoids hyperparameters and

adapts the denoiser to the test data. Self-supervised mod-

els for denoising learn to denoise from only noisy data and

do not require corresponding clean images, which are dif-

ficult or impossible to acquire in some application areas of

interest such as low-light microscopy. We introduce a new

training strategy to handle Poisson-Gaussian noise which

is the standard noise model for microscope images. Our

new strategy eliminates hyperparameters from the loss func-

tion, which is important in a self-supervised regime where

no ground truth data is available to guide hyperparame-

ter tuning. We show how our denoiser can be adapted to

the test data to improve performance. Our evaluations on

microscope image denoising benchmarks validate our ap-

proach.

Fluorescence microscopy is a vital tool for understand-

ing cellular processes and structures. Because fluorescence

imaging with long exposure times or intense illumination

may damage the cell sample through phototoxicity, fluo-

rescence microscopy images are typically acquired under

photon-limited conditions. However, safely imaging the

cell using low light conditions and/or low exposure times

unfortunately lowers the signal-to-noise ratio (SNR), hin-

dering further analysis and interpretation of the resulting

images.

The SNR is the product of a combination of factors,

including exposure time, excitation intensity, and camera

characteristics. In fluorescence microscopy, the noise is

typically described by a Poisson-Gaussian model [6]. The

goal of image denoising is to computationally increase the

(a) Noisy Input (b) Zoomed Input

(c) Denoised (d) Ground Truth

Figure 1: An example of our self-supervised denoising re-

sult. Image from the Confocal Mice dataset [26].

image SNR (Figure 1). In contrast to traditional methods

[4, 5, 2, 15, 3, 7] which denoise based on only the input im-

age, learning-based methods learn to denoise from a dataset

of example images.

In recent years, deep learning methods using convolu-

tional neural networks have shown significant promise in

learning-based fluorescence microscopy image denoising

[25, 24]. However, the supervised approach to learning de-

noising faces practical limitations because it requires a large

number of corresponding pairs of low SNR and high SNR

images. When imaging live cells, for example, it is not pos-

sible to acquire paired low and high SNR images for train-

2131



ing because a) the sample is moving and b) exposure to light

causes photobleaching and ultimately kills the sample.

For these reasons, researchers have turned to self-

supervised approaches to denoising [21, 1, 9, 11]. In the

self-supervised setting, the learner only has access to low

SNR images. Of the recent approaches, blindspot neural

networks [11] have shown the best performance. In this

work, we address two shortcomings of blindspot neural net-

works for self-supervised denoising:

1. We introduce a loss function appropriate for Poisson-

Gaussian noise which is the standard model for micro-

scope images;

2. We introduce an alternate training strategy which elim-

inates the need to regularize the loss function; this is

critical in the self-supervised setting where no ground

truth validation data is available to tune the regulariza-

tion strength.

In the following, we survey related work on self-

supervised denoising (Section 1), review the blindspot neu-

ral network approach to self-supervised denoising (Section

2), introduce our new uncalibrated approach (Section 3),

present the results of our evaluation and comparison to com-

peting methods on benchmark datasets (Section 4), and pro-

vide conclusions and directions for future work (Section 5).

1. Related Work

1.1. Traditional methods

Many traditional methods for denoising such as BM3D

[5], non-local means [3], and weighted non-nuclear norm

minimizaiton [7] perform denoising by comparing the

neighborhood of a pixel to other similar regions in the

image. The advantage of learning-based methods is that

they can also take advantage of examples from other im-

ages in the dataset beyond the input image to be denoised.

Other methods such as total-variation denoising [4] enforce

smoothness priors on the image which tend to lead to highly

quantized results.

While most previous methods for denoising are designed

for additive Gaussian noise; in the case of Poisson-Gaussian

noise, a variance stabilizing transform [16] is applied to ap-

proximately transform the noise to be Gaussian. However,

these methods are designed explicitly for Poisson-Gaussian

noise [15].

