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Abstract

Pursuing a more coherent scene understanding towards

real-time vision applications, single-stage instance segmen-

tation has recently gained popularity, achieving a simpler

and more efficient design than its two-stage counterparts.

Besides, its global mask representation often leads to su-

perior accuracy to the two-stage Mask R-CNN which has

been dominant thus far. Despite the promising advances in

single-stage methods, finer delineation of instance bound-

aries still remains unexcavated. Indeed, boundary informa-

tion provides a strong shape representation that can operate

in synergy with the fully-convolutional mask features of the

single-stage segmenter. In this work, we propose Bound-

ary Basis based Instance Segmentation(B2Inst) to learn a

global boundary representation that can complement exist-

ing global-mask-based methods that are often lacking high-

frequency details. Besides, we devise a unified quality mea-

sure of both mask and boundary and introduce a network

block that learns to score the per-instance predictions of

itself. When applied to the strongest baselines in single-

stage instance segmentation, our B2Inst leads to consistent

improvements and accurately parse out the instance bound-

aries in a scene. Regardless of being single-stage or two-

stage frameworks, we outperform the existing state-of-the-

art methods on the COCO dataset with the same ResNet-50

and ResNet-101 backbones.

1. Introduction

Deep learning has been widely used in various vision

tasks [18, 14, 34, 45, 32, 44, 21, 43, 2]. Most deep learn-

ing based instance segmentation methods follow the detect-

then-segment paradigm. It first detects bounding boxes and

then segments the instance mask in each bounding box.

However, this dominant paradigm has two fundamental is-

sues. First, it is step-wise, heavily relying on the accu-

rate bounding box proposals. Second, it produces low-

resolution and coarse masks, resulting from only exploiting

(a) BlendMask (b) Our B2Inst (c) Our boundary basis

Figure 1. BlendMask vs B2Inst: (a) Coarse boundaries appeared

in the instance segmentation results of BlendMask [6]. (b) Our

proposed boundary-aware masks are more precise in delineating

complex shapes like human poses (top) and overlapping instances

(bottom). (c) Our holistic image boundary representation helps

resolving ambiguities in a challenging scene.

the region-specific information, i.e., RoI-pooled features.

To remedy these issues, recent studies attempt to incorpo-

rate a global representation called ‘basis’ into the frame-

work. They consider combining the global image-level in-

formation, i.e., basis, with the original region-specific infor-

mation in a single-stage and fully convolutional manner.

Despite their great effectiveness and flexibility, we ar-

gue that boundary is a key representation for segmentation

that is still missing in this basis framework. Indeed, image

boundaries are an important cue for recognition; Humans

can recognize objects from sketches alone as instances in

natural images are bounded by the edges. In the exist-

ing single-stage methods, the global mask representations

are not explicitly learned in a supervised way, but loosely

trained by a signal from the last mask output. However,

such implicit learning of mask representations often ignores

object shape and boundary information. This can lead to
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coarse and indistinct segmentation results because the pix-

els near boundaries are hard to be classified, as shown in

Fig. 1. We are not the first one to exploit boundaries for in-

stance segmentation. Recently, Boundary-preserving Mask

RCNN [11] proposed a boundary prediction head along-

side the mask head of the two-stage Mask RCNN. They

have shown that the boundary representation can provide

a more precise object location and mitigates its coarse and

low-resolution predictions. Motivated by this recent ob-

servation, we extend the idea in the context of the recent

single-stage instance segmentation. First, while the RoI-

wise head of Boundary-preserving [11] learns the boundary

information for a single object at a time, we propose to learn

holistic image-level instance boundaries. Intuitively, heavy

occlusions and shape complexities are better revealed at a

whole image extent. We thus argue that learning the global

boundary has its distinct advantages in segmenting individ-

ual objects in a scene, and will have a great synergy with

the global mask representations in modern single-stage seg-

menters. We name our proposed method as Boundary Basis

based Instance Segmentation(B2Inst), and this new bound-

ary basis is explicitly trained with the boundary ground-

truths, which can be automatically generated from the given

mask annotations. All masks and boundary representations

are then cropped and composited together to form the fi-

nal instance masks. Second, instead of using the instance

boundary information for representation learning only dur-

ing the training, we use the model to learn a novel instance-

wise boundary-aware mask score, which can be mainly uti-

lized in test-time to prioritize high-quality masks. It is a

generalized version of [20] and considers the agreement be-

tween the predicted masks and boundaries as well. It is a

unified measure of both mask and boundary quality.

