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Abstract

The imbalanced distribution of the training data makes

the networks biased to the frequent classes. Existing

methods to resolve the problem involve re-sampling, re-

weighting, or cost-sensitive learning. Most of them antici-

pate that emphasizing the minority classes during the train-

ing would help the network to learn better representations.

In this paper, we propose a method for reparameterizing

softmax classifiers’ offsets so that training is less sensitive

to class imbalance. We first observe that the trained offset of

the baseline linear classifier is biased toward the majority

classes due to the imbalance. Instead of the trained offset,

we define the estimated offset, and constrain it to be uniform

over the classes. In experiments with long-tailed bench-

marks, our method exhibits the best performance. These

experiments verify that our proposed method effectively en-

courages the networks to learn better representations for

minority classes while preserving the performance for the

majority classes.

1. Introduction

Recently, numerous models based on deep neural net-

works (DNNs) have shown remarkable advances in various

fields of the machine learning. Among them, the recogni-

tion is the most classic and the most important task. Net-

works trained for recognition are widely used as backbone

networks for other tasks. A better performing architecture

on the recognition often induces the improved performance

by providing features of higher quality. Consequently, there

has been intensive research for finding better-performing

networks. The size and complexity of state-of-the-art archi-

tectures have been growing over time, which has led to the

growth of model capacity. This grown capacity requires a

large volume of the training data and, as a consequence, it is

not surprising any more that a machine surpasses the human

performance in recognition tasks. From this perspective,

the outstanding performance of DNNs is grounded on the

large volume of the training data. With a larger dataset, the

same network would perform better[18], but if the provided

data is insufficient, the over-fitting problem would deterio-

rate the model performance, despite its superior complexity

and capacity.

The data deficiency problem arises in many tasks. In this

study, we particularly aim to resolve the class imbalanced

learning, which is a special case of the data deficiency. In

class imbalanced learning, we assume there exists an ex-

treme disparity among the number of samples, in which

the frequent classes have sufficient amount of training sam-

ples, whereas the infrequent classes have only a few sam-

ples for training. The main challenge we confront is that

a few majority classes dominate the whole training process

[8]. If we use all the data we have, the over-fitting problem

arises for the minority classes due to the insufficient train-

ing samples. As only a few samples are provided from the

minority classes, the network can memorize the data, result-

ing in poor generalization. Conversely, if we discard sam-

ples from majority classes, the overall volume of the dataset

shrinks so that we should employ smaller network architec-

ture. It would result in worse performance. The simplest

and straight-forward solution is to collect a large and well-

balanced dataset. Unfortunately, it may not be available due

to the nature of the various target domain. To resolve this

problem, the importance of the decision boundary has been

pointed out in [8, 10]. They showed that re-training and

adjustment of the classifier can improve the overall perfor-

mance. Specifically, [10] showed that regulation of the clas-

sifier can also positively affect the feature representation.

To this end, we further investigate the role of the clas-

sifier and propose a novel method to de-bias a neural net-

work with a biased sample frequency. The high-level idea

of our method is to draw a pair-wise decision boundary

through the middle of the two feature distributions. When

the prior distribution of the training data is highly imbal-

anced, it is known that the decision boundary is leaned to-

ward the minority classes [4, 10]. Assuming that each class
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is identically distributed, the ideal decision boundary passes

through the middle of the two class-conditional distribu-

tions. Although numerous works have investigated this is-

sue, the offset term of the classifier has not been highlighted

in the literature, and the offset is often ignored or fixed as

zero. However, we found that using a zero-fixed offset is

not enough to resolve all the penalties caused by the im-

balance. To remove the unintended penalty, we define an

empirical offset for the top layer using the feature mean of

each class. Unlike the trained offset, the empirical offset

is independent of the prior distribution that possesses a se-

vere imbalance. In addition, we regulate them to have the

uniform value. We geometrically show that the proposed

structure of the offset can achieve the goal of our high-level

idea: decision boundary in the middle. Then, we modify the

empirical offset into the estimated offset, which is a learn-

able alternative of the empirical offset. The overall concept

of our high-level idea is similar to that in [10]. The main

difference lies in the methodology of inducing the decision

boundary to be drawn in the middle. In [10], they force the

weight vectors to have the same magnitude. However, we

regulate the boundary with an additional loss term.

