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Abstract

Image outpainting is a very intriguing problem as the

outside of a given image can be continuously filled by con-

sidering as the context of the image. This task has two main

challenges. The first is to maintain the spatial consistency

in contents of generated regions and the original input. The

second is to generate a high-quality large image with a

small amount of adjacent information. Conventional im-

age outpainting methods generate inconsistent, blurry, and

repeated pixels. To alleviate the difficulty of an outpainting

problem, we propose a novel image outpainting method us-

ing bidirectional boundary region rearrangement. We rear-

range the image to benefit from the image inpainting task by

reflecting more directional information. The bidirectional

boundary region rearrangement enables the generation of

the missing region using bidirectional information similar

to that of the image inpainting task, thereby generating the

higher quality than the conventional methods using unidi-

rectional information. Moreover, we use the edge map gen-

erator that considers images as original input with struc-

tural information and hallucinates the edges of unknown re-

gions to generate the image. Our proposed method is com-

pared with other state-of-the-art outpainting and inpainting

methods both qualitatively and quantitatively. We further

compared and evaluated them using BRISQUE, one of the

No-Reference image quality assessment (IQA) metrics, to

evaluate the naturalness of the output. The experimental re-

sults demonstrate that our method outperforms other meth-

ods and generates new images with 360°panoramic charac-

teristics.

Figure 1. Main concept of the proposed method. We rearrange the

outer area of the image into its inner area. This enables us to con-

sider bidirectional information, and it can generate a high-quality

natural image that is superior to images produced by conventional

methods.

1. Introduction

With developments in deep learning, image completion

has been actively researched and it has had the great per-

formance for various applications. Typically, image com-

pletion includes image inpainting [22, 25, 42] and outpaint-

ing [14, 27, 35]. Image inpainting predicts relatively small

missing or corrupted parts of the interiors in a given im-

age based on the surrounding pixels. Image outpainting is

used to extend images beyond their borders, thereby gener-

ating larger images with added peripheries. The task can be

classified into two categories according to the amount of ex-

trapolation desired: slightly extending images can be useful

in such applications as panorama construction, when small

additions may be needed to make the panorama rectangu-

lar after image stitching [37]. Classical image outpainting

methods are patch-based methods [18, 31, 44] that fill in
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the missing areas by copying similar information from the

known areas of the image. These methods [18, 31, 44] per-

form well when filling small missing areas on a simple tex-

ture image, but the results are semantically unnatural and

inconsistent with the given context. In recent years, genera-

tive adversarial network (GAN)-based approaches [10] have

addressed the limitations of classical methods. In particular,

the GAN network used in image outpainting that generates

a large region is exceedingly difficult to train with stability.

Image inpainting and outpainting methods tend to per-

form a similar task with regard to filling the missing re-

gions or unknown regions of a given image. Although im-

age outpainting is closely related to image inpainting, which

has been making considerable progress recently, image out-

painting has attracted less attention because it is more dif-

ficult compared to inpainting. First, image inpainting fills

the missing region using adjacent and bidirectional infor-

mation; however, image outpainting fills the missing region

using only unidirectional information. As image outpaint-

ing can utilize less information than image inpainting, im-

age outpainting methods generate poor-quality output im-

ages as compared to those obtained by inpainting. Second,

image outpainting generates a larger unknown region than

that in image inpainting; hence, maintaining spatial con-

sistency of contents between an input image and generated

regions is difficult.

Existing image outpainting methods [35, 41] using

GANs still use only one side of adjacent information, result-

ing in blurry textures. To solve image outpainting problems,

how about restoring the image as if it were a panoramic

image? We propose a bidirectional boundary region re-

arrangement method to increase the adjacent information.

The overall of the rearrangement method shown in Fig. 1.

We rearrange the outer area of the image into its inner area.