1.2. Deep learning methods

At present, supervised deep learning methods for denois-

ing [25, 24] typically far outperform traditional and self-

supervised methods in terms of peak signal-to-noise ratio

(PSNR). Most supervised methods apply a fully convolu-

tional neural network [14, 20] and simply regress to the

clean image.

Recently, several approaches to self-supervised denois-

ing have been developed. Some methods [22] use as a loss

function Stein’s Unbiased Risk Estimate (SURE) [23, 19],

which estimates the mean squared error (MSE) between a

denoised image and the clean image without actually hav-

ing access to the clean image. An analogous estimator for

Poisson-Gaussian noise has been developed [12]. However,

these methods require a priori knowledge of the noise level

which is unrealistic in a practical setting. Our approach

supports blind denoising and adaptively estimates the noise

level at test time.

Lehtinen et al. [13] introduced a highly successful ap-

proach to self-supervised denoising called Noise2Noise. In

this approach, the network learns to transform one noisy in-

stantiation of a clean image into another; under the MSE

loss function, the network learns to output the expected

value of the data which corresponds to the clean image.

While this method can achieve results very close to a su-

pervised method, it requires multiple, corresponding noisy

images and thus is similarly limited in application in the live

cell microscopy context.

An alternate approach to self-supervised denoising

which does not require multiple noise instantiations of the

same clean image is to learn a filter which predicts the

center pixel of the receptive field based on the surround-

ing neighborhood of noisy pixels. By training such a filter

to minimize the MSE to the noisy input, the resulting fil-

ter will theoretically output the clean value [1, 9]. Laine

et al. [11] refer to a neural network built around this con-

cept as a “blindspot neural network.” They improved upon

the blindspot concept by extending it to a Bayesian context

and introduced loss functions for pure Gaussian or Pois-

son noise, showing results very close to the supervised re-

sult when trained on synthetically noised data. However,

their method requires a regularization term in the loss func-

tion which can’t practically be tuned in the self-supervised

setting; in our evaluation we found that the regularization

strength indeed needs to be tuned for best results on differ-

ent datasets. Our method avoids the need for regularization

and outperforms the regularized version in our experiments.

Krull et al. [10] introduced Probabilistic Noise2Void

(PN2V) which takes a non-parametric approach to model-

ing both the noise distribution and the network output; how-

ever, their approach requires paired clean and noisy images

in order to calibrate the noise model. A recent follow-on

work called PPN2V [18] estimates the noise model using

a Gaussian Mixture Model (GMM) in a fully unsupervised

manner. Again, this approach involves several hyperparam-

eters controlling the complexity of the noise model which

need to be tuned, while ours does not. Additionally, in

our experiments, we show that our approach outperforms

PPN2V on several datasets.
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2. Self-supervised learning of denoising

The goal of denoising is to predict the values of a

“clean” image x = (x1, . . . , xn) given a “noisy” image

y = (y1, . . . , yn). Let Ωyi
denote the neighborhood of

pixel yi, which does not include yi itself. We make two

assumptions that are critical to the setup of Noise2Void [9]

and follow-on works: that the noise at each pixel is sampled

independently, i.e. p(yi|x1, . . . , xn) = p(yi|xi); and that

each clean pixel is dependent on its neighborhood, a com-

mon assumption about natural images. The consequence of

these assumptions is that Ωyi
only gives information about

xi, not yi. Therefore a network trained to predict yi given

Ωyi
using a mean squared error loss will in fact learn to

predict xi [9, 1].

In this work, we take a probabilistic approach rather

than trying to regress to a single value. Following Laine

et al. [11] and Krull et al. [10], we can connect yi to its

neighborhood Ωyi
by marginalizing out the unknown clean

value xi:

p(yi|Ωyi
)

︸ ︷︷ ︸

Noisy observation

=

∫

p(yi|xi)
︸ ︷︷ ︸

Noise model

p(xi|Ωyi
)

︸ ︷︷ ︸

Clean prior

dxi. (1)

Since we only have access to observations of yi for training,

this formulation allows us to fit a model for the clean data

by minimizing the negative log likelihood of the noisy data,

i.e. minimizing a loss function defined as

Lmarginal =
∑

i

− log p(yi|Ωyi
). (2)

In the following we will drop the Ωyi
to save space.