In summary, our main contributions are as follows: 1) we

show that when an offset term of the linear classifier is not

used, an advantage is in fact given to the majority classes,

2) we propose a novel method to induce uniform offset term

independent of the class cardinality, and 3) we experimen-

tally show that our method outperforms the existing meth-

ods on real image datasets with a long-tailed distribution.

2. Method

In this section, we describe our detailed method. We

investigate the offset term of the softmax classifier on the

top of the trained neural network. Using Gaussian discrim-

inative analysis, we show how the imbalanced sample fre-

quency affects the offset. Then, we introduce an alternative

approach estimating the offset and propose the estimated

offsets to have a uniform value for all the classes. We

also provide a geometrical interpretation of our proposed

method.

2.1. Preliminary

Suppose we have a training dataset D = {(xi, yi)}
N
i=1

of N data-label pairs, where xi ∈ R
n denotes the n dimen-

sional input data, and yi ∈ {1, ...,K} denotes the corre-

sponding label; we consider a K-class categorization prob-

lem. We assume that each data has a single label. Therefore,

D can be further segmented into K subsets; D =
⋃K

j=1 Dj ,

where Dj is a collection of data that has j as its label. With-

out loss of generality, we can set the order of the class

cardinality as |D1| ≥ ... ≥ |DK |. Given the dataset, a

conventional framework to train a model is the empirical

risk minimization (ERM). With an appropriate loss func-

tion L(xi, yi; θ), the goal of the ERM is to minimize the

overall risk:

min
θ

E(x,y)∼D[L(x, y; θ)], (1)

where θ denotes the learnable parameters. Let f : Rn →
R

d be a neural network followed by a softmax classifier,

where d denotes the feature dimension. The softmax clas-

sifier is a linear classifier with weight vectors and off-

set. The neural network estimates the posterior probabil-

ity of xi being categorized as class k; P̂ r(yi = k|xi) =
exp(wT

k f(xi)+wk0)∑
j
exp(wT

j
f(xi)+wj0)

, where wj and wj0 denote, respec-

tively, the weight vector and the offset for the j-th node of

the softmax classifier.

In this study, we further assume that the class-conditional

feature distribution follows the multivariate Gaussian dis-

tribution. More specifically, we assume that each class-

conditional distribution of the feature vector f(x) shares

the same covariance matrix. In fact, this assumption is al-

ready lain underneath the softmax classifier because the lin-

ear decision boundary implies a tied covariance matrix in

the Gaussian discriminant analysis. Therefore, we can con-

vert the softmax classifier into a generative classifier with-

out an additional training process [1].

Then, we obtain a solution for the the weight vectors and

offsets in closed form.

wk = Σ
−1µk

wk0 = lnPr(yi = k)−
1

2
µT
kΣ

−1µk,
(2)

where Σ denotes the shared covariance matrix, and µk de-

notes the mean of the class-conditional distribution for k-th

class. Specifically, when Eq.(2) holds, the following equa-

tion is satisfied:

exp(wT
k f(xi) + wk0)∑

j exp(w
T
j f(xi) + wj0)

=
Pr(xi|yi = k)Pr(yi = k)

ΣjPr(xi|yi = j)Pr(yi = j)
.

(3)

In Eq.(3), the left hand side is the probability of xi be-

ing classified into the kth class in the softmax classifier,

whereas the probability in the generative classifier is located

on the right hand side. The related theoretical details are re-

ported in [1]. Under the ERM framework, we rarely investi-

gate the mean and covariance matrix of a class-conditional

distribution. However, Eq.(2) implies that they are closely

related with the trained parameters.