To sum up, we explicitly use image and instance bound-

aries as an additional important learning cue. We find that

both the proposed holistic image boundary representation

and the boundary-aware mask score operate complemen-

tarily to each other, providing better localization perfor-

mance and help to resolve ambiguities between overlapping

objects, as shown in Fig. 1. We apply our B2Inst to the

strongest single-stage instance segmentation methods, i.e.,

BlendMask [6] and YOLACT [4], and achieve consistent

improvements on the challenging COCO benchmark.

The main contributions of this paper are as follows.

1. This is the first time to explore the boundary represen-

tation for accurate basis-based instance segmentation.

2. We propose B2Inst which incorporates the boundary

representation both on the global and the local view. At

an image-level, we propose to learn holistic boundaries

to enhance global basis representation. In an instance-

level, we design a boundary-aware mask score. It cap-

tures both the mask and boundary quality at the same

time and can prioritize high-quality mask predictions

at test time. We show that both are complementary to

each other in building an accurate segmenter.

3. We conduct extensive ablation studies to verify the

effectiveness of our proposals. To further show that

our algorithm is general, we apply it to the two

strong basis-based instance segmentation frameworks

and demonstrate consistent improvements both visu-

ally and numerically. Finally, by augmenting the

BlendMask framework with our method, we achieve

new state-of-the-art results.

2. Related Work

2.1. Instance segmentation

Most existing instance segmentation algorithms can be

categorized into either two-stage or one-stage approaches.

The two-stage methods first detect the bounding box for

each object instance and then predict the segmentation mask

inside the cropped box region. Among many previous stud-

ies [15, 12, 23, 26, 8, 33, 22], Mask RCNN [17] is the most

representative of this category, and it employs a proposal

generation network and RoIAlign feature pooling strategies

to obtain fixed-sized features of each proposal. Further im-

provements have been made to boost its accuracy; PANet

[30] introduces bottom-up path augmentation to enrich FPN

features, and Mask scoring RCNN [20] addresses the mis-

alignment between the confidence score and localization ac-

curacy of predicted masks. These two-stage approach has

dominated in state-of-the-art performances thus far in in-

stance segmentation. However, these methods require RoI-

wise feature pooling and head operations which make their

inference quite slow, limiting the use in real-time applica-

tions.

Single-stage approaches typically aim at faster inference

speed by avoiding proposal generation and feature pooling

operations. In particular, bottom-up methods view the in-

stance segmentation as a label-then-cluster problem. In-

stead of assigning RoI proposals, it produces pixel-wise pre-

dictions of cues such as directional vectors [29], pairwise

affinity [31], watershed energy [1], and embedding learn-

ing, and then group object instances from the cues in the

post-processing stage. There are local-area-based methods

that output instance masks on each local region directly

[9, 39] without dependency on box detection or group-

ing post-processing. However, the single-stage approaches

thus far have been lagging behind in accuracy compared to

the two-stage counterparts, especially on the challenging

dataset like COCO. The latest global-area-based methods

[6, 4, 37] have broken the record, often outperforming the

Mask RCNN [17]. They first generate intermediate FCN

feature maps, called ‘basis’, then assemble the extracted ba-

sis features to form the final masks for each instance.

In this work, we especially focus on the latest category
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of basis-based methods. More detailed review will be pro-

vided in Sec. 3.