2.1. PoissonGaussian noise

In the case of Poisson-Gaussian noise, the noisy obser-

vation yi is sampled by first applying Poisson corruption to

xi and then adding Gaussian noise which is independent of

xi. We have

yi = aP (xi/a) +N(0, b) (3)

where a > 0 is a scaling factor (related to the gain of the

camera) and b is the variance of the Gaussian noise compo-

nent, which models other sources of noise such as electric

and thermal noise [6].

We apply the common approximation of the Poisson dis-

tribution as a Gaussian with equal mean and variance:

yi ≈ aN(xi/a, xi/a) +N(0, b) (4)

= N(xi, axi + b). (5)

The noise model is then simply a Gaussian noise model

whose variance is an affine transformation of the clean

value. Note that in practice we allow b to be negative;

this models the effect of an offset or “pedestal” value in the

imaging system [6]. This general formulation encompasses

both pure Gaussian (a = 0) and Poisson noise (b = 0).

2.2. Choice of prior

In order to implement our loss function (Equation 2) we

need to choose a form for the prior p(xi|Ωyi
) that makes

the integral tractable. One approach is to use the conjugate

prior of the noise model p(yi|xi), so that the integral can be

computed analytically. For example, Laine et al. [11] model

the prior p(xi|Ωyi
) as a Gaussian, so that the marginal is

also a Gaussian. Alternatively, Krull et al. [10] take a non-

parametric approach and sample the prior.

In this work, similar to Laine et al. [11] we model the

prior as a Gaussian with mean µi and variance σ2

i . We re-

place the ax term in Equation 4 with aµ to make the integral

in Equation 2 tractable; this approximation should be accu-

rate as long as σ2

i is small. The marginal distribution of yi
is then

p(yi) =
1

√

2π(aµi + b+ σ2

i )
exp

(

−
(yi − µi)

2

2(aµi + b+ σ2

i )

)

(6)

and the corresponding loss function is

Lmarginal =
∑

i

(
(yi − µi)

2

aµi + b+ σ2

i

+ log(aµi + b+ σ2

i )

)

(7)

2.3. Posterior mean estimate

At test time, µi is an estimate of the clean value xi based

on Ωyi
, the neighborhood of noisy pixels around yi. How-

ever, this estimate does not take into account the actual

value of yi which potentially provides useful information

about xi.

Laine et al. [11] and Krull et al. [10] suggest to instead

use the expected value of the posterior to maximize the

PSNR of the resulting denoised image. In our case we have

x̂i = E[p(xi|yi)] =
yiσ

2

i + (aµi + b)µi

aµi + b+ σ2

i

. (8)

Intuitively, when the prior uncertainty is large relative to

the noise estimate, the formula approaches the noisy value

yi; when the prior uncertainty is small relative to the noise

estimate, the formula approaches the prior mean µi.

2.4. Blindspot neural network

In our approach, µi and σ2

i are the outputs of a blindspot

neural network [11] and a and b are global parameters

learned along with the network parameters.

The “blind-spot neural network” is constructed in such a

way that the network cannot see input yi when outputting

the parameters for p(xi). The blindspot effect can be

achieved in multiple ways. Noise2Void [9] and Noise2Self

[1] replace a random subset of pixels in each batch and mask

out those pixels in the loss computation. Laine et al. [11] in-

stead construct a fully convolutional neural network in such
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a way that the center of the receptive field is hidden from the

neural network input. In our experiments we use the same

blindspot neural network architecture as Laine et al. [11].

2.5. Regularization

In a practical setting, the parameters a and b of the noise

model are not known a priori; instead, we need to estimate

them from the data. However, an important issue arises

when attempting to learn the noise parameters along with

the network parameters: the network’s prior uncertainty and

noise estimate are essentially interchangeable without any

effect on the loss function. In other words, the optimizer

is free to increase a and b and decrease σ2

i , or vice-versa,

without any penalty. To combat this, we add a regulariza-

tion term to the per-pixel loss which encourages the prior

uncertainty to be small:

Lregularized = Lmarginal + λ
∑

i

|σi|. (9)

We found in our experiments that the choice of λ
strongly affects the results. When λ is too high, the prior

uncertainty is too small, and the results are blurry. When λ
is too low, the prior uncertainty is too high, and the network

does not denoise at all. Unfortunately, in the self-supervised

setting, it is not possible to determine the appropriate setting

of λ using a validation set, because we do not have ground

truth “clean” images with which to evaluate a particular set-

ting of λ.