2.2. How the class imbalance affects classifier offset

In class imbalanced learning, the major challenge is the

disparity between the prior distributions of the training set

and the test set. The prior distribution is often regarded as a

uniform distribution in the test time, whereas highly imbal-

anced in the training time [2, 4, 8]. Fig.1(a) shows the dif-

ference of the prior distributions between training and test
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Figure 1. On ImageNet-LT dataset with ResNet-10 (a)Prior distribution, (b)Trained offsets, and (c)Empirical offset( 1
2
µ̃T

k wk). The network

is trained with ERM. Figures show that the trained offset follows prior distribution. The trend of the empirical offset also follows the prior

distribution.

time. As the network learns directly from the data distribu-

tion, the network would learn the imbalanced prior distri-

bution of the training data. Note that the class indices are

sorted by the class cardinality; Pr(yi = j) > Pr(yi = k)
if j < k. In other words, the learned prior distribution in

Eq.(2) would follow the prior distribution of the training

set. The offset term of Eq.(2) shows how the imbalance

deteriorates the deep neural networks. We can notice that

the first term of the offset (lnPr(yi = k)) would be af-

fected directly from the prior distribution that the network

has learned. This implies that the neural network is penal-

izing the minority classes by using the offset term. Fig.1(a)

illustrates lnPr(yi = k) and the number of samples and

Fig.1(b) shows the trained offset wk0 for each class. They

show that the trained offset follows the sample frequency.

A simple, yet oppressive method to avoid the penalty that

comes from the imbalanced prior distribution Pr(yi = k)
in Eq.(2) is not to use the offset in the softmax layer. That

is, fix wk0 as zero for all k. By employing the zero-fixed

offset, the classifier outputs a uniform posterior distribution

for a zero signal. Further, several studies do not use the

offset of their softmax classifier [2, 8, 10, 13]. The common

underlying assumption in these prior works and in this study

is that Pr(yi = k) should have the same value for all classes

in the test scenario.

However, Eq.(2) shows that the offset contains an addi-

tional term (- 12µ
T
kΣ

−1µk). Therefore, the zero-fixed off-

set can be interpreted in two different ways: 1) the vari-

ation among µT
kΣ

−1µk for all k ∈ Y is negligible, and,

thus, we are ignoring this term; otherwise 2) we are adding
1
2µ

T
kΣ

−1µk for each class. To investigate which interpre-

tation is correct, we need to estimate µT
kΣ

−1µk. However,

it contains matrix inversion operation, which is computa-

tionally inefficient and unstable. Furthermore, it is highly

uncertain for the minority classes owing to their low sam-

pling rate. Instead, we can find an alternative way for the

estimation using Eq.(2). Considering the formulation of the

trained weight vector, we can write µT
kΣ

−1µk = µT
kwk.

Using the feature mean, we can approximate µT
kΣ

−1µk ≈

µ̃T
kwk, where µ̃k = 1

|Dk|

∑
xi∈Dk

f(xi). Here, we define

the empirical offset as w
emp
k0 = 1

2 µ̃
T
kwk. Fig.1 (c) presents

the empirical offset for each class. They are calculated with

a network trained by ERM, which verifies that the first inter-

pretation barely holds. It is clearly not negligible. It shows

definite trend following the class cardinality.

Consequently, we should employ the second interpre-

tation: discarding the offset term is equivalent to adding
1
2µ

T
kΣ

−1µk for each class. One can notice that 1
2µ

T
kΣ

−1µk

has larger value for the majority classes in Fig.1(c). That is,

discarding the offset term in the classifier is, in fact, the

same as adding a larger value for the majority classes, pe-

nalizing the minority classes. In other words, the addition of
1
2µ

T
kΣ

−1µk is an opportunity cost of resolving the problem

of imbalanced prior distribution. To cancel out the penalty,

we reformulate the posterior probability with the empirical

offset: Pr(yi = k|xi) =
exp(wT

k f(xi)−wemp

k0
)

∑
j
exp(wT

j
f(xi)−wemp

j0
)
. Note that

the empirical offset should be subtracted, not added. By

employing the empirical offset, we can discard the penalty

caused by the prior information from the classifier.