2.2. Boundary learning for instance segmentation

Boundary detection has been a fundamental computer vi-

sion task as it provides an important cue for recognition

[7, 16, 42, 10, 40, 35, 19, 3]. Accurate boundary local-

ization is able to explicitly contribute to the mask predic-

tion for segmentation. CASENet [41] presents a challeng-

ing task of category-aware boundary detection. InstanceCut

[23] adopts boundaries to partition semantic segmentation

into instance-level segmentation. However, it involves ex-

pensive super-pixel extractions and grouping computations.

Zimmermann et al. propose boundary agreement head [46]

to focus on instance boundaries with an auxiliary edge loss.

Boundary preserving Mask RCNN [11] proposes to predict

instance-level boundaries to augment the mask head. These

two-stage methods focus on the RoI-wise boundary of a sin-

gle object, and thus lack a holistic view of image boundaries

which can often resolve ambiguities in multiple overlapping

objects and complex scenes.

3. Background

Basis-based instance segmentation: There has been a

wave of studies on single-stage instance segmentation, en-

abled by recent advances in one-stage detection such as

FCOS, which outperforms the two-stage counterpart in ac-

curacy. These dense instance segmentation methods gen-

erate a set of basis mask representations, called basis, by

a fully convolutional network. In parallel, there is another

task of predicting instance-level parameters given the de-

tected boxes, that are used in combining the basis features

into the final per-instance masks. Recent basis-based in-

stance segmentation methods follow this general pipeline

[4, 5, 37, 6, 36].

First, YOLACT [4] presents to predict 32 global bases

and the according instance-specific scalar coefficients. The

final mask is then computed by a linear combination among

the bases. After YOLACT, the community has pushed ei-

ther in the direction of developing rich instance features or

designing effective assembly methods. BlendMask [6], Sip-

Mask [5], and CenterMask [37] improved the assembly pa-

rameters, by extending from the scalar to spatial 2D coef-

ficient matrices. CondInst [36] considers the dynamic fil-

ter weights as implicit instance-specific representation. The

mask is then predicted by a standard sliding window opera-

tion over the basis features, with the predicted convolution

weight filters.

In this work, we take one step further by investigating the

under-explored boundary information for both the basis and

instance-specific features. We first propose to learn holis-

tic boundaries to enhance the global basis representation.

Then, we design a boundary-aware mask score to unify and

jointly learn the mask and boundary quality of an object in-

stance. Putting together, our method consistently improves

over the latest basis-based instance segmentation methods,

which implies the generality and orthogonality of our meth-

ods to the existing ones.

4. Exploiting Boundary Representation

Overall architecture of our B2Inst method is shown in

Fig. 2. It consists of four parts: (1) backbone for feature

extraction, (2) instance-specific detection head, (3) global

basis head, and (4) mask scoring head. The final masks are

computed by combining the instance-specific information

from the detection head and the global image information

from the basis head. We note that Fig. 2 shows the Blend-

Mask instantiation.

4.1. Learning holistic image boundary

Standard basis head: The basis head takes FPN [27] fea-

tures as input and produces a set of K global basis features.

It consists of four consecutive 3× 3 convolution layers fol-

lowed by an upsampling and the last layer that reduces the

channel-size to K. The previous basis head [4, 5, 6, 36]

is supervised by the last mask loss only, and thus the basis

representations are obtained in an unsupervised manner.

Missing piece - image boundary: There is a notable re-

cent study in two-stage framework that improves instance

segmentation by learning RoI-wise boundary information.

Different from them, we propose to learn a holistic bound-

ary of all instances in a scene, instead of a single instance

one by one. Overlapping objects and complex shapes are

more clearly captured given the whole image context (see

Fig. 1). Moreover, the boundary supervision comes at no

cost from the given mask annotations.

Boundary ground-truths: We use the Laplacian operator

to generate soft boundaries from the binary mask ground-

truths. The boundaries are then thresholded at 0 and con-

verted into final binary maps.

Objective function: We use three different loss functions

in total: 1) binary cross-entropy loss, 2) dice loss, and 3)

boundary loss [13]. Especially, the boundary loss is pro-

posed to predict sharp boundaries at test time without any

sophisticated post-processing.

