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Abstract

This paper studies visual search using structured

queries. The structure is in the form of a 2D composition

that encodes the position and the category of the objects.

The transformation of the position and the category of the

objects leads to a continuous-valued relationship between

visual compositions, which carries highly beneficial infor-

mation, although not leveraged by previous techniques. To

that end, in this work, our goal is to leverage these continu-

ous relationships by using the notion of symmetry in equiv-

ariance. Our model output is trained to change symmetri-

cally with respect to the input transformations, leading to a

sensitive feature space. Doing so leads to a highly efficient

search technique, as our approach learns from fewer data

using a smaller feature space. Experiments on two large-

scale benchmarks of MS-COCO [29] and HICO-DET [4]

demonstrates that our approach leads to a considerable

gain in the performance against competing techniques.

1. Introduction

Visual image search is a core problem in computer vi-

sion, with many applications, such as organizing photo al-

bums [44], online shopping [19], or even in robotics [3,38].

Two popular means of searching for images are either text-

to-image [6, 26] or image-to-image [41, 53]. While simple,

text-based search could be limited in representing the in-

tent of the users, especially for the spatial interactions of

objects. Image-based search can represent the spatial inter-

actions, however, an exemplar query may not be available

at hand. Due to these limitations, in our work, we focus on

a structured visual search problem of compositional visual

search.

The composition is one of the key elements in photogra-

phy [40]. It is the spatial arrangement of the objects within

the image plane. Therefore, composition offers a natural

way to interact with large image databases. For example, a

big stock image company already offers tools for its users to

find images from their databases by composing a query [1].

The users compose an abstract, 2D image query where they

Query Retrieval

Figure 1: The compositional visual search takes a 2D can-

vas (left) as a query and then returns the relevant images

that satisfy the object category and location constraints.

Retrieval set (right) is in descending order by their mean

Intersection-over-Union with the query canvas. Observe

how small changes in the composition of the horse and the

person lead to drastic transformations within the images. In

this work, our goal is to learn these transformations for ef-

ficient compositional search.

arrange the location and the category of the objects of inter-

est, see Figure 1.

Compositional visual search is initially tackled as a

learning problem [51], recently using deep Convolutional

Neural Networks (CNN) [31]. Mai et al. treats the problem

as a visual feature synthesis task where they learn to map

a given 2D query canvas to a 3 dimensional feature repre-

sentation using binary metric learning which is then used

for querying the database [31]. We identify the following

limitations with this approach: i) The method requires a

large-dimensional feature (7×7×2048 ≈ 100k) to account

for the positional and categorical information of the input

objects, limiting the memory efficiency especially while

searching across large databases. ii) The method requires

a large-scale dataset (≈ 70k images) for training, limiting

the sample efficiency. iii) The method only considers bi-
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nary relations between images, limiting the compositional-

awareness. To overcome these limitations, in our work, we

introduce composition-aware learning.

Compositional queries exhibit continuous-valued simi-

larities between each other. Objects within the queries

transform in two major ways: 1) Their positions change

(translational transformation), 2) Their categories change

(semantic transformation), see Figure 1. Our composition-

aware learning approach takes advantage of such transfor-

mations using the principle of equivariance, see Figure 2.

Our formulation imposes the transformations within the in-

put (query) space to have a symmetrical effect within the

output (feature) space. To that end, we develop novel rep-

resentations of the input and the output transformations, as

well as a novel loss function to learn these transformations

within a continuous range.

Our contributions are three-fold:

I. We introduce the concept of composition-aware learn-

ing for structured image search.

II. We illustrate that our approach is efficient both in

feature-space and data-space.

III. We benchmark our approach on two large-scale

datasets of MS-COCO [29] and HICO-DET [4] against

competitive techniques, showing considerable im-

provement.