In addition, the empirical offset makes the decision

boundary being drawn in the middle. If we define djk as

a distance from µj to the decision boundary between class

j and k, we can calculate djk with the weight vectors and

class centers. By substituting Σ−1µj for wj , we can calcu-

late djk as

djk =
|µT

j (wj − wk)− w
emp
j0 + w

emp
k0 |

||wj − wk||2

=
| 12 (µ

T
j Σ

−1µj + µT
kΣ

−1µk)− µT
j Σ

−1µk|

||wj − wk||2
.

(4)

As the covariance matrix is symmetric, one can notice that

djk and dkj are the same; the decision boundary goes

through the middle of µ1 and µ2. The decision boundary

in the middle implies that we are treating the two classes

equally, independent of the sample frequency [10].
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Figure 2. Assuming the class-conditional distribution of the fea-

tures follows the multivariate Gaussian distribution, the optimal

decision boundary passes through the center of their means. The

proposed empirical offset makes d12 and d21 to be the same. It in-

dicates that the decision boundary goes through the middle of µ1

and µ2 by geometrical similarity. Moreover, the identical empiri-

cal offset is the same as zero offset for all classes. Geometrically,

zero offset means the decision boundary passes through the origin

as well. It also implies that the classifier is de-biased, so it outputs

the uniform posterior distribution for zero signal.

2.3. Uniform Constraint for Empirical Offset

Going back to the beginning, zero-fixing the offset is ad-

vantageous from the viewpoint of the classifier bias. A uni-

form offset means that the classifier is unbiased; if a zero

signal is given to the classifier, it will output a uniform pre-

diction. However, we cannot arbitrarily force the empirical

offsets to have the same value. To this end, we introduce an

additional uniform constraint using softmax and the entropy

function:

Luniform(wemp
0 ) = −H(softmax(−w

emp
0 )), (5)

where w
emp
0 denotes a vector form of the empirical offset,

and H(·) denotes the entropy function. The uniform con-

straint evokes the first interpretation for the fixed offset: the

variation among µT
kΣ

−1µk is negligible. The major differ-

ence is that we induce the variation to be negligible using

the uniform constraint, not arbitrarily assume that it is neg-

ligible. Therefore, with the uniform constraint, the distri-

bution of feature vectors changes accordingly through the

training process. Fig.2 briefly illustrates the feature points

and weight vectors. By the definition of the empirical off-

set, the uniform constraint, Luniform(wemp
0 ), encourages

the inner products to have the same value for all classes.

2.4. Estimated Offset

To train the network with the empirical offset, we need

µ̃k, which requires to feed-forward the whole dataset D. It

is computationally inefficient. One can estimate µ̃k within

a mini-batch. However, in class imbalanced learning, it is

unreliable owing to the low sample frequency of the mi-

nority classes. Some mini-batches may not even contain

a sample from a minority class. To address this problem,

we introduce an estimated offset, w̃k0 = 1
2c

T
kwk, where

ck is a learnable parametrization for µ̃k. Consequently,

the posterior distribution becomes Pr(yi = k|xi) =
exp(wT

k f(xi)−w̃k0)∑
j
exp(wT

j
f(xi)−w̃j0)

. As a result, our final objective for

optimization is as follows:

Lfinal(D) =Exi∼D[Lcls(xi, yi) + λ1||f(xi)− cyi
||22]

+ λ2Luniform(w̃0),

(6)

where Lcls(·, ·) denotes the softmax cross-entropy loss with

the estimated offset and λs are hyper-parameters to be tuned

to balance the loss terms. The second term is also known

as the center loss [21] in the literature. In [21], Wen et

al. mainly focus on the discriminative power of the learned

features. They show that the center loss enlarges the inter-

class feature difference, while reducing the intra-class fea-

ture variation. Similarly, we expect the l2 loss to encourages

ck to become the feature mean. Then, the neural network is

trained to be unbiased with the uniform constraint with the

estimated offset. To train ck in Eq.6, we follow the protocol

presented in [21].