3. Learning an uncalibrated model

This realization led us to adopt a different training strat-

egy which defers the learning of the noise parameter models

to test time.

In our uncalibrated model, we do not separate out the

parameters of the noise model from the parameters of the

prior. Instead, we learn a single variance value σ̂i
2 repre-

senting the total uncertainty of the network. Our uncali-

brated loss function is then

Luncalibrated =
∑

i

(
(yi − µi)

2

σ̂i
2

+ log(σ̂i
2)

)

(10)

At test time, however, we need to know the noise param-

eters a and b in order to compute σ2

i = σ̂i
2 − aµi − b and

ultimately compute our posterior mean estimate x̂i.

If we had access to corresponding clean and noisy obser-

vations (xi and yi, respectively) then we could fit a Poisson-

Gaussian noise model to the data in order to learn a and b.
In other words, we would find

a, b = argmina,b
∑

i

(
(yi − xi)

2

axi + b
+ log(axi + b)

)

.

(11)

As we are in a self-supervised setting, however, we do

not have access to clean data. Instead, we propose to use

the prior mean µi as a stand-in for the actual clean value xi.

This bootstrapping approach is similar to that proposed by

Prakash et al. [18]; however, they fit a general parametric

noise model to the training data where as we propose to fit

a Poisson-Gaussian model to each image in the test set.

Our approach is summarized in the following steps:

1. Train a blindspot neural network to model the noisy

data by outputting a mean and variance value at each

pixel, using the uncalibrated loss (Equation 10).

2. For each test image:

i. Run the blindspot neural network with the noisy

image as input to obtain mean µi and total vari-

ance σ̂i
2 estimate at each pixel.

ii. Determine the optimal noise parameters a, b by

fitting a Poisson-Gaussian distribution to the

noisy and psuedo-clean images given by the

mean values of the network output (Equation 12).

iii. Calculate the prior uncertainty at each pixel as

σ2

i = max(0.0001, σ̂i
2 − aµi − b).

iv. Use the noise parameters a, b and the calculated

prior uncertainties σ2

i to compute the denoised

image as the posterior mean estimate (Equation

8).

We believe our approach has two theoretical advantages

over the bootstrap method proposed by Prakash et al. [18].

We can achieve a better fit to the data by training our sys-

tem end-to-end, whereas Prakash et al. [18] impose a fixed

noise model during training by first estimating the noise

parameters and then training the network. Second, we es-

timate noise parameters for each image separately at test

time, whereas Prakash et al. [18] estimate common noise

parameters for all images first and fixes those parameters

during training. Our approach allows for slight deviations in

the noise parameters for each image, which might be more

realistic for an actual microscope imaging system where the

camera configuration slightly fluctuates between images.

4. Experiments and Results

4.1. Implementation details

Our implementation uses the Keras library with Tensor-

flow backend. We use the same blindspot neural network

architecture as Laine et al. [11]. We use the Adam optimizer

[8] with a learning rate of 0.0003 over 300 epochs, halving

the learning rate when the validation loss plateaued. Each

epoch consists of 50 batches of 128 × 128 crops from ran-

dom images from the training set. For data augmentation
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Ground Truth Bootstrap Ground Truth Bootstrap Ground Truth Bootstrap

Datasets Loss a b

Confocal Mice -6.322 -6.257 0.0181 0.0196 -0.000203 -0.000232

Confocal Fish -5.224 -5.122 0.0753 0.0723 -0.00101 -0.00084

Two-Photon Mice -5.005 -4.979 0.0301 0.0296 -0.000559 -0.000491

Table 1: Quantitative comparison of fitting a Poisson-Gaussian noise model using the ground truth clean data or the denoised

estimate from the prior. Values in the table are averages over the 50 test images from each dataset.