2. Related Work

Compositional Visual Search. Visual search mostly fo-

cused on text-to-image [5, 6, 26, 33, 45, 47] or image-to-

image [2,12,13,18,25,27,41,42,43,46,53] search. Text-to-

image is limited in representing the user intent, and a visual

query may not be available for image-to-image search. Re-

cent variants also combine the compositional query either

with text [11] or image [30]. In this paper, we focus on

compositional visual search [31, 37, 51]. A user composes

an abstract, 2D query representing the objects, their cate-

gories, and relative locations which is then used to search

over a potentially large database. A successful example is

VisSynt [31] where the authors treat the task as a visual fea-

ture synthesis problem using a triplet loss function. Such

formulation is limited in the following ways: 1) VisSynt is

high dimensional in feature-space (100k dimensional), lim-

iting memory efficiency, 2) VisSynt requires a large train-

ing set (70k examples), limiting data efficiency, 3) Vis-

Synt does not consider the compositional transformation

between queries due to binary nature of the triplet loss [15],

limiting the generalization capability of the method. In our

work, inspired by the equivariance principle, we propose

composition-aware learning to overcome these limitations

and test our efficiency and accuracy on two well-established

benchmarks of MS-COCO [29] and HICO-DET [4].
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Figure 2: At the core of our technique is the principle of

equivariance, which enforces a symmetrical change within

the input and output spaces. We achieve this via map-

ping a query Q and its transformed version Q′ = Ti(Q)
to a feature space where the transformation holds g(Q′) =
To(g(Q)).

Learning Equivariant Transformations. Equivariance is

the principle of the symmetry: Any change within the in-

put space leads to a symmetrical change within the output

space. Such formulation is highly beneficial, especially for

model and data efficiency [10]. In computer vision, equiv-

ariance is used to represent transformations such as object

rotation [8, 48, 49], object translation [20, 32, 50, 52] or dis-

crete motions [16,17]. Our composition-aware learning ap-

proach is inspired by these works, as we align the contin-

uous transformation between the input (query) and output

(feature) spaces, see Figure 2.

Continuous Metric Learning. Continuous metric learning

takes into account the continuous transformations between

the image instances [23, 24, 35], since such relationships

can not be modeled with conventional metric learning tech-

niques [7, 15]. Recently, Kim et al. [23] proposed LogRa-

tio, a loss function that matches the relative ratio of the in-

put similarities with the output feature similarities. It yields

significant gain over competing methods for pose and im-

age caption search. Since compositional visual search is a

continuous-valued problem, we bring LogRatio as a strong

baseline to this problem. LogRatio intrinsically assumes a

dense set of relevant images given an anchor point for an

accurate estimation. However, compositional visual search

follows Zipf distribution [36], where, given a query, only a

few images are relevant, limiting LogRatio performance.
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Figure 3: Our composition-aware learning approach. Our approach is trained with pairs of queries (Q,Q′) with identical

backbones. 1) Given a pair of queries, we sample the corresponding images and feed them through a frozen ResNet-50 up

to layer-4 of size 7 × 7 × 2048. 2) Then, we process these activations with our light-weight 3-layer CNN g(·) to map the

channel dimension to a smaller size (i.e. 2048 → 256) while preserving the spatial dimension of 7. 3) In the mean-while,

we compute the input (Ti) and the output (To) transformations, which are then forced to have similar values using the loss

function.

3. Composition-aware Learning

Our method consists of three building blocks:

1. Composition-aware transformation that computes the

transformations in the input and output space,

2. Composition-aware loss function that updates the net-

work parameters according to the divergence of input-

output transformations,

3. Composition-equivariant CNN, used as the backbone

to learn the transformation.

Method Overview. An overview of our method is provided

in Figure 3. Our method takes as an input a 2D composi-

tional query q ∈ R
H×W , where H,W are the height and

width of the query canvas. This query contains a set of ob-

jects, along with their categories and positions (in the form

of bounding boxes). The goal of our method is, given a tar-

get dataset of images, we want to retrieve the top-k images

that are most relevant to the query q – i.e. relevant to both

the objects and their positions. Each image I can initially be

represented as feature x ∈ R
H′

×W ′
×C′

using the last con-

volutional layer of an off-the-shelf, ImageNet pre-trained

deep CNN, e.g. ResNet-50 [14]. Such feature x preserves

the spatial information as well as the object category infor-

mation within the image I . Furthermore, we assume access

to a tuple (c, x, I), where c ∈ R
H×W×C is a compositional

map constructed using the object categories and bounding

boxes of the query q. In addition, let q′ = T (q) be the

transformed version of the query q, and (c′, x′, I ′) are the

corresponding composition map, CNN feature and the im-

age. The transformation T can correspond to a translation

of object location(s), or a change in object categories in q.

