
Automatic Object Recoloring Using Adversarial Learning

Siavash Khodadadeh∗

Dept. of Computer Science

University of Central Florida

Orlando, Florida, USA

siavash.khodadadeh@knights.ucf.edu

Saeid Motiian

Adobe Inc.

San Jose, California, USA

motiian@adobe.com

Zhe Lin

Adobe Inc.

San Jose, California, USA

zlin@adobe.com

Ladislau Bölöni

Dept. of Computer Science

University of Central Florida

Orlando, Florida, USA

lboloni@cs.ucf.edu

Shabnam Ghadar

Adobe Inc.

San Jose, California, USA

ghadar@adobe.com

Abstract

We propose a novel method for automatic object recol-

oring based on Generative Adversarial Networks (GANs).

The user can simply give commands of the form recolor

<object> to <color> which will be executed with-

out any need of manual edit. Our approach takes advantage

of pre-trained object detectors and saliency mask segmen-

tation networks. The segmented mask of the given object

along with the target color and the original image form the

input to the GAN. The use of cycle consistency loss ensures

the realistic look of the results. To our best knowledge, this

is the first algorithm where the automatic recoloring is only

limited by the ability of the mask extractor to map a natu-

ral language tag to a specific object in the image (several

hundred object types at the time of this writing). For a per-

formance comparison, we also adapted other state of the art

methods to perform this task. We found that our method had

consistently yielded qualitatively better recoloring results.

1. Introduction

Color manipulation is an active field of study that aims

to transform the RGB values of an image to convey a novel

artistic vision or achieve the goals of the customer. While

manipulating colors has a long history in painting and pho-

tography, in recent years highly innovative new approaches

emerged that combine image editing and color manipulation

∗The paper was written when the student was an intern in Adobe.

Recolor the flower to Orange

Green Red

Purple

Figure 1. Left is the given image, on the right are the correspond-

ing results for these commands: recolor <flower> to (<green>,

<red>, <purple>, <orange>). Image is from solahuddin -

stock ID #100036041.

to enable color transfer [8], style transfer [16], and appear-

ance transfer [13]. For instance, Chang et al. [2] use object

color distributions to change the color of objects automati-

cally.

In this paper, we describe a method to change the color

of a specific object within an image. From the user’s point

of view, this is done with a single command of the form

recolor <object> to <color> (see Figure 1 for

several examples).

Object recoloring has numerous applications. For in-

stance, photographers often re-touch images for commer-

cial purposes. The re-touching process is usually manual,

and in many cases, tedious. Our algorithm can significantly

improve the experience and productivity of the photogra-

pher. Another use case is searching for images in social

curation websites like Pinterest or Juxtapost. Fully auto-

1488

matic recoloring can help to improve search and retrieval.

To give an example, when a user searches for a “Person

with magenta shirt”, the system might be able to provide an

appropriate, recolored image, even if no such original image

exists.

The starting point for this work was adapting state of the

art colorization and re-colorization methods to use saliency

masks. Even though these methods are very powerful for

their original use case, we found that they introduce de-

fects and artifacts in the output when used with masks. Our

proposed algorithm, Fully Automatic Color Transformer

(FACT) takes the saliency masks into the account during

training, allowing us to generate recolored images with sig-

nificantly less defects and artifacts. The main contributions

of this paper can be summarized as follows:

• We introduce a learning-based object recoloring ap-

proach that combines conditional GAN based recolor-

ing with an off-the-shelf masking algorithm.

• We propose a method for collecting and automatically

annotating a dataset suitable for training the recoloring

GAN.

• Through a series of experiments, we show that our

approach performs qualitatively better than previous

fully automatic approaches.

2. Related work

2.1. Colorization

Colorization of grayscale images is an actively studied

area of computer vision. In contrast to the object recoloring

task which is the subject of this paper, colorization usually

aims to colorize the whole image, rather than a single object

pointed out through language.

Early approaches for colorization often relied on ad-

ditional user input, such as scribbling color points or

strokes [22, 25, 20]. For instance, Levin et al. [14] pro-

pose an approach that is relying on an optimization process

where adjacent pixels with similar luminance are assigned

similar colors as the ones scribbled by the user.