This enables us to consider bidirectional information, and

it can generate a high-quality natural image that is superior

to images produced by conventional methods. In addition,

we use the structural edge map generator to make the struc-

tural information clearer. Moreover, we present a progres-

sive step learning method that divides the learning step into

multiple steps to stabilize the GAN network. The method is

based on the gains coarse-to-fine learning strategy [1] used

in image inpainting. For more efficient outpainting task, we

converted the progressive learning method [1] into a method

that increases only the horizontal area of the mask to better

connect the information at both ends of the horizontal area.

We trained the model by step by step increasing the size of

the mask per step.

In summary, our contributions are as follows.

1. We propose a novel bidirectional boundary region re-

arrangement method to alleviate the difficulty of a problem

by changing the problem domain from image outpainting

to image inpainting. Using this approach, our proposed

method can generate a semantically more natural image bet-

ter than conventional methods. Not only can we extend the

image outside we also can extend the image inside the im-

age.

2. We present a hinge loss specialized in an edge map

generator. We use a structural edge map generator opti-

mized for image outpainting. It generates an edge map

to make the structural information clearer, thereby gener-

ating a photo-realistic image considering the surrounding

regional characteristics.

3. We introduce a horizontally progressive step learning

method that stabilizes the GAN generator and better con-

nects the information in the horizontal region at both ends.

This method is useful for horizontal image outpainting that

generates a large unknown region. This can also achieve an

augmentation effect for small datasets.

2. Related Work

Image Inpainting This method fills the unknown region

in input image, and then make the image photo-realistic

by extracting the image features of the image through the

information of the known region. Conventional image in-

painting methods [3, 7] rely on the similarity or diffusion of

a patch to obtain information regarding unknown regions

from known regions. These methods are effective when

the damaged region is small. However, if the unknown re-

gion becomes large, they cannot perform semantic analy-

sis and consequently generate image with low quality. The

use of deep learning-based generative adversarial networks

(GANs) [10] for image generation led to improved perfor-

mance of image inpainting methods. Iizuka et al. [14]

proposed a method using two discriminators—a global dis-

criminator and a local discriminator—based on GANs. The

global discriminator scans the entire image to assess its co-

herency, whereas the local discriminator scans only a small

area centered at the completed region to ensure the local

consistency of the generated patches. This allows them to

generate a naturally unfragmented image. Liu et al. [19]

proposed partial convolution that is masked and renormal-

ized to be conditioned only on valid pixels. Typically, im-

age inpainting methods use a standard convolutional net-

work over the corrupted image, using convolutional filters

conditioned on both valid pixels as well as pixels in the un-

known regions. This often leads to artifacts such as color

discrepancy and blurriness. However, as the partial con-

volution [19] renormalized convolution operation is condi-

tioned only on valid pixels, it can robustly fill the missing

regions of any shape, size, location, or distance from the im-

age borders. Yu et al. [42] proposed a two-stage coarse-to-

fine network architecture, in which the first network makes

an initial coarse prediction, and the second network takes

the coarse prediction as inputs and predicts the refined re-

sults. In addition, Yu et al. [42] proposed a contextual atten-
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Figure 2. Overall architecture of our image outpainting network. Our model comprises two parts: an edge map generation network and an

image completion network. Each part is composed of a generator-discriminator pair.

tion module that copied significant features from the known

region to the unknown region that preserved the details of

the filled region. Inpainting algorithms tend to have more

predictable and higher-quality results compared to those of

outpainting algorithms. However, we here in demonstrate

that using inpainting algorithms with no modifications leads

to poor results for image outpainting.

Image Outpainting Image outpainting is a method that

naturally fills the external region of the image to gener-

ate a natural image similar to that obtained by image in-

painting. However, as mentioned in the previous section,

the area to be generated is typically larger than that in im-

age inpainting, and the adjacent information is insufficient.