3. Related Works

Numerous methods for the class imbalanced learning

have been proposed in the literature. To resolve this prob-

lem, a network should be trained to extract better feature

representations of the minority classes while preserving the

successful performance of the majority classes. The primal

approach for the class imbalanced learning is to re-sample

the minority classes [3, 4, 7, 15, 20]. Equivalent to the re-

sampling method, samples can be re-weighted during the

training. In this approach, the samples are often weighted

by the reciprocal of the volume of each class. Although

the re-sampling and re-weighting approach attenuate the

dominance of the majority classes, they were not effective

enough for training deep neural networks. The networks

still suffer from the over-fitting problem, since the samples

from minority classes appear repeatedly over the training

process. Cui et al. claim that if the number of samples is

sufficiently large, additional data is a near-duplicate of ex-

isting samples with high probability [4]. Considering the

overlap among the training samples, authors define the ef-

fective number of samples and proposed a class-balanced
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loss, which adjusted the weight depending on the volume of

each class.

Another line of research is to design a novel loss func-

tion, specialized for class imbalanced learning [2, 9]. An

important feature that differentiates these approaches from

the sampling based methods mentioned above is that these

approaches focus on the margin. Considering the imbalance

of the sample frequency, more margin is given to the minor-

ity classes. The underlying anticipation of these approaches

is that by penalizing the majority classes and encourag-

ing the network to focus more on the minority classes, the

network would be helped to learn more representative fea-

tures. Cao et al. proposed a label-distribution-aware mar-

gin (LDAM) loss [2]. The authors modified the soft mar-

gin loss [19] by encouraging the minority classes to have

a larger margin considering the volume of each class. The

margin is theoretically induced from the generalization er-

ror bounds. Combined with new optimization scheduling,

the LDAM loss significantly improves the performance on

class imbalanced learning. Khan et al. claim that the feature

representations of the minority classes show a highly con-

centrated distribution, resulting in high uncertainty[9]. By

measuring the uncertainty of each class, the authors pro-

posed a novel loss function for class imbalanced learning.

Empirical studies of class imbalanced learning have also

been conducted [8, 10]. In [8], the authors experimen-

tally show that joint learning of the representation and

decision boundary is more effective than the end-to-end

learning in long-tailed recognition. For better represen-

tation, they proposed to additionally employ a sampling

strategy, such as class-balanced sampling [7, 20], square

root sampling [14, 15], and progressively balanced sam-

pling [2, 4]. Several weight re-balancing techniques, such

as τ -normalized and learnable weight scaling (LWS), also

improve the long-tailed recognition accuracy [8]. In [10],

the authors focused on how the features form the clusters in

the feature space, and how they are affected by the gener-

alization performance of the networks. The trained model

shows remarkable performance for the majority classes with

great generalization. Similar to the weight re-balancing

technique proposed in [8], they proposed to adjust the

weight norms of the linear classifier to find better decision

boundary. In a similar way to the approach in our study,

both works [8, 10] attempted to resolve the class imbal-

anced learning by regulating the classifier. Although the

authors of [8, 10] have claimed their own perspectives, the

effect of their algorithm is similar to those of margin based

approaches [2, 9]. The main differentiating feature of our

work is that we focus on the role of the offset, whereas

previous works mainly focused on the weight vectors. We

claim that the importance of the offset term is underesti-

mated, and we experimentally show the effectiveness of our

method in the following section.

4. Experiments

4.1. Overview

To verify our proposed method, we evaluated it with

real world datasets: ImageNet-LT, Places2-LT [13], and

SUN397 [22]. ImageNet-LT and Places2-LT are long-tailed

versions of the ImageNet [17] and Places2 [25] datasets. In

[13], Liu et al. introduced these datasets. Both datasets

are modified by sampling the images following Pareto dis-

tribution. The main difference between the two datasets

is that ImageNet-LT is an object-centric dataset, whereas

the Places2-LT is a scene-centric dataset. Network archi-

tectures and the training frameworks are the same for both

datasets. However, the context which the networks should

learn is different. Therefore, we can verify if the algorithm

can be generalized by using these datasets. The ImageNet-

LT dataset contains 115.8K images from 1,000 classes. The

most frequent class has 1,280 training samples, whereas the

least frequent class has 5 training samples. The Places2-LT

dataset contains 184.5K training samples from 365 classes.