Our method trains a 3-layer CNN gΘ(·) with the parameters

Θ, by minimizing the following objective function:

min
Θ

(Lcomp(Ti(c, c
′), To(gΘ(x), gΘ(x

′)))), (1)

where Ti measures the input transformation between com-

positional maps c and c′, and To measures the transfor-

mation between output feature maps g(x) and g(x′), and

Lcomp is the composition-aware loss function measuring

the discrepancy between these transformations. In the fol-

lowing, we first describe the compositional map c, and the

input and the output transformations Ti and To. Then, we

describe composition-aware loss function Lcomp. Finally,

we describe our CNN architecture gΘ(·) that learns the

mapping. We drop Θ from now for the sake of clarity.

1703



3.1. Compositionaware Transformation

The goal of the composition-aware transformation is to

quantify the amount of transformation between the input

compositions (c, c′) and output feature maps (g(x), g(x′))
in the range [0, 1]. For this, first, we construct composi-

tional maps from the input user queries, then we measure

the input transformation using these maps, and finally we

describe the output transformation.

Constructing compositional map c. First, given a user

query q that reflects the category and the position of the

objects, we create a one-hot binary feature map c of size

R
H,W,C where [H,W ] are the spatial dimension of the com-

position map (H = W = 32), and C is the number of object

categories (i.e. 80 for MS-COCO [29]). In this map, only

the corresponding object locations and the categories are set

to 1s and otherwise 0s. This simple map encodes both the

positional and categorical information of the input composi-

tion, which we will then use to measure the transformation

within the input space. We apply the same procedure to the

transformed query q′ which yields c′. Now given the pair of

compositional maps (c, c′), we can quantify the input trans-

formation.

Input transformation Ti. Then, our goal is to measure the

similarity between these two compositions as:

Ti(c, c
′) =

∑
xyz(cxyz · c

′
xyz)∑

xyz ✶(cxyz + c′xyz)
, (2)

where ✶ is an indicator function that is 1 for only non-zero

pixels. This simple expression captures the proportion of

the intersection of the same-category object locations in the

numerator and the union of the same-category object loca-

tions in the denominator. Ti output is in the range [0, 1],
and will return 1 if the two compositions c and c′ are iden-

tical in terms of object location and the categories, and 0 if

no objects share the same location. Ti will smoothly change

with the translation of the input objects in the compositions.

Given the input transformation, we now need to compute

the output transformation which will then be correlated with

the changes within the input space.

Output transformation To. Output transformation is com-

puted as the dot product between the output features as fol-

lows:

To(g(x), g(x
′)) = g(x)× (g(x′))⊤, (3)

where (g(x′))⊤ is the transpose of the output feature g(x′).
We choose the dot product due to its simplicity and con-

venience in a visual search setting. To can take arbitrary

values in the range [−∞,∞]. In the following, we describe

how to bound these values and measure the discepancy be-

tween the input-output transformations Ti and To.

3.2. Compositionaware Loss

Given the input-output transformations, we can now

compute their discrepancy to update the parameters Θ of the

network g(·). A naive way to implement this would be to

minimize the Euclidean distance between the input-output

transformations as:

min
Θ

‖Ti − σ(To)‖, (4)

where σ(·) is the exponential non-linearity 1
1+exp (·) to

bound To in range [0, 1]. However, such a function gen-

erates unbounded gradients therefore leading to instabilities

during training [28], and reducing the performance, as we

show through our experiments. Instead, cross entropy is

a stable and widely used function that is used to update the

network weights. However, cross entropy can only consider

binary labels as (0, 1) whereas in our case the transforma-

tion values vary within [0, 1]. To that end, we derive a new

loss function inspired by the cross entropy that can still con-

sider in-between values.

Consider that our goal is to maximize the correlation be-

tween input-output transformations as:

max
Θ

(Ti · σ(T
⊤
o )). (5)

We can also equivalently minimize the negative of this

expression due to convenience:

min
Θ

(−Ti · σ(T
⊤
o )). (6)

The divergence of To and Ti at the beginning of the train-

ing leads to instabilities during the training. To overcome

this, we include additional regularization via the following

two terms as:

min
Θ

(To − Ti · T
⊤
o + log(1 + exp(−To))), (7)

where the two terms To and log(1+exp(−To)) penalize for

larger values of To in the beginning of the training, leading

to lesser divergence from Ti. To further avoid over-flow, the

final form of the regularizer terms are:

min
Θ

(max(To, 0.)− Ti · T
⊤
o + log(1 + exp(−‖To‖))).