Conventional image outpainting methods [18, 31, 44] se-

lect candidates through the similarity of a patch, but their

performance becomes less reliable as the size of the gen-

erated region increases. Recently, some methods [8, 17]

using GANs have been proposed to enhance the output im-

age quality. Sabini el al. [27] proposed a method based on

GANs for the first time. This method comprises a simple

encoder–decoder structure and uses only the mean squared

error (MSE) and GAN loss [10]. It uses postprocessing to

smooth the output image but shows repeated pixels in the

generated image. Teterwak et al. [33] used semantic condi-

tioning in the discriminator, which is a stabilization scheme

for training, based on the semantic information from a pre-

trained deep network to regulate the behavior of the dis-

criminator. Yang et al. [41] proposed a recurrent content

transfer (RCT) model based on long short-term memory

(LSTM) [13]. RCT transfers the input region features to the

prediction region, improving a natural connection between

the input region and the prediction region. However, the

generated region reflects the features of the adjacent input

region relatively largely; thus, the entire generated region

tends to not match the color tone, which is an important

feature of the input image. To solve this problem, we adapt

two losses proposed in [8, 17], known as style loss and per-

ceptual loss. Using these losses, the semantic contents are

RAT consistent in styles such as color tones of the input

image.

3. Methodology

We provide an overview of the overall architecture,

which is shown in Fig. 2, then provide details on each com-

ponent. Our model comprises two parts: an edge map gen-

eration network and an image completion network. Each

part is composed of a generator-discriminator pair. We de-

fine the generator and discriminator of the structural edge

map generator as Ge and De, respectively. Ge is used

to predict missing structures, thereby generating the global

edge map image, Epred, which is used in the image comple-

tion network. The generator and discriminator of the image

completion network are Gc and Dc, respectively. Gc draws

details according to the edge map image and generates the

final image, Ipred. Our generators follow an architecture

similar to that proposed by Johnson et al. [17] and uses in-

stance normalization [34] across all layers of the network.

3.1. Bidirectional Boundary Region Rearrange
ment

Image outpainting, which only utilizes unidirectional in-

formation, is less reliable than image inpainting, which gen-

erates missing areas through bidirectional information. Pre-

vious methods [27, 41, 33] use only unidirectional infor-

mation and generate structurally and semantically insuffi-
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cient images. To overcome this difficulty in image outpaint-

ing, we rearranged the image to benefit from the image in-

painting by considering more directional information. We

propose a novel bidirectional boundary region rearrange-

ment to alleviate the difficulty of a problem by changing

the problem domain from image outpainting to image in-

painting. When testing, our model preprocesses an input

image through bidirectional boundary region rearrangement

and performs the same network process as training. The fi-

nal image also rearranges the output image through the re-

arrangement module once again.

3.2. Structural Edge Map Generator

An edge map is usually used to enforce structural quality

prior to image inpainting [22] and image super-resolution

[23]. Nazeri et al. [22] proposed an edge generator to hallu-

cinate edges in the edges of the missing regions, which can

be regarded as an edge completion problem. Using edge

images as structural guidance, high inpainting performance

is achieved even for some highly structured scenes.

Let Igt be the ground-truth image. Egt and Igray de-

note the edge map and grayscale image, respectively. In

the edge generator, we use the masked grayscale image

Ĩgray = Igray⊙(1−M) and edge map Ẽgt = Egt⊙(1−M)
as the input. The image mask M is defined by the binary

image(1 for the missing region and 0 for the background).

Here, ⊙ denotes the Hadamard product. The generator pre-

dicts the edge map for the masked region.

Epred = Ge(Ĩgray, Ẽgt,M). (1)

Our edge discriminator De receives Egt and Epred condi-

tioned on Igray as inputs and predicts whether the edge

map is real or fake. The edge generator is trained with an

objective comprising of the hinge variant of GAN loss [21]

and feature-matching loss [38]. The hinge loss is effectively

used in binary classification [4]. We believed that the hinge

loss we used in this task would be effective because we train

the edge generator using binary edge maps.

LGe
= λhingeLhinge + λFMLFM , (2)

where λhinge and λFM are regularization parameters. The

generator and discriminator with hinge loss are defined as

follows:

Lhinge = −EIgray
[De(Epred, Igray)], (3)

LDe
= E(Egt,Igray) [max(0, 1−De (Egt, Igray)]

+EIgray
[max(0, 1 +De(Epred, Igray)].