Ground Truth Estimated Foi et al. [6] Ground Truth Estimated Foi et al. [6]

λ σ a b

50 10 0.0200 0.0250 0.0252 0.00153 0.00135 0.000900

40 20 0.0250 0.0325 0.0759 0.00615 0.00586 0.000334

30 30 0.0333 0.0430 0.0971 0.0138 0.0134 0.00108

20 40 0.0500 0.0623 0.213 0.0246 0.0241 0.000373

10 50 0.100 0.117 0.313 0.0384 0.0378 0.00462

Table 2: Quantitative comparison of fitting a Poisson-Gaussian noise model on different noise levels of our synthetic Con-

focal MICE dataset. Ground truth a,b parameters correspond to the Poisson-Gaussian noise levels added to our synthetic

dataset, Estimated represents the a,b parameters obtained using our bootstrapping technique, and Foi et al. represents the a,b
parameters obtained using the noise estimation method in [6].

we apply random rotation (in multiples of 90 degrees) and

horizontal/vertical flipping.

To fit the Poisson-Gaussian noise parameters at test

time, we apply Nelder-Mead optimization [17] with (a =
0.01, b = 0) as the initialization point. We cut off data in

the bottom 2% and top 3% of the noisy image’s dynamic

range before estimating the noise parameters.

4.2. Datasets

4.2.1 Synthetic Data

We generate a synthetic dataset using the ground truth im-

ages of the Confocal MICE dataset from the FMD bench-

mark [26] (described below). For training, we use the

ground truth images from 19 of the 20 views and gener-

ate 50 noisy examples of each view by synthetically adding

Poisson-Gaussian noise to the ground truth images using

equation 3 where a = 1/λ and b = (σ/255)2. For test-

ing, we use the ground truth image from the 20th view

and generate 50 noisy examples by synthetically adding

Poisson-Gaussian noise in the same manner as during train-

ing. To ensure our method works for a wide range of

noise levels, we train/test our method on all combinations

(λ, σ) ∈ {0, 10, 20, 30, 40, 50} × {0, 10, 20, 30, 40, 50}.

4.2.2 Real Data

We evaluated our method on two datasets consisting of real

microscope images captured with various imaging setups

and types of samples. Testing on real data gives us a more

Pseudo-Clean Uncalibrated Ground Truth

λ σ PSNR PSNR PSNR

50 10 36.95 37.05 37.25

40 20 35.45 35.53 35.73

30 30 34.10 34.15 34.33

20 40 33.17 33.22 33.37

10 50 31.98 32.03 32.14

Table 3: PSNR comparison on different noise levels of our

synthetic Confocal MICE dataset. Pseudo-clean is the re-

sult obtained before computing the posterior. Uncalibrated

is the result from computing the posterior with the esti-

mated noise parameters obtained from our bootstrapping

technique. Ground truth represents computing the posterior

with the true a,b parameters that correspond to the Poisson-

Gaussian noise levels added into our synthetic dataset.

accurate evaluation of our method’s performance in contrast

to training and testing on synthetically noised data, since

real data is not guaranteed to follow the theoretical noise

model.

The fluoresence microscopy denoising (FMD) bench-

mark [26] consists of a total of 12 datasets of images cap-

tured using either a confocal, two-photon, or widefield mi-

croscope. We used the same subset of datasets (Confocal

Mice, Confocal Fish, and Two-Photon Mice) used to evalu-

ate PN2V [10] so that we could compare our results. Each

dataset consists of 20 views of the sample with 50 noisy
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Confocal Mice Confocal Fish Two-Photon Mice

Figure 2: Comparison of Poisson-Gaussian noise models fit to a noisy image from several datasets. Solid bars show his-

tograms of the noisy values corresponding to a clean value of 20 (blue) and 50 (red). Curves show the pdfs of a Poisson-

Gaussian distribution fit to the data using either ground truth clean data (dashed line) or pseudo-clean data (solid line).