(8)

This is the final expression for Lcomp which we use

throughout the training of our network g(·).
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3.3. CompositionEquivariant Backbone

Our model g(·) is a lightweight 3-layers CNN that

maps the bottleneck representation x obtained from the pre-

trained network ResNet-50 of dimension R
7×7×2048 to a

smaller channel dimension of the same spatial size, i.e.

R
h×w×C , such as 7× 7× 256 unless otherwise stated. Our

intermediate convolutions are 2048 → 1024 → 512 →
256. The first two convolutions use 3 × 3 kernels whereas

the last layer uses 1× 1. We use stride= 1 and apply zero-

padding to preserve the spatial dimensions which are cru-

cial for our task. We use LeakyReLU with slope param-

eter s = 0.2, batch-norm and dropout with p = 0.5 in be-

tween layers. We do not apply any batch-norm, dropout,

or LeakyReLU at the output layer as this leads to inferior

results.

Since our goal is to preserve positional and categorical

information, a network with standard layers may not be a

proper fit. Convolution and pooling operations in standard

networks are shown to be lacking translation (shift) equiv-

ariance, contrary to wide belief [52]. To that end, we use

the anti-aliasing trick suggested by [52] to preserve shift

equivariance throughout our network. Specifically, before

computing each convolution, we apply a Gaussian blur on

top of the feature map. This simple operation helps to keep

translation information within the network layers.

4. Experimental Setup

4.1. Datasets

Constructing Queries. To evaluate our method objectively,

without relying on user queries and studies, we rely on

large-scale benchmarks with bounding box annotations. We

evaluate our method on MS-COCO [29] and HICO-Det [4].

The training is only conducted on MS-COCO. Given an im-

age, we select at most 6 objects based on their area as is the

best practice in [31].

MS-COCO. MS-COCO is a large-scale object detection

benchmark. It exhibits 80 object categories such as ani-

mals (i.e. dog, cat, zebra, horse) or house-hold objects. The

dataset contains 120k training and 5k validation images.

We split the training set to two mutually exclusive random

sets of 50k training and 70k gallery images. The number of

objects in each image differs in the range [1, 6].

HICO-DET. HICO-DET is a large-scale Human-object in-

teraction detection benchmark [4, 21]. HICO-DET builds

upon 80 MS-COCO object categories, and collects inter-

actions for 117 different verbs, such as ride, hold, eat or

jump, for 600 unique <verb, noun> combinations. In-

teractions exhibit fine-grained spatial configurations which

makes it a challenging test for the compositional search.

The dataset includes 37k training and 10k testing images.

The training images are used as the gallery set and the test-

ing set is used as the query set. A unique property of the

dataset is that 150 interactions have less than 10 examples

in the training set, which means a query can only match

very few images within the gallery set, leading to a chal-

lenging visual search setup [22]. HICO-DET is only used

for evaluation.

4.2. Evaluation Metrics

We evaluate the performance of the proposed model with

three metrics. Standard mean Average Precision metric as

is used in VisSynt [31]. Also, we borrow continuous Nor-

malized Discounted Cumulative Gain (cNDCG) and mean

Relevance (mREL) metrics used in continuous metric learn-

ing literature [23, 24, 35] All metric values are based on

the mean Intersection-over-Union (mIOU) scores between

a query and all gallery images described below. For all three

metrics, higher indicates better performance.

4.2.1 Mean Intersection-over-Union

To measure the relevance between a query and a retrieved

image, we resort to mean Intersection-over-Union as is the

best practice [31]. Concretely, to measure the relevance be-

tween a Query q and a retrieved image r

mIOU(q, r) =
1

|Bq|

∑

bi∈BQ

max
bj∈BI

✶(k(bi) = k(bj))
bi ∩ bj

bi ∪ bj
,

(9)

where BQ and BI represents all the available objects in the

query Q and retrieved image I respectively, ✶ is an indicator

function that checks whether objects i and j are from the

same class k, which is then multiplied with the intersection-

over-union between these two regions. This way, the metric

measures both the spatial and semantic localization of the

query object.