The deep learning revolution enabled the creation of net-

works that take a grayscale image and generate a colorized

version of it without any additional input [28]. Evaluating

the result of this approach using the “colorization Turing

test” which asks a human to choose between colored im-

age and a real image had shown that the approach was able

to fool the humans test subjects more often than previous

work.

A more recent approach by Yoo et al. [26] proposes col-

orization with limited data. The authors use memory net-

works to get features that best match the color of the query

image. This allows the system to recall from the memory

network the colors of previously seen similar objects, and

thus create more reasonable-looking colorized images.

An important subproblem of this field is coloring a

grayscale image with respect to a reference image. These

methods compute the correspondences between the refer-

ence and input images based on low-level similarity met-

rics [23, 10, 4]. Recently, Zhang et al. [27] demonstrated

the colorization of video frames with respect to a style im-

age while considering temporal consistency across frames.

2.2. Recoloring

Most approaches for recoloring images involve a two-

step, palette-based model. The first step extracts a palette

from the image while the second step finds a mapping based

on the target color (or target palette) to be applied to every

pixel within the image.

Chang et al. [3] propose a method for palette-based re-

coloring which takes into account constraints that ensure

the smoothness of recoloring. Some of these constraints are

staying in gamut, pixel continuity, monotonicity in L chan-

nel, and one-to-one mapping function. By considering all

of these constraints, their method improves the recoloring

outcome.

Gong et al. [9] introduce a very efficient technique for

editing the primary color of consumer product images.

First, they cluster the intensity distribution in CIE L*a*b*.

They define the primary cluster as the largest cluster in this

space, and find a mapping that maintains all other clusters,

but maps the primary cluster to the target color. By solving

this cluster mapping equation, we get a 3 × 3 matrix that

can be applied to any pixel value in the original image.

By emerging advances in deep learning, many different

approaches for coloring based on deep neural networks have

been proposed. Zhang et al. [29] proposed an interactive

approach using deep learning. The user inputs a grayscale

image and the RGB value of some of the pixels. The net-

work takes the user color input and the grayscale image and

generates a colored image. Although this work aimed for

solving the coloring problem, the same pipeline can be used

for recoloring. Afifi et al. [2] use a deep learning method to

obtain semantic segmentation from each image. Based on

these segmentation masks, they cluster the possible color

of an object. For example, the sky can be blue (daytime),

yellow/red (dusk/dawn), and dark (nighttime). They apply

palette mapping between these masks to recolor the scene.

Cho et al. [5] propose a method based on deep learning

which takes an image and a palette as input and outputs the

target image with the target palette. They use adversarial

training and encoder-decoder architecture to achieve this.

2.3. Image­to­image translation

Both coloring and recoloring could be seen as image-

to-image translation problems. The input is an image with

1489

a source color or source palette and the output is another

image with a target color or target palette. [11] proposes

a method which can convert labels to street scenes, day to

night, aerial image to map and black and white images to

RGB images. Given a dataset of paired images, they use

conditional generator and paired discriminator to learn this

translation from images of source domain to target domain.

[30] solve the image-to-image translation between two do-

mains when there is no dataset of paired images. They

leverage adversarial training alongside a novel cycle con-

sistency which allows generating novel images of the target

domain without having a dataset of paired images. [6] pro-

pose StarGAN. They apply image-to-image translation be-

tween multiple domains instead of just two domains when

there is no dataset of paired images. They use a shared gen-

erator which takes an image and target domain and outputs

the image in the target domain. They also encode the target

domain as an input to discriminator to train a conditional

discriminator. [15] propose open edit which takes as input

an image and a sentence and outputs the desired image with

applying the effect from text. This can be used for recol-

oring directly by just giving text commands based on color

and input image. [19] also apply image-to-image transla-

tion by mapping the local statistic from one domain to the

other while preserving the semantic content.

3. Object recoloring

An ideal training dataset to train an object recoloring

network using supervised learning would consist of pairs

of images, identical except the color of the target object.

Collecting such a dataset from real-world images is very

difficult - it would require an extraordinarily degree of ef-

fort from the photographer even in the case of static objects,

and it is essentially impossible to achieve for pictures con-

taining humans. Our approach proposes a technique which

can learn recoloring without requiring paired images of the

same scene.

Collecting such a dataset is not a trivial task. Instead,

we leverage unpaired image to image translation methods

which do not require paired images of the same scene.