4.2. Boundaryaware mask scoring

Mask scoring R-CNN [20] proposes a mask IoU scoring

module instead of using the classification score to evalu-

ate the mask, which can improve the quality of mask re-

sults. The mask IoU (Jaccard index) evaluates the agree-

ment between the mask prediction and ground-truth by fo-

cusing only on their area, without considering their shapes.

The discrepancy between the mask’s IoU score and visual

quality can be found in the top-performing segmentation
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Figure 2. Overview of our method. The figure shows the BlendMask [6] instantiation. It generates a set of basis mask representations.

In parallel, it predicts instance-level parameters given the detected boxes, i.e., attention maps, which are used in combining the basis

features into the final per-instance masks. On top of this strong basis-based instance segmentation framework, we incorporate the boundary

representation both on the global and the local view. At an image-level, the model learns to produce a holistic image boundary, improving

the global basis features. At an instance-level, the model predicts a boundary-aware mask score, which captures both the mask and

boundary quality jointly and can prioritize high-quality mask predictions at test time.

method [6] (Fig. 4-a). Between the mask predictions and

ground-truths, their areas agree on most pixels, while their

boundaries do not. Such a problem becomes even more

severe when there are overlapping objects and fine details

(row 1 and 3), yet is not able to be quantified by the current

mask IoU metric. To address this issue, we devise a mask

score that can respect both the IoU and boundary quality.

Boundary score: We define Sboundary to evaluate the

boundary agreement between mask prediction Mpred and

ground-truth Mgt. We use a Dice metric [13] which is in-

sensitive to the number of foreground and background pix-

els, and thus can have balanced importance on the bound-

ary pixels. The Dice metric also has a range from 0 to 1,

which makes it a comparable scoring function to the IoU

metric. To compute Sboundary , we first identify the bound-

aries in the predicted and ground-truth masks by filtering

them with a Laplacian kernel ∆f as Bpred = ∆f(Mpred)
and Bgt = ∆f(Mgt). Then, the Dice metric is computed

between the two mask boundaries as in Eq. (1).

Sboundary =
2
∑h×w

i Bi
predB

i
gt + ǫ

∑h×w

i (Bi
pred)

2 +
∑h×w

i (Bi
gt)

2 + ǫ
(1)

where i stands for the i-pixel and ǫ is a soft-term to avoid

division of zero, and h and w are the height and width of the

predicted bounding box size.

Smask can be divided into 1) a classification problem

matching the correct class and 2) a problem of regressing

the maskIoU in the proposal of the corresponding class.

In the first task, Sclass is the confidence score of which

class the bounding box proposal corresponds to. Sclass is in

charge of the classification task at the proposal stage. The

other tasks, SIoU is regressed using an additional header

in MS-RCNN [20] The object mask and its boundary are

complementary, so we can easily change either one to an-

other. Therefore, we designed a simple network that re-

gresses SIoU and SDice at the same time. This part will be

covered in the next paragraph.

Scoring head: We introduce a unified mask scoring head

that can predict the mask scores during training. As we want

to incorporate the boundary score Sboundary with the con-

ventional mask IoU score SIoU , our score prediction head is

trained to regress the two scores at a time. To fully exploit

the correlation between mask boundary and IoU informa-

tion, it is designed to be a shared header of 4 convolution

layers with last fully-connected branches for each SIoU and

Sboundary regression tasks. The inputs of our scoring head

are a concatenation of predicted mask Mpred, boundary

Bpred, and RoI-pooled FPN features FRoI , all in the shape

of Rh×w. We use the ground-truth bounding boxes during

the training of our boundary-aware mask scoring head.

Score definition at inference: At inference, we define the

mask score Smask using SIoU and Sboundary that are pre-

dicted from our score head. We follow the standard infer-

ence procedure [17]; First, the top-k scoring proposals from

the detection head are fed into our scoring head, then the
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mask scores are produced. Finally, our mask confidence

score is computed by multiplying the SIoU and Sboundary

with the standard classification score Smask of the bound-

ing box as follows:

Smask = Sclass ·
√

SIoU ·Sboundary. (2)

5. Experiment

In this section, we conduct experiments to analyze our

two major proposals in B2Inst : 1) holistic boundary ba-

sis and 2) boundary-aware mask scoring. Specifically, we

perform ablation studies in Sec. 5.1. We then incorporate

our proposals into the two strong basis-based instance seg-

mentation frameworks in Sec. 5.2. Finally, we evaluate our

mask results quantitatively and qualitatively, compared with

the state-of-the-art baselines in Sec. 5.3.