Confocal Confocal Two-Photon

Methods λ Mice Zebrafish Mice

Uncalibrated - 37.97 32.26 33.83

Regularized 0.1 37.74 23.97 33.52

Regularized 1 37.64 27.44 33.56

Regularized 10 37.13 31.99 33.34

Table 4: Comparison between uncalibrated and regularized

methods.

images per view. The 19th-view is withheld for testing, and

the ground truth images are created by averaging the noisy

images in each view. We trained a denoising model on the

raw noisy images in each dataset separately.

Prakash et al. [18] evaluated PPN2V on three sequences

from a confocal microscope, imaging Convallaria, Mouse

Nuclei, and Mouse Actin. Each sequence consists of 100

noisy images and again the clean image is computed as the

average of the noisy images. Whereas the FMD dataset pro-

vides 8-bit images clipped at 255, these images are 16-bit

and thus are not clipped. Following their evaluation pro-

cedure, each method is trained on all 100 images and then

tested on a crop of the same 100 images; this methodol-

ogy is allowable in the self-supervised context since no la-

bel data is used during training.

4.3. Experiments

In the following we will refer to the competing methods

under consideration as

• Regularized (Ours): Blindspot neural network

trained using the regularized Poisson-Gaussian loss

function (Equation 2) with regularization strength λ.

• Uncalibrated (Ours): Blindspot neural network

trained using the uncalibrated loss function (Equation

10) with noise parameter estimation done adaptively at

test time (Section 3).

• N2V: Noise2Void which uses the MSE loss function

and random masking to create the blindspot effect [9].

• PN2V: Probabilistic Noise2Void – same setup as N2V

but uses a histogram noise model created from the

ground truth data and a non-parametric prior [10].

• Bootstrap GMM and Bootstrap Histogram: PPN2V

training – same setup as PN2V but models the noise

distribution using either a GMM or histogram fit to the

Noise2Void output [18].

• U-Net: U-Net [20] trained for denoising in a super-

vised manner using MSE loss [24].

• N2N: Noise2Noise training using MSE loss [13].

4.3.1 Noise parameter estimation

We first evaluate whether our bootstrap approach to esti-

mating the Poisson-Gaussian noise parameters is accurate

in comparison to estimating the noise parameters using the

actual ground truth clean values.

To evaluate our bootstrapping method, we compare the

ground truth and estimated Poisson-Gaussian noise models

fit for a test image in each dataset in the FMD benchmark

[26]. Figure 2 shows that the Poisson-Gaussian pdfs gener-

ated using our bootstrapping technique closely match that of

the Poisson-Gaussian pdfs generated from the ground truth

images.

We further evaluate our approach by comparing the loss

and estimated Poisson-Gaussian noise parameters obtained

when using actual ground truth data or the pseudo-clean

data generated in our bootstrap method. Table 1 shows that

bootstrapping can provide an accurate estimation of noise

parameters and result in a loss similar to that obtained from

using ground truth clean data. Here the loss value is

1

N

∑

i

(
(yi − xi)

2

axi + b
+ log(axi + b)

)

(12)
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Confocal Confocal Two-Photon

Methods Mice Zebrafish Mice Convallaria Mouse Nuclei Mouse Actin

Uncalibrated (Ours) 37.97 32.26 33.83 36.44 36.97 33.35

N2V 37.56 32.10 33.42 35.73 35.84 33.39

Bootstrap GMM 37.86 * 33.77 36.70 36.43 33.74

Bootstrap Histogram 36.98 32.23 33.53 36.19 36.31 33.61

PN2V 38.24 32.45 33.67 36.51 36.29 33.78

U-Net 38.38 32.93 34.35 36.71 36.58 34.20

N2N 38.19 32.93 34.33 - - -

Table 5: Quantitative comparison of our implementation and baseline methods on datasets provided by Zhang et al. [26]

and Prakash et al. [18]. Methods above the solid line are fully unsupervised while those below it either require ground truth

data or a noisy image pair. Bold numbers indicate the best performing method among the fully unsupervised methods. The ∗
indicates a case where the Bootstrap GMM method failed to train (the loss became NaN before convergence).
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Figure 3: Denoising results on images taken from the FMD dataset [26]. The missing image corresponds to the case where

the Bootstrap GMM method failed to train.

where yi is a pixel from the noisy image and xi is a corre-

sponding pixel from either the ground truth clean image or

the pseudo-clean image.