The disparity between the most and the least frequent class

is severer in Places2-LT, where the most frequent class has

4,980 samples, while the least frequent class has only 5

samples for training.

SUN-397 [22] is another long-tailed dataset with smaller

number of samples. Despite its volume, this dataset suf-

fers from an even more imbalanced distribution. The least

frequent class has only a single training image, whereas

the most frequent class has 1,132 images. Although these

datasets have a long-tailed distribution, their test sets are

constructed to have the same number of samples for each

class. Therefore, the overall accuracy indicates the balanced

accuracy, which equally emphasizes all the classes; thus, we

can verify if a method trains a network to recognize every

class independent of their sample frequency.

For the ImageNet-LT dataset, the ResNet-10 [6] archi-

tecture is used for comparison, while ResNet-152 [6] is em-

ployed for the Places2-LT and SUN397 datasets. Except for

the experiments with ImageNet-LT, the networks are pre-

trained with the original ImageNet [17] dataset. All net-

works are trained with the SGD optimizer with momentum

0.9. For data augmentation, we follow the protocol of [11],

with image resolution of 224x224. For all experiments, λ1

and λ2 are fixed to 1.

4.2. Evaluation Results

We summarize the overall performance and comparison

of the proposed method with ImageNet-LT and Places-LT

in Table 1. As our baseline, a network is trained for classifi-

cation with ERM. The results show that our model performs

the best in terms of overall performance. More importantly,

the performance of our method is better balanced compared

to that of the other methods. In Table 1, the results show that
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Many-shot Medium-shot Few-shot All Many-shot Medium-shot Few-shot All

>100 ≤ 100 & >20 <20 >100 ≤ 100 & >20 <20

ImageNet-LT Places2-LT

Baseline[6] 47.4 7.9 0.1 21.9 45.2 23.8 8.1 28.2

Lifted Loss[16] 35.8 30.4 17.9 30.8 41.1 35.4 24.0 35.2

Focal Loss[12] 36.4 29.9 16.0 30.5 41.1 34.8 22.4 34.6

Range Loss[24] 35.8 30.3 17.6 30.7 41.1 35.4 23.2 35.1

FSLwF[5] 40.9 22.1 15.0 28.4 43.9 29.9 29.5 34.9

OLTR[13] 43.2 35.1 18.5 35.6 44.7 37.0 25.3 35.9

Baseline+RS[10] 46.6 36.9 22.2 38.5 40.8 38.3 25.8 36.6

WVN+RS[10] 47.8 38.8 34.0 41.6 41.2 39.4 28.8 38.2

cRT[8] - - - 41.8 42.0 37.6 24.9 36.7

τ -norm [8] - - - 40.6 37.8 40.7 31.8 37.9

LWS[8] - - - 41.4 40.6 39.1 28.6 37.6

Ours w/o UC 56.6 30.8 9.4 37.7 45.9 35.2 21.1 36.0

Ours 49.9 40.6 31.4 42.9 38.0 39.9 40.7 39.4

Table 1. Performance evaluation on ImageNet-LT and Places2-LT. We also report many-shot, medium-shot, and few-shot performance

separately. It shows that our method performs the best in overall accuracy. Even without the uniform constraint, the model with estimated

offset significantly improves the performance.

Method ResNet-10 ResNeXt-50 ResNeXt-152

Baseline[6, 23] 21.9 39.5 43.1

OLTR[13] 37.3 46.3 50.3

WVN+RS [10] 41.6 47.7 52.2

cRT [8] 41.8 49.5 52.4

τ -norm [8] 40.6 49.4 52.8

LWS [8] 41.4 49.9 53.3

Ours 42.9 51.6 57.1

Method Acc

Baseline [6] 48.0

Cost-Sensitive [7] 52.4

WVN+RS [10] 53.0

Model Reg. [20] 54.7

MetaModelNet [20] 57.3

OLTR [13] 58.7

Ours 58.9
Table 2. (left) Performance with deeper model on ImageNet-LT. Our method shows even better performance with deeper networks. For

ResNet-10 architecture, the performance gain of our algorithm compare to the second best model is 1.1%. On the other hand, with