Dataset & Evaluation Metric We present experimental re-

sults on the MS COCO instance segmentation benchmark

[28]. All the experiments conducted here follow standard

COCO 2017 setup, using 115k images as train split, 5k

images as validation split. We conduct detailed ablation

experiments on the validation split using BlendMask [6]

framework. We then report the final COCO mask AP on

20k test-dev split. We use the official evaluation server as

there are no labels released to the public. For the evalua-

tion metric, we use standard COCO-style AP. The results

include AP at different scales, APS , APM , APL.

5.1. Ablation study

5.1.1 Impact of two major proposals

The main components of our framework design are the

holistic boundary basis and boundary-aware mask-scoring.

The ablation results are summarized in Table. 1.

Holistic Boundary basis (HBB) To see the holistic bound-

ary feature’s impact, we add it to the original global basis

representations. The performance of B2Inst with additional

boundary information improves by 0.4AP overall. The im-

provement of AP75 and APS are relatively big, implying

that the boundary information effectively guides the model

to predict more precise masks in challenging cases such as

precise localization or small-object segmentation. Note that

the cost of obtaining the ground truth boundary is negligi-

ble.

Boundary-aware mask scoring (BS + MS) We generalize

the original mask score [20] to consider the agreement be-

tween the predicted masks and boundaries. In this way, the

scoring metric can capture both the mask (area) and bound-

ary (shape) quality jointly. As shown in the table, both scor-

ing metrics can push the performance, demonstrating their

efficacy. Further improvement comes when using both to-

gether (by 0.6AP ), meaning that both the mask and bound-

ary quality are crucial when evaluating the mask quality at

HBB BS MS AP AP50 AP75 APs APm APl

35.8 56.4 38.1 16.9 38.8 51.1

X 36.2 56.5 38.5 17.6 39.3 51.3

X X 36.3 55.3 39.4 16.8 39.3 52.3

X X 36.6 55.5 39.6 17.3 39.7 51.9

X X X 36.8 55.7 39.9 17.2 39.9 52.5

Table 1. Impact of two major proposals. We verify the efficacy

of two major proposals, holistic boundary basis, and boundary-

aware mask scoring. HBB, BS, and MS denote Holistic Boundary

Basis, Boundary Dice Coefficient Scoring, and Mask IoU Scoring,

respectively. We observe that both proposals contribute to the final

performance advanced.

test time.

In a brief conclusion, we show that the holistic bound-

ary basis improves global basis representation. It especially

resolves the ambiguities in challenging cases. Moreover,

the proposed boundary-aware mask scoring well prioritizes

high-quality masks at test time, demonstrating the efficacy

of considering both the area and shape quality jointly. We

show that both proposals operate complementarily to each

other, contributing to the final performance improved con-

sistently.

Design AP AP50 AP75 APs APm APl

Baseline 35.8 56.4 38.1 16.9 38.8 51.1

(a) 35.7 56.2 38.0 17.3 38.6 50.9

(b) 36.0 56.4 38.4 16.4 39.0 51.8

(c) 36.0 56.5 38.5 16.5 39.0 51.6

(d) 36.0 56.2 38.4 16.7 38.7 51.5

(e) 36.2 56.5 38.5 17.6 39.3 51.3

Table 2. Basis head design choices. We compare five differ-

ent ways of configuring the basis head to predict boundary rep-

resentation. The details of each configurations are elaborated

in Sec. 5.1.2. The experiments are conducted on COCO val2017.

5.1.2 Basis head design choices

In this experiment, we compare five different ways of de-

signing the basis head to predict boundary representation

(see Fig. 3). The results are shown in Table. 2. We describe

each configuration in the following:

• (a) The boundary loss is applied locally, i.e., on the

RoI pooled basis feature.