4.2.2 Metrics

mAP. Based on the relevance score, we use mean Average

Precision to measure the retrieval performance. We first

use a heuristic relevance threshold ≥ 0.30 as recommended

in [31], to convert continuous relevance values to discrete

labels. Then, we measure the mAP values @{1, 10, 50}.

mAP metric does not respect the continuous nature of

the compositional visual search since it binarizes contin-

uous relevance values with a heuristic threshold. To that

end, we resort to two additional metrics, continuous adap-

tation of NDCG and mean Relevance values which are used

to evaluate continuous-valued metric learning techniques

in [23, 24, 35].
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cNDCG. We make use of the continuous adaptation of the

Normalized Discounted Cumulative Gain as follows:

cNDCG(q) =
1

Zk

K∑

i=1

2ri

log2(i+ 1)
, (10)

that takes into account both the rank and the scores of the

retrieved images and the ground truth relevance scores. In

our experiments we report cNDCG@{1, 50, 100}.

mREL. mREL measures the mean of the relevance scores

of the retrieved images per query, which is then aver-

aged over all queries. In our experiments, we report

mREL@{1, 5, 20}. We also note the oracle performance

where we assume access to the ground truth mIOU values

to illustrate the upper bound in the performance.

4.3. Performance Comparison

ResNet-50 [14]. We use the activations from layer-4 of

ResNet-50 to retrieve images. In this work, we build upon

this feature since it captures the object semantics and po-

sitions within the feature map of size R
7×7×2048. We also

experimented with the earlier layers, however we found that

layer-4 performs the best. The network is pre-trained on Im-

ageNet [9].

Textual. We assume access to the ground truth object labels

for a query and retrieve images that contain the same set of

objects. This acts as a textual query baseline and is blind to

the spatial information.

VisSynt [31]. This baseline uses a triplet loss formulation

coupled with a classification loss to perform a composi-

tional visual search. We use the same backbone architec-

ture g(·) and the same target feature ResNet-50 to train this

baseline for a fair comparison.

LogRatio [23]. This method is the state-of-the-art tech-

nique in continuous metric learning, originally evaluated on

human pose and image caption retrieval. In this work, we

bring this technique as a strong baseline since the visual

composition space also exhibits continuous relationships.

We use the authors code 1 and the recommended setup. We

convert mIOU scores to distance values as 1−mIOU since

the method minimizes the distances.

Implementation details. We use PyTorch [39] to imple-

ment our method. We use the same backbone (g(·)) and

the input feature (ResNet-50) for all the baselines. All the

models are trained for 20 epochs using SGD with momen-

tum (= 0.9). We use an initial learning rate of 10−2 which

is decayed exponentially with 0.004 at every epoch. We use

1https://github.com/tjddus9597/Beyond-Binary-Supervision-CVPR19

weight decay (wd = 0.005) for regularization. In practice,

we compute input-output transformations between all ex-

amples within the batch to get the best out of each batch.

We set the batch size to 36, and given each query in the

batch, we sample 1 highly relevant and 1 less relevant ex-

amples for each query, which leads to an effective batch size

of 36× 3 = 108.

5. Experiments

In this Section, we present our experiments. For Experi-

ments 1− 2, we use all three metrics @k = 1. For the third

experiment of the State-of-the-Art comparison, we provide

performance at different k values.

5.1. Ablation of Compositionaware Learning

Euclidean vs. Composition-aware loss. In our first ab-

lation study, we compare the Euclidean loss described in

Equation 4 with our composition-aware loss. The results

are presented in Table 1.

mAP cNDCG mREL

Euclidean 66.87 39.73 28.49
CAL (ours) 81.17 51.18 35.96

Table 1: Euclidean vs. Composition-aware loss.

It is observed that Composition-aware loss outperforms

Euclidean alternative by a large-margin, confirming the ef-

fectiveness of the proposed loss function.

mAP cNDCG mREL

Lingual 65.14 27.77 19.56
Visual (ours) 81.17 51.18 35.96

Table 2: Lingual vs. Visual input transformation.

Lingual vs. Visual transformation. In our second ablation

study, we test the domain of the input transformation (Eq 2).

In our work, we proposed a visual-based input transfor-

mation whereas VisSynt [31] utilizes a lingual-based input

transformation using semantic Word2vec embeddings [34].

As can be seen from Table 2, vision-based transformation

outperforms the lingual counterpart, since it can better en-

code the relationships within the visual world.