ResNeXt-152 architecture, our method outperforms the second best model with 3.8% margin. (right) With SUN397 dataset, our method

shows the best performance as well.

the baseline performance is highly imbalanced. The accu-

racy for the many-shot classes is significantly better than the

accuracy for the few-shot classes, resulting in disappointing

overall accuracy. The table implies that even without the

uniform constraint, the performance is improved across the

board. However, the accuracy for many-shot classes still

outperforms the accuracy for few-shot classes. The perfor-

mance of the few-shot classes needs further improvement

compared to the previous works. By employing the uni-

form constraint, the networks, marked as Ours, are trained

to recognize the infrequent classes better. However, the ac-

curacy for the many-shot classes is degraded as its rebound.

Despite the degradation, the performance is still compara-

ble to that of other methods. Especially in ImageNet-LT,

our methods show the best performance in both many-shot

and medium-shot classes. It implies that our algorithm not

only reinforces the classification capability for the few-shot

classes, but also improves the generalization of the network.

We provide the performance on the ImageNet-LT dataset

with a deeper model in Table 2 (left). Kang et al. observed

that the deeper architectures significantly improve the per-

formance with ImageNet-LT [8]; the table verifies the effect

of network depth. Following [8], we evaluated our method

with the ResNeXt-50 and ResNeXt-152 architectures [23].

The results show that our algorithm is still effective in train-

ing deeper models. Interestingly, the improvement by em-

ploying our method is more significant with a deeper model.

Among the architectures with different depth, the perfor-

mance of the deepest model, ResNeXt-152, outperforms the

second model with the largest margin. Deeper depth of the

networks often represents deeper understanding about the

training data. Therefore, deeper networks can learn the im-

balanced prior distribution better than the relatively shallow

networks. By minimizing the negative impact of the imbal-

ance, our algorithm performs even better with the deeper

networks. Table 2 (right) presents the overall performance

on the SUN397 dataset. Although it is marginal, our method

shows the best performance.
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Figure 3. Empirical offset and estimated offset on real-image dataset with long-tailed distribution. Figures show the estimated offset is

well representing the empirical offset. Moreover, the consistent magnitude implies the effectiveness of the proposed uniform constraint. It

suggests that the decision boundary is drawn in the middle of the feature clusters.
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Figure 4. Class-wise accuracy and geometric mean of the performance for our model and baseline. It shows that the performance of our

method is more balanced in both quantitatively and qualitatively. With our algorithm, the networks are trained to recognize minority classes

as good as the majority classes.

4.3. Empirical Offset vs. Estimated Offset

In Fig.3, we present the magnitude of the empirical off-

sets and the estimated offsets. Both offsets show consis-

tency over classes. Compared to the situation in Fig.1 (c),

the uniformity validates the effectiveness of the uniform

constraint. Moreover, the gap between the empirical and the

estimated offsets is also consistent. Note that the addition of

an arbitrary constant to the estimated offset does not mod-

ify its softmax output. Therefore, the consistent gap veri-

fies that the estimated offset represents well the empirical

offset. Interestingly, the least frequent classes have signifi-

cantly small empirical offset in the SUN397 dataset. As we

subtract the offset, the smaller magnitude implies that the

network is still penalizing the least frequent classes. The

drop in magnitude does not occur with the estimated offset.

It implies that the estimated offset is not biased against the

minority classes, even when the empirical offset is.

4.4. Balance in Performance

For more detailed analysis, Fig.4 presents the class-wise

accuracy. Qualitatively, the figures imply that our method

encourages the network to have a more balanced accu-

racy over the classes. It also provides the geometric mean

(GM) of the class-wise accuracy. The GM is defined as

(
∏K

i=1 acci)
1/K , where acci denotes the accuracy for class

i. As we can recognize from the definition, if there is a zero-

valued element, the GM becomes zero. In the case of the

baseline model, there are several classes with zero accuracy.