(4)

The feature-matching loss, LFM , compares the activation

maps in the intermediate layers of the discriminator. This

stabilizes the training process by forcing the discriminator

to produce an output that is similar to the real image. This

is similar to perceptual loss [8, 9] in which activation maps

are compared with the feature maps of the pre-trained VGG

network [30]. The feature-matching loss LFM is defined as

LFM=E

[ L∑

i

1

Ni

||D(i)
e (Egt)−D(i)

e (Epred)||1

]
, (5)

where Ni is the number of elements and De is the activation

in the ith layer of the discriminator.

3.3. Image Completion Network

After obtaining Epred, Gc generates a complete colored

image. The masked color image Ĩgt = Igt ⊙ (1 −M) and

conditional composite edge map Ecomp = Egt⊙(1−M)+
Epred⊙ M were used as inputs.

Ipred = Gc

(
Ĩgt, Ecomp

)
, (6)

where Ipred denotes the final output result. This network is

trained over a joint loss that comprises ℓ1 loss, adversarial

loss, perceptual loss, and style loss. To ensure proper scal-

ing, the ℓ1 loss is normalized by the mask size. We employ

adversarial loss in our generator to generate realistic results.

Ladv=E(Igt,Ecomp) [logDc(Igt, Ecomp)]

+EEcomp
[log[1−Dc(Ipred, Ecomp)]].

(7)

Perceptual loss is defined as follows:

Lperc=E

[∑

i

1

Ni

||φi(Igt)− φi(Ipred)||1

]
. (8)

Lperc penalizes results that are not perceptually similar to

features by defining a distance measure between activation

maps of a pre-trained network. The style loss is defined as

follows:

Lstyle=Ej

[
||Gφ

j (Ĩpred)−G
φ
j (Ĩgt)||1

]
. (9)

We choose to use style loss by Sajjadi et al. [28] to be an

effective tool to combat “checkerboard” artifacts caused by

the transpose convolution layers [24]. The final total loss is

defined as

LGc
=λℓ1Lℓ1 +λadvLadv +λpLperc +λstyleLstyle. (10)

To address color tone mismatch problems in the previous

outpainting methods, we use a large proportion for style

loss. For our experiments, we set λℓ1 as 1, λadv as 0.2,

λp as 0.1, and λstyle as 250.
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Method IS FID PSNR SSIM BRISQUE

Pix2Pix [15] 2.82 19.73 - - -

GLC[14] 2.81 14.82 - - -

CA[42] 2.93 19.04 20.42 0.84 24.46

StructureFlow[26] 3.10 15.69 22.94 0.85 26.36

NS-OUT[41] 2.85 13.71 19.53 0.72 23.59

Proposed(w/o BR) 3.07 17.75 21.41 0.84 23.62

Proposed (with BR) 3.20 15.72 22.45 0.86 21.61

Table 1. Quantitative results for conventional and proposed models on SUN dataset [40]. Evaluation of Inception Score (IS) [29], PSNR

and SSIM [39] (the higher, the better), F́renchet Inception Distance FID [12] and BRISQUE [20] (the lower, the better). Images from

the validation set had an IS of 3.479 (The best result of each column is red, the second-best result is blue, and BR means Bidirectional

Rearrangement).

3.4. Horizontally progressive step Learning Method

GANs are difficult to train because of problems such

as mode collapse, non-convergence, and vanishing gradi-

ent [2]. These problems also apply to the image outpainting

task where more areas than expected are generated with-

out context. We propose a simple but effective training

technique to stabilize GAN training from the perspective of

image outpainting by horizontally increasing the mask size

(Fig. 3.). Generators are usually successful in a small mask

task but have difficulty in a wide mask task [1]. Therefore,

we divide the learning step by mask size so that the model

can learn more stably while increasing the mask size. The

mask is divided into 32 steps and gradually grows at each

step. The initial mask size is 3.125% of the input image and

linearly increases, and the final mask size is set at 50% of

the input image.