Our method is inspired by conditional GANs [17] and

the technique of cycle consistency loss [30], and allows the

transfer of colors by considering each color as a separate

domain. We start by building a dataset of unpaired images

of different domains as described in Section 3.1.

Next, we train a generator network conditioned on the

input image, the object mask, and the target color. The ob-

ject mask can be generated using off-the-shelf bounding box

and mask detection algorithms which take as input the com-

mand from the user. These are used for the preprocessing

of the input and are not part of the training workflow.

Figure 3 shows the steps of the proposed algorithm. Our

early experiments made clear that the manner in which

the color and mask information is entered at the various

phases of the neural network has critical importance on the

speed of the training and the quality of the generated out-

put. These architectural details are discussed in Sections 3.1

through 3.4.

3.1. Dataset creation

To train our algorithm we need a training dataset that

combines tuples of images, object tags, colors, and masks of

the tagged object in the image. To generate such a dataset,

we leveraged the Google Images search engine. The pro-

cess is shown in Figure 2. First, we collect a list of object

tags and colors commonly used in image captions. To ac-

count for variations in spelling and overlapping meanings,

we performed a minimal preprocessing step (e.g. replacing

”reddish” with ”red”). By collecting a list of 14 colors and

421 tags we generated 421 × 14 = 5894 distinct queries,

such as “green apple”, “pink backpack” or “orange house”.

Figure 4 shows the results of several queries from Google

Images. We used the Selenium [1] browser automation tool

to scroll down the search page and extract the image URLs.

After extracting all the image URLs, we download them us-

ing 100 threads in parallel. For every downloaded image,

we detect objects and top-5 tags for each object. We keep

the image if the query tag matches one of the five predicted

tags of at least one of the detected objects. If there are mul-

tiple objects with the same tag, we pick the one with the

highest detection confidence score. Finally, we extract a

soft mask for that object with the same tag of the query. As

a result, we have a dataset D = {xi, ti, ci,mi} such that xi,

ti, ci, mi are 256×256×3 image, tag, color, and 256×256
soft mask for item i ∈ {1, . . . ,M}.

3.2. Color transformer network

The objective of the color transformer network is to

transform the original image into the recolored image. The

object to be recolored and the desired color is provided to

the network in form of the mask and a color mask respec-

tively.

The color mask M is created as follows (see Figure 5).

Given an image I ∈ [0, 255]H×W×3, a soft mask S ∈
[0, 1]H×W×1 and an RGB value of the target color, we

first generate a matrix of zeros with 4 channels of the

shape (h,w, 4). We set the values of the pixel (i, j) in

M [:, :, [R,G,B]] to the RGB value of the target color if

S[i, j] > 0. In the last channel of M we copy the soft

mask, M [:, :, [last]] = S.

The architecture we used for the color transformer net-

work, G, is based on the U-Net architecture with concatenat-

ing layers from the encoder to the decoder (Figure 6). The

network takes an image as input. The internal encoder lay-

ers receive an additional input in the form of the soft mask,

as at this point we only need to convey the position of the

1490

Figure 2. Dataset collection. a. Collecting a list of tags and colors. b. Download images from Google Images using queries based on the

tags and colors. c. Extract bounding boxes corresponding to tags. d. Extraction of soft maps from bounding boxes corresponding to the

appropriate tags. e. Adding the tuple of image, mask, color and tag to the dataset. Image is from paulovilela - stock ID #100153754.

Figure 3. Top: The training process: based on dataset samples, we train a color transformer network with a combination of adversarial loss,

cycle loss, and a novel paired discriminator. Bottom: The test process: a. Starting from an image and a command from user, we search for

a matching bounding box (shown in green). b. We extract the soft mask from the bounding box. c. The original image, mask and target

color forms the input to the color transformer that generates the recolored image with a forward pass. Images are from paulovilela - stock

ID #100153754, Alex Tor - stock ID #108213415.

object of interest. The decoder layers, on the other hand,

receive both the soft mask and the color mask as described

above. The output is an image of the same shape of input

image.

3.3. Paired discriminator

Introducing the paired discriminator is one of the main

novelties of this paper. Since we want to design a net-

work that can work with all possible tags and colors, we

cannot use the traditional binary discriminators. One pos-

sible choice is to use conditional discriminators which did

not produce good results in our setup (See Figure 7).