It is not desirable for the analysis to obtain a zero GM owing

to the few zero-accuracy classes. Thus, we calculated GM

by replacing the zero-accuracy with ǫ = 0.001. In Fig.4,

both the GM and the graph show that our method reinforces

the balance of the class-wise accuracy. Compared to the al-

gebraic mean presented in Table 1 and Table 2 (right), the

GM of the baseline drops significantly. However, the ge-

ometric performances of our method are comparable with

the algebraic performances, which suggests that the perfor-

mance of our method is well-balanced.

Additionally, we present a cumulative false positive in

Fig.5. As the baseline network is biased to the majority

classes, numerous samples from the minority classes are

misclassified to the majority classes, which makes the graph

concave. Conversely, if we excessively penalize the ma-

jority classes, so the networks misclassify numerous sam-

ples to the minority classes, the graph would become con-

vex shape. The ideal shape is a linear graph. In Fig.5 (a)

and (b), compared to the other methods, our method shows

higher linearity. It implies that the networks trained with

our method is better balanced. Meanwhile, Fig.5 (c) implies

that our method is over-penalizing the majority classes. De-

spite its convexity, it shows the best overall performance.

The balanced performance is an important feature of our

work. As it is shown in Fig.4, the baseline network is
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Figure 5. Cumulative false positive. If the classifier is not biased to neither majority nor minority classes, the graph would be linearly

increasing. The figures suggest that our method is better-balanced. Moreover, they also suggest that the estimated offset even without

uniform constraint improves the balance in class-wise performance.

Many-shot Medium-shot Few-shot All Many-shot Medium-shot Few-shot All

>100 ≤ 100 & >20 <20 >100 ≤ 100 & >20 <20

ImageNet-LT Places2-LT

Baseline 47.4 7.9 0.1 21.9 45.2 23.8 8.1 28.2

UC only 56.5 28.3 9.1 36.5 43.2 28.5 24.2 32.9

Ours w/o UC 56.6 30.8 9.4 37.7 45.9 35.2 21.1 36.0

Ours 49.9 40.6 31.4 42.9 38.0 39.9 40.7 39.4
Table 3. Ablation study with ImageNet-LT and Places2-LT. The results show that the estimated offset is more critical. However, the

networks perform the best when we employ both methods. Especially for the few-shot classes, the performance is remarkably improved

by employing both methods. Ablating one of the two methods severely deteriorates the performance. It implies that these methods are

complementary to each other.

trained to recognize majority classes better than the minor-

ity classes. It is owing to the imbalance of the class cardi-

nality. In several applications, this may arise a discrimina-

tion issue against the minorities. The results presented in

Fig.4 and Fig.5 imply that the network is treating all classes

equally importantly; the networks are categorizing test sam-

ples without prior knowledge.

4.5. Ablation Study

This work proposed two methods for class imbalanced

learning: estimated offset, and uniform constraint. To ana-

lyze the contribution of each method, we ablated one of the

two methods. Table 3 shows the evaluation performance

of networks trained with single method. In the table, Ours

w/o UC means that the model is trained with the estimated

offset without the uniform constraint. On the contrary, UC

only means that the model is trained with the uniform con-

straint only. Although the uniform constraint improves the

performance by itself, the results imply that the estimated

offset is more effective for class imbalanced learning than

the uniform constraint. By employing both methods, the

overall performance is significantly improved compared to

the performance of either method. Especially, the balance

in performance is greatly degraded by both of the ablations.

The results suggest that these methods are complementary

to each other.

5. Conclusion

In this paper, we have shown that a linear classifier with-

out offset term penalizes the minority classes. To resolve

the involuntary penalty, we defined the empirical offset,

which requires an access to class-wise feature mean. The

advantage of the empirical offset is that it is not biased ow-

ing to the imbalanced prior distribution of the training data.

We also defined the estimated offset as a learnable alterna-

tive of the empirical offset and experimentally showed that

it represents well the empirical offset. Furthermore, we pro-

posed the uniform constraint for the estimated offset, which

makes the classifier unbiased. We also introduced the ge-

ometric interpretation of the proposed method. It encour-

ages the classifier to draw the decision boundary in the mid-

dle of the class-conditional distribution. The benefit of the

proposed approach was verified by experiments with large-

scale real-image datasets.
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