4. Training

When we training, we give the mask inside the im-

ages to proceed in the horizontally progressive step learning

method. The training process corresponds to the gray box

of Fig. 2. When testing, the masked outside of the images

is given as input and generates the outpainting images using

the rearrangement method described above.

Figure 3. The process of image completion based on the edge map

progressively generated by the edge map generator.

4.1. Training Setup

Our model is implemented using the PyTorch frame-

work. The network is trained with the SUN dataset [40]

comprising 256×128 pixels. Considering our GPU mem-

ory, the batch sizes of Ge and Gc networks are 8 and 16,

respectively. We use the AdamP optimizer [11] with β1 = 0

and β2 = 0.99. Generators Ge and Gc, are trained with the

learning rate of 10−4 until the losses plateau separately. We

lower the learning rate to 10−5 and continue to train Ge and

Gc until convergence.

We use a Canny edge detector [5] to generate an edge

map. The sensitivity of the Canny edge detector is con-

trolled by the standard deviation of the Gaussian smoothing

filter (γ). In the experimental results, it was the best when

the γ is 2. Fig. 3 illustrates the process of image completion

based on the edge map generated by the edge map generator

in each step. The result of the image completion generator

depends on the edge map.

5. Experiment

5.1. Quantitative Result

Evaluating the quality of generated images in image out-

painting has the same difficulty as that in GAN, as there

are few restrictions on the created images. Note that the

well-outpainted image has only to be photo-realistic while

sharing the context naturally with the input image. Hence,

we include non reference image quality metrics to evalu-

ate the generate images. We used structural similarity in-

dex (SSIM) [39], peak signal-to-noise ratio (PSNR), In-

ception Score (IS) [29], F́renchet Inception Distance (FID)

[12], and Blind/Referenceless Image Spatial Quality Evalu-

ator (BRISQUE) [20] to measure the resulting quality with

the state-of-the-art outpainting and inpainting algorithm.

FID uses a pre-trained Inception-V3 model to measure the

Wasserstein-2 distance between the actual image and the

representation of the shape space of the painted image [32].

We evaluated the task of generating 50% of the input image

on the SUN dataset [40] with other methods. The results
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Method SSIM PSNR

Image-Outpainting[27] 0.338 14.625

Outpainting-srn[36] 0.513 18.221

SieNet[43] 0.646 20.796

Proposed 0.810 18.957

Table 2. Performance on beach dataset [27] (The best result of each

column is red and the second-best result is blue.).

for the SUN dataset are shown in Table. 1. Our model pro-

duced more natural images than other methods, as can be

seen in the qualitative section. We further evaluated using

the BRISQUE method [20] to evaluate how the naturalness

of the image produced. A quantitative comparison shows

that our model is superior to the other methods in all as-

pects except for the PSNR and the FID score. We believe

that the combination of the listed metrics provide a better

result in outpainting performance.

We additionally experimented with quantitative compar-

isons on the beach dataset [27] for a more objective com-

parison of our model with other conventional outpainting

methods. We tested our model using the pre-trained weights

with the sun dataset [40] without additional training on the

beach dataset. We used the quantitative results from the

SieNet [43] and compared them. The results for the beach

dataset [27] are listed in Table. 2, and it can be seen that

our model has better structural strength compared to other

models.

5.2. Qualitative Result

Fig. 6 shows a qualitative result comparison image be-

tween the proposed method and the state-of-the-art meth-

ods NS-OUT [41], and the inpainting methods CA [42] and

StructureFlow [26]. CA [42] produced images that show

inconsistent objects near the missing image parts and show

large color differences from the original image. The out-

painting algorithm NS-OUT [41] and the inpainting algo-

rithm StructureFlow [26] produced images that are more

clearer, but image distortion and blurring in the generated

image still exist. Our proposed method produced images

that are clearly connected with the original image and are

smoother and more consistent than those obtained by NS-

OUT and StructureFlow.