STARGAN-v2 [7] proposes an architecture for discrim-

inator based on sharing the weights of first layers and us-

ing different heads for each domain. Since we want to just

check the color of the image which is semantically simpler

compared to style, and inspired by [18], we suggest using

a paired discriminator that looks at two images at the same

time and as a result can make better decisions. Our discrim-

inator network has a shared visual feature extractor similar

to ResNet50. We resize and concatenate the color masks to

internal bottleneck layers 4, 5, and 6 of the ResNet50 ar-

chitecture. Figure 8 shows our discriminator network archi-

tecture that takes a pair of images and their corresponding

generated color masks as input and outputs if the pair is pos-

itive or negative. Finally, to make the network more robust

against order of the inputs, we switch the image features by

a random chance of 50%.

1491

Green Apple Pink Backpack

Orange House

Figure 4. Example images in the dataset corresponding to the color

/ tag pairs Green / Apple, Pink / Backpack and Orange / House.

Figure 5. The procedure of generating target color channels. We

have an image, a mask and the target color, orange. We generate an

RGB mask based on orange RGB values and concatenate it with

another channel which has mask data. Image is from solahuddin

- stock ID #100036041.

3.4. Training and losses

We denote our color transform network with G and our

discriminator with D. During training, following notation

introduced in section 3.1, we generate positive and negative

pairs. For an anchor data point {xi, ti, ci,mi}, we sample a

positive data point, {xp, tp, cp,mp}, such that ti = tp. One

option to obtain negative pairs is to sample {xn, tn, cn,mn}
such that ti 6= tn. The other option is to sample two data

points with the same tag and falsify their colors. We can

falsify the color of anchor, negative data point, or both of

them. Figure 8.b shows a couple of these generated pairs.

Finally, we apply random cropping on xi, xp, and xn.

Adversarial losses: Our paired discriminator takes two im-

ages and their corresponding color masks and tells if the two

images have the same tag, and their color masks match the

actual objects’ colors. For example, the discriminator out-

puts ’one’ if the inputs are an azure bicycle with an azure

mask and a green bicycle with a green mask (we call it a

positive pair). It outputs ’zero’ if the inputs are an azure

bicycle with an azure mask and a black bear with a black

mask since the tags are different (we call it a negative pair).

It also outputs ’zero’ if the inputs are an azure bicycle with

an azure mask and a green bicycle with a black mask since

one of the color masks are wrong (a negative pair).

Therefore this binary classification can be formulated as:

L0 = E[log(D((xi,mi, ci), (x
p
i ,m

p
i , c

p
i))]+

E[log(1−D((xi,mi, ci), (x
n
i ,m

n
i , c

n
i)))], (1)

where (xp
i ,m

p
i , c

p
i) is a triplet of image-mask-color from

possible positive set for xi and (xn
i ,m

n
i , c

n
i) is a triplet of

image-mask-color from possible negative set for xi.

Therefore, the adversarial loss looks like:

L1 = L0 +E[log(1−D((xi,mi, ci), (x
t
i,mi, ct))], (2)

where ct ∈ {c1, c2, · · · c14} is randomly drawn from our

color set and xt
i = G(xi,mi, ct) is the recolored image. We

also use cycle consistency to get the original image back:

L2 = L0 +E[‖xi − x̂i‖1]+

E[log(1−D((xi,mi, ci), (x̂i,mi, ci))], (3)

where x̂i = G(xt
i,mi, ci) and xt

i = G(xi,mi, ct).
Identity losses: For the i-th image with color ci if we re-

color it with ci, we should get the same image. Therefore,

we can write a reconstruction loss as:

L3 = E[‖xi − G(xi,mi, ci)‖1]. (4)

Also, the recolored image should be the same as the input

image everywhere except inside its mask. Therefore, we

can add another reconstruction loss as follow:

L4 = E[‖(xi − G(xi,mi, ct)) ◦ (1−mi)‖1], (5)

where ◦ represents pixel-wise product.