5.2. Feature and Data Efficiency

In this experiment, we test the efficiency. Specifically,

we first test the feature-space efficiency to see how the per-

formance changes with varying sizes of the query embed-

ding. Second, we test the data-space efficiency by sub-

sampling the training data.
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Figure 4: Feature efficiency. Our model performs better even when the feature-space is compact.
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Figure 5: Data efficiency. Our model outperforms VisSynt and LogRatio within small data regime.

Feature-space efficiency. We change the feature embed-

ding size by varying the number of channels as 64, 128, 256
by keeping the spatial dimension of 7× 7. We compare our

approach to VisSynt [31] and LogRatio [23]. The results

can be seen from Figure 4.

As can be seen, our approach performs the best for all

metrics and across all feature sizes. This indicates that

composition-aware learning is effective even when the fea-

ture size is compact (i.e. 7×7×64). Another observation is

that the performance of CAL increases with the increased

feature size, whereas the performance of the two other tech-

niques is lower. This indicates that CAL can leverage big-

ger feature sizes while other objectives tend to over-fit.

It is concluded that CAL is a feature-efficient approach

for compositional visual search.

Data-space Efficiency. In this experiment we vary the

number of training data as 1k, 10k, 50k. The results can

be seen from Figure 5.

Our method performs the best regardless of the training

size. The gap in the performance is even more significant

when the training set size is highly limited (i.e. 1k only),

confirming the data efficiency of the proposed approach.

It is concluded that CAL can learn more from fewer

examples by leveraging the continuous-valued transforma-

tions and the regularized loss function.

5.3. Comparison with the StateoftheArt

In the last experiment, we compare our approach to com-

peting techniques on MS-COCO in Figure 6 and HICO-

DET in Figure 7 datasets.

As can be seen, our method outperforms the compared

baselines in both datasets, and in 3 metrics. This confirms

the effectiveness of composition-aware learning for object

(MS-COCO) and object-interaction (HICO-DET) search.

The results in HICO-DET are much lower compared to MS-

COCO since 1) HICO-DET has a higher number of query

images (10k vs. 5k), 2) Many queries have only a few rele-

vant images within the gallery set (as can be seen from the

oracle performance of only 0.19 mREL in Figure 7), 3) No

training is conducted on HICO-DET, revealing the transfer-

learning abilities of the evaluated techniques.

Qualitative analysis. Lastly, we showcase a few qualita-

tive examples in Figure 8. First, as a sanity check, we illus-

trate single object queries (stop signs). As can be seen, our

method successfully retrieves images relevant to the query

category and the position. Then, we illustrate some object-

interaction examples, such as human-on-bench, or human-

with-tennis racket, or human-on-skateboard. Our model can

still generalize to such examples, meaning that composi-

tional learning benefits the case of the object interaction.
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Figure 6: Benchmarking on MS-COCO [29]. Our method outperforms existing techniques for all three metrics.
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Figure 7: Benchmarking on HICO-DET [4]. Our method transfers better to HICO-DET dataset for object-interaction search.

stop sign

stop sign

 person

 t. racket

skateboard

 person

 bench

 person

Query Retrieval

Figure 8: Qualitative examples. First two rows show a

single-object query, and last three rows show multi-object

queries. As can be seen, our approach considers the object

category, location and interaction into account while retriev-

ing examples.

We illustrate a failure case in the last row, where our model

retrieves a mix of snowboard-skateboard objects given the

query of a skateboard. This indicates that our model per-

formance can be improved by incorporating scene context,

which we leave as future work.

6. Conclusion

In this work we tackled a structured visual search prob-

lem called compositional visual search. Our approach is

based on the observation that the visual compositions are

continuous-valued transformations of each other, carrying

rich information. Such transformations mainly consists of

the positional and categorical changes within the queries.

To leverage this information, we proposed composition-

aware learning which consists of the representation of the

input-output transformations as well as a new loss func-

tion to learn these transformations. Our experiments reveal

that defining the transformations within the visual domain

is more useful than the lingual counterpart. Also, a regu-

larized loss function is necessary to learn such transforma-

tions. Leveraging transformations with this loss function

leads to an increase in the feature and data efficiency, and

outperforms existing techniques on MS-COCO and HICO-

DET. We hope that our work will inspire further research to

incporporate structure for the structured visual search prob-

lems.
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