5.3. Ablation

We conducted ablation studies to demonstrate the neces-

sity of introducing bidirectional boundary rearrangement.

A comparison of the quantitative results of our architecture

and the model without bidirectional rearrangement (w/o

BR) is shown in Table. 1. According to the results, the

model with bidirectional rearrangement method (with BR)

effectively improved the performance at all values.

As shown in Fig. 4, hinge loss is more effective than

Figure 4. Loss value and F1 score of the edge map generator in the

last training step. In the left image, the peak-to-peak amplitude of

the hinge loss is 1.019 and the nsgan loss is 1.11. It can be seen

that the hinge loss converges to a smaller amplitude. In the right

image, the highest F1 score of hinge loss is 0.39 and nsgan loss is

0.28.

Non-Saturating GAN loss (nsgan loss) [10]. In the case of

using the hinge loss function, the fluctuation of the loss vi-

brates to a smaller value during the learning process, and

the learning process is more stable. we observed a higer F1

score than nsgan loss. The edge guided method useful not

only for image outpainting, but also for image inpainting

[22], super-resolution [23], and various other fields [6, 16].

Therefore, it is believed that the hinge loss in other fields as

well as binary data such as edge maps will help improve the

performance.

5.4. User Study

We performed a user study to compare the image out-

painting performance of our proposed method with other

image inpainting/outpainting methods, such as CA [42],

StructureFlow [26] and NS-OUT [41], using benchmark

datasets. A total of 27 experts in image processing par-

ticipated in anonymous voting to evaluate naturalness from

randomly selected 30 images to ranks 1 to 4. Fig. 5 shows

the summarized results. Each rank has a total of 810 votes,

where our proposed method obtained 610 votes and 190

votes in rank 1 and rank 2, respectively. Consequently, the

comparison result verified that our proposed method out-

Figure 5. User study results between our proposed method and

conventional methods (CA [42], StructureFlow [26], NS-OUT

[41]). Our method obtained the most superior results.
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Figure 6. Qualitative results for conventional and proposed models on SUN dataset [40]: CA[42], StructureFlow[26], NS-OUT [41], and

our model.

performs other methods in generating a more visually clear

image to human raters.

6. Limitation

The proposed method produced a natural image well

when the information at both ends of the image is similar.

However, when the assumption, where information on both

ends of an image is similar, is broken, our method gener-

ated an output image with different characteristics with the

ground truth, but produced natural images. As can be seen

from the quantitative and qualitative results above, at the

sun and beach datasets showed overall good results. We ex-

pect results to be poor for datasets that are more complex

and have little similar information at both ends. We will try

to consider theses factors in the future work.

7. Conclusion and Future Work

In this paper, we proposed a novel image outpainting

method composed of three approaches. First, we rearranged

the bidirectional boundary regions to address the lack of in-

formation when filling the image outward. The previous

methods had difficulties in generating images because the

adjacent information was not sufficient to generate large

empty areas. However, the edges from our structural edge

map generator worked as a guideline to reflect semantic

information from the given regions to the unknown ones.

In addition, with the rearrangement of the boundary re-

gions, increased adjacent information prevented the large

unknown areas from being filled with repetitive pixel val-

ues. Second, we present a hinge loss specialized in gener-

ating binary images such as edge maps. Third, the train-
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ing step was divided according to different horizontal mask

sizes so that the model was trained stably as well as natu-

rally generated images outside and inside. Through multi-

ple steps, we can obtain a wider and better-quality image.

We evaluated our model compared to conventional image

inpainting and outpainting methods in terms of qualitative

and quantitative measurements. The experimental results

show that our method outperformed the other methods.

In future work, we will explore how to generate outpaint-

ing images on horizontal and vertical directions with the

same model simultaneously. Besides, we plan to design a

novel model whether to selectively refer to different infor-

mation on both ends so that a natural image can be robustly

generated even in the case of images with different informa-

tion on both ends.
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