Full objective: The full objective is the summation of the

losses described above:

L(G,D) = λ1 · L1 + λ2 · L2 + λ3 · L3 + λ4 · L4, (6)

where λ1, λ2, λ3, and λ4 are hyper-parameters that strike

a balance between the different losses. The desired color

transformer network can be found by solving:

G∗ = argmin
G

max
D

L(G,D) (7)

4. Experimental validation

4.1. Qualitative experiments
In the first set of experiments, we test whether the pro-

posed recoloring process works. For this implementation,

1492

Figure 6. Color transformer network architecture. The network takes an image as input and has U-Net connections. For the encoder, we

resize the soft mask and concatenate it with middle layers’ features. For the decoder we concatenate both mask and target color mask with

middle layers’ features. Arrows show the concatenation operation. Image is from guas - stock ID #100008804.

Figure 7. Top: Original image and mask. Middle: Paired discriminator. Bottom: Conditional discriminator. Recoloring to blue, green, pur-

ple, orange and red from left to right. We saw that during training on RGB images, a conditional discriminator is not able to generalize well

and most of the time learns to generate just one particular color. Images are from FlexDreams - stock ID #112111227, romankosolapov

- stock ID #111320345.

we used a bounding box detector and tag extractors based on

Faster-RCNN with hierarchical softmax trained on Open-

Images 500 [12]. We used the algorithm described in [24]

for extracting the saliency soft mask from the bounding box.

Figure 9 shows the qualitative results of applying the re-

sulting network, for recoloring a towel and a potato respec-

tively to a number of possible colors. We note that the re-

colored images maintain the details of the original object,

even when recoloring to a color which does not naturally

occur in nature (such a blue potato).

4.1.1 Comparing recoloring quality with state of the

art baselines

The majority of the current state of the art recoloring algo-

rithms do not use object masks. To evaluate the quality of

the recoloring of our algorithm, we have adapted two state

of the art recoloring algorithms to use masks, making them

directly comparable with our proposed approach.

The first baseline we are considering is the method for

primary color editing of product images by using color cor-

rection and color blending introduced in [9]. This method

does not use deep learning and is able to change the primary

color of the given image with any resolution. The approach

performs clustering on the whole image and maps the pri-

mary cluster to target color cluster while making sure the

colors in other clusters remain the same by optimizing for

a mapping with these constraints. We introduce our mask

information into this method by clustering only the pixels

within our extracted mask and restricting the transferring

of colors to the same area. Figure 10 shows the result of

applying [9].

The second baseline we are considering is an algorithm

designed for coloring grayscale images based on user in-

put [29]. The user assigns the desired color to some of the

pixels in the image and assigns a color to them. Based on

the grayscale image and these inputs, the model generates

a new colored image. To change the color of a specific ob-

ject within the image, we randomly select a couple of points

within the mask and set their color to target color and pass

the generated user input and grayscale image to the model.

1493

Figure 8. a. Discriminator network architecture. The network takes two images and passes them through ResNet50 initialized randomly.

The color masks of the images are also concatenated with feature maps in bottleneck layers 4, 5, and 6. The discriminator switches the

2048 flattened outputs with a 50% chance. The concatenated features then go to a fully connected layer with size of 256 and then a fully

connected layer that outputs positive/negative. b. A pair of images and their color and tag is positive if both tag and color of both images

are correct. Otherwise the pair is negative. Along with these pairs, we also update the network with adversarial training.

Figure 9. Qualitative evaluation of the process to recolor a towel

(top) and a potato (bottom) to a variety of colors. The leftmost

image is the original, while the images in the right are recolored

versions. Note that the recoloring process retains the details of

the recolored image. Images are from Studio KIVI - stock ID

#100177220, pedphoto36pm - stock ID #100045692.

Again we make sure to apply this method on just the masked

object as previous one. In other terms, given image I , we

apply these adapted methods on it and get image I ′. Then

we generate the final result as follows:

Ifinal = I ′ ·mask + I · (1−mask). (8)

Figure 11 demonstrates the results for adapting [29].

Note that in the third column, we see the output of just ap-

plying this method on the image, and the fourth column is

the output after applying equation 8. In Figure 12, we com-

pare our method with proposed baselines.

4.2. Quantitative experiments

We compare our method with the proposed baseline on

200 images of our test dataset. We recolor each image to

Figure 10. The process of [9] with masks. Top left is the orig-

inal image, top middle is the mask, top right is recolored to or-

ange. Bottom images are the result of recoloring to purple, yellow,

and blue from left to right. Even though this method is powerful

with recoloring when hyper-parameters are adjusted (number of

clusters and how many clusters to edit), make it fully automatic

is challenging since the same number of clusters does not always

work. In this case, the input is fixed and only the target color

changes, it is even more challenging to fix hyper-parameters for

all possible input images. Image is from allamaistrenko - stock

ID #101639333.