We perform a similar evaluation on our synthetic dataset

where instead of having to estimate the true noise param-

eters from fitting a Poisson-Gaussian noise model with the

ground truth clean image we readily have available the true

noise parameters that correspond to the level of syntheti-

cally added Poisson-Gaussian noise. Table 2 shows the true

noise parameters as well as the ones obtained using our un-

calibrated method and the method described by Foi et al.

in [6]. Our method tends to overestimate the a parameter,

whereas the estimate of the b parameter is consistently ac-

curate. This is probably because a majority of the pixels in

the Confocal MICE images are dark and thus there are not

many good samples for fitting the level of Poisson noise,

whereas every pixel can be effectively used to estimate the

Gaussian noise no matter the underlying brightness. Unlike

the method of Foi et al. [6] which obtains poor noise esti-

mates most likely because of this, our method is still able to

obtain a good estimate of the parameters by leveraging in-

formation from both the noisy image and our pseudo-clean

image.

The effectiveness of fitting a Poisson-Gaussian noise

model at test time is further evaluated in Table 3 which pro-

vides a comparison of peak signal-to-noise ratio (PSNR) on

a subset of our synthetic dataset. Our method of estimating

the noise parameters with our bootstrapping technique con-

sistently improves the denoised results of the pseudo-clean

image, but is ultimately bounded by the result obtained from
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Figure 4: Visual comparison of results obtained by our proposed method and the fully unsupervised methods listed in Table

5. Noisy test images taken from PPN2V benchmark datasets [18].

using the pseudo-clean image along with the true noise pa-

rameters. Results for all noise parameter combinations are

given in the supplemental material.

4.3.2 Effect of regularization

To highlight the difficulties of hyperparameter tuning in the

self-supervised context, we trained our uncalibrated model

and several regularized models on the FMD datasets. We

tested a regularization strength of λ = 0.1, 1, and 10.

The results are shown in Table 4. The test set PSNR

of the regularized model varies greatly depending on the

setting of λ, and indeed a different setting of λ is optimal

for each dataset. This indicates that hyperparameter tuning

is critical for the regularized approach, but it is not actually

possible in a self-supervised context.

In contrast, our uncalibrated method outperforms the

regularized method at any setting of λ, and does not require

any hyperparameters.

4.3.3 Comparison to state-of-the-art

Next we present the results of our performance evaluation

on the FMD and PPN2V benchmark datasets. Table 5

shows a comparison between our uncalibrated method and

various competing methods, including self-supervised and

supervised methods.

Between the fully unsupervised methods that do not re-

quire paired noisy images (our Uncalibrated method, N2V,

Bootstrap GMM, and Bootstrap Histogram), our method

outperforms the others on four out of six datasets. A com-

parison of denoising results on both benchmark datasets are

shown in Figures 3 and 4.

5. Conclusions and Future Work

Noise is an unavoidable artifact of imaging systems, and

for some applications such as live cell microscopy, denois-

ing is a critical processing step to support quantitative and

qualitative analysis. In this work, we have introduced a

powerful new scheme for self-supervised learning of de-

noising which is appropriate for processing of low-light im-

ages. In contrast to the state-of-the-art, our model handles

Poisson-Gaussian noise which is the standard noise model

for most imaging systems including digital microscopes. In

addition, we eliminate the need for loss function regulariza-

tion in our method, thus making self-supervised denoising

more practically applicable. Our evaluation on real datasets

show that our method outperforms competing methods in

terms of the standard PSNR metric on many datasets tested.

Our work opens up new avenues in live-cell imaging

such as extreme low-light imaging over long periods of

time. Future work lies in extending our model to other

noise models appropriate to other imaging modalities, and

exploring whether our uncalibrated method could be com-

bined with a non-parametric prior [10].
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