Table 1. Quantitative comparison of our method with proposed

baselines on Inception Score (IS) and the number of mismatched

detected objects (# MDO).
Metric Oracle FACT(ours) Adapted [29] Adapted [9]

MDO 0 83.36 85.00 106.14

IS 8.75 8.31 8.22 7.94

14 different colors and evaluate Inception Score [21] on the

generated images. In addition, we report the number of not

detected objects plus the objects that are additionally de-

tected in each image after recoloring. Table 1 shows the

result of these experiments on the whole dataset. For more

details, please refer to supplementary material.

1494

Original Image Model Output Combine Mask MaskModel Input

Figure 11. The process of guided colorization [29] with masks.

First, we convert the image to grayscale and sample 10 point

within the mask. We set the value of those point to target color

and apply [29] on the image. The result is shown in third col-

umn. We combine the result with mask information and real im-

age which will give us the fourth column. Since we do not know

which pixels within the image correspond to main color, select-

ing random points may cause erasing of original texture which

is not expected. Images are from Andrey Solovev - stock ID

#100133198, framefts - stock ID #100133206, Sandra Thiele -

stock ID #100134232.

Figure 12. Comparing our method with proposed baselines. Left

column is the original image. The second column from left is

the result of recoloring with [9]. The third column is adaptation

of [29], and fourth column is FACT results. For more images

please look at supplementary material. Images are from lotosfoto

- stock ID #104279367, allamaistrenko - stock ID #101639333,

BRD - stock ID #95198050, khemfoto - stock ID #104131139 .

4.3. Robustness against mask perturbation

To evaluate the robustness of our algorithm, we per-

formed a study by perturbing the mask. Instead of de-

tected mask, we provide perturbed mask to our color trans-

Figure 13. Effect of perturbation of mask on the generated re-

colored image. Left original image, perturbation is 0%, 10%,

20% and 30%. Image is from AS Photo Project - stock ID

#109730761.

Figure 14. Effect of background perturbation on the generated

recolored image. Left original image, perturbation is 0%, 10%,

20% and 30%. Image is from bokan - stock ID #110692886.

former network. Figure 13 and Figure 14 show the results

for this experiment. Please refer to supplementary mate-

rial for more images. We saw our method is robust to up

to 15% mask distortion and up to 5% background pertur-

bation. These results are interesting since we did not apply

any perturbation during the training of the network.

5. Conclusions

We proposed a method based on GANs for automatic

object re-colorization. Our method enables the user to give

any command of form: recolor <object> to <color> to the

system and it does not require any manual edit by user. We

compared our method with two state of the art baselines.

Future direction of this work will include the application of

the method to higher resolution images.

6. Acknowledgement

We thank Baldo Faieta, Richard Zhang, Tracy King and

the anonymous reviewers for their feedback on this pa-

per. We are also thankful to Adobe Sensei and Search de-

partment for providing computational resources for this re-

search. List of photo owners can be found in section 7.4 of

supplemental material.

1495

References

[1] Selenium. http://www.openqa.org/selenium.

[2] Mahmoud Afifi, Brian L Price, Scott Cohen, and Michael S

Brown. Image recoloring based on object color distributions.

In Eurographics (Short Papers), pages 33–36, 2019.

[3] Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi,

and Adam Finkelstein. Palette-based photo recoloring. ACM

Trans. Graph., 34(4):139–1, 2015.

[4] Guillaume Charpiat, Matthias Hofmann, and Bernhard

Schölkopf. Automatic image colorization via multimodal

predictions. In European Conf. on computer vision, pages

126–139, 2008.

[5] Junho Cho, Sangdoo Yun, Kyoung Mu Lee, and Jin

Young Choi. Palettenet: Image recolorization with given

color palette. In Proc. of the IEEE Conf. on computer vision

and pattern recognition workshops, pages 62–70, 2017.

[6] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-

tive adversarial networks for multi-domain image-to-image

translation. In Proc. of the IEEE Conf. on computer vision

and pattern recognition, pages 8789–8797, 2018.

[7] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.

Stargan v2: Diverse image synthesis for multiple domains. In

Proc, of the IEEE/CVF Conf. on computer vision and pattern

recognition, pages 8188–8197, 2020.

[8] H Sheikh Faridul, Tania Pouli, Christel Chamaret, Jürgen

Stauder, Erik Reinhard, Dmitry Kuzovkin, and Alain

Trémeau. Colour mapping: A review of recent methods,

extensions and applications. In Computer Graphics Forum,

pages 59–88, 2016.

[9] Han Gong, Luwen Yu, and Stephen Westland. Simple pri-

mary colour editing for consumer product images. arXiv

preprint arXiv:2006.03743, 2020.

[10] Revital Ironi, Daniel Cohen-Or, and Dani Lischinski. Col-

orization by example. In Rendering Techniques, pages 201–

210, 2005.

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adversar-

ial networks. In Proc. of the IEEE Conf. on computer vision

and pattern recognition, pages 1125–1134, 2017.

[12] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-

jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan

Popov, Matteo Malloci, Tom Duerig, et al. The open im-

ages dataset v4: Unified image classification, object detec-

tion, and visual relationship detection at scale. arXiv preprint

arXiv:1811.00982, 2018.

[13] Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian,

and James Hays. Transient attributes for high-level under-

standing and editing of outdoor scenes. ACM Transactions

on graphics, pages 1–11, 2014.

[14] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization

using optimization. In ACM Siggaph 2004 Papers, pages

689–694. 2004.

[15] Xihui Liu, Zhe Lin, Jianming Zhang, Handong Zhao, Quan

Tran, Xiaogang Wang, and Hongsheng Li. Open-edit: Open-

domain image manipulation with open-vocabulary instruc-

tions. arXiv preprint arXiv:2008.01576, 2020.

[16] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.

Deep photo style transfer. In Proc. of the IEEE Conf. on

computer vision and pattern recognition, pages 4990–4998,

2017.

[17] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[18] Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gian-

franco Doretto. Few-shot adversarial domain adaptation. In

Advances in neural information processing systems, pages

6670–6680, 2017.

[19] Saeid Motiian, Quinn Jones, Stanislav Pidhorskyi, and Gian-

franco Doretto. Unsupervised learning of paired style statis-

tics for unpaired image translation. In CVPR Workshops,

pages 112–121, 2019.

[20] Yingge Qu, Tien-Tsin Wong, and Pheng-Ann Heng. Manga

colorization. ACM Transactions on Graphics (TOG), pages

1214–1220, 2006.

[21] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In Advances in neural information pro-

cessing systems, pages 2234–2242, 2016.

[22] Daniel Sỳkora, John Dingliana, and Steven Collins. Lazy-

brush: Flexible painting tool for hand-drawn cartoons. In

Computer Graphics Forum, pages 599–608, 2009.

[23] Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller.

Transferring color to greyscale images. In Proc. of the 29th

annual Conf. on Computer graphics and interactive tech-

niques, pages 277–280, 2002.

[24] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas

Huang. Deep GrabCut for object selection. In Proc. of

the British Machine Vision Conference, pages 182.1–182.12,

2017.

[25] Liron Yatziv and Guillermo Sapiro. Fast image and video

colorization using chrominance blending. IEEE transactions

on image processing, pages 1120–1129, 2006.

[26] Seungjoo Yoo, Hyojin Bahng, Sunghyo Chung, Junsoo Lee,

Jaehyuk Chang, and Jaegul Choo. Coloring with limited

data: Few-shot colorization via memory augmented net-

works. In Proc. of the IEEE Conf. on computer vision and

pattern recognition, pages 11283–11292, 2019.

[27] Bo Zhang, Mingming He, Jing Liao, Pedro V Sander, Lu

Yuan, Amine Bermak, and Dong Chen. Deep exemplar-

based video colorization. In Proc. of the IEEE Conf. on

computer vision and pattern recognition, pages 8052–8061,

2019.

[28] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In European Conf. on computer vision,

pages 649–666, 2016.

[29] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,

Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time

user-guided image colorization with learned deep priors.

arXiv preprint arXiv:1705.02999, 2017.

[30] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proc. of the IEEE Int’l

conf. on computer vision, pages 2223–2232, 2017.

1496