• (b) Following Boundary Mask-RCNN [11], multi-

scale feature fusion is adopted. In addition, the bound-

ary loss is applied globally, i.e., on the whole basis fea-

ture.

• (c) (b) + The boundary prediction is explicitly used for

the final per-instance mask composition.

• (d) No multi-scale feature fusion is adopted. The

boundary loss is applied globally.

933



Design FPS
Mask BBOX

AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

YOLACT 45.3 28.1 46.2 29.0 9.7 30.4 46.4 30.2 50.6 31.6 14.5 32.3 44.2

B2Inst-YOLACT 42.5 30.1 48.8 31.6 10.7 32.2 48.1 31.1 53.0 32.3 14.6 34.5 44.8

BlendMask* 10.5 35.8 56.4 38.1 16.9 38.8 51.1 40.2 59.2 43.6 24.2 43.8 51.5

B2Inst-BlendMask* 9.7 36.7 55.7 39.9 17.2 39.9 52.5 40.2 59.0 43.7 23.5 43.6 52.3

Table 3. Combining with existing basis-based methods. In order to show that our approach is general, we apply our proposals to the two

different state-of-the-art basis-based methods, YOLACT [4] and BlendMask [6]. The experiments are conducted on COCO val2017. We

see that our method consistently improves the baseline performances clearly with only a slight difference in FPS.

Figure 3. Five different ways to design the basis head. Local

and Global indicate whether we use boundary supervision locally

or globally. Fusion and Single indicate whether we use multi-scale

feature fusion [11] or not. Loss + Pred denotes that we use both

the boundary supervision and its prediction. Green, Yellow, Or-

ange, Blue, and Red images represent the original basis. The Red

image represents the additional image boundary basis.

• (e) (d) + The boundary prediction is explicitly used for

the final per-instance mask composition.

We observe that the global boundary supervision is im-

portant and also utilizing the boundary prediction as an ad-

ditional basis representation is effective. We do not see any

improvement when using the multi-scale feature aggrega-

tion. The configuration (e) produces the best performance,

and we use this setup in the following experiments.

5.2. Combining with existing basisbased methods

We see our proposals are general, thus can be easily ap-

plied to the existing basis-based methods. In this experi-

ment, we combine our two major proposals with two dif-

ferent basis-based approaches: YOLACT [4] and Blend-

Mask [6]. The results are summarized in Table. 3. We

observe that our method consistently improves the perfor-

mance of all the baselines. More specifically, our proposals

improve those frameworks by 2.1 AP and 0.9 AP , respec-

tively. The positive results imply that the boundary repre-

sentation is indeed a fundamental representation for recog-

nition and is missing in the previous basis-based frame-

works. We show that the proposed concept of both the holis-

tic boundary representation and the boundary-aware mask

score effectively addresses the issue.

5.3. Main results

5.3.1 Quantitative results

We compare our method with several state-of-the-art in-

stance segmentation methods, including both the two-stage

[12, 26, 8, 17, 20, 11] and one-stage [9, 36, 24, 6, 4]. All

methods are trained on COCO train2017 and evaluated on

COCO test-dev2017. Table. 4 shows the results. With-

out bells and whistles, we can surpass the existing state-of-

the-art methods with the same ResNet-50 and ResNet-101

backbones. In particular, Mask R-CNN [17] and MS R-

CNN [20] achieve overall mask AP scores of 34.6 and 35.8

in R-50 backbone, respectively. The recently introduced

BMask R-CNN [11] obtain mask AP scores of 35.9. Our

method achieves 36.8 on the same R-50 backbone.

In case of single-stage methods, YOLACT-700 [4] and

TensorMask [9] obtain a mask AP of 31.2 and 37.3 in R-

101 backbone, respectively. CondInst [36] and BlendMask*

achieve a mask AP score of 39.1 and 39.5, respectively.

CenterMask [25] and PointRend [24] obtain the best results

among the existing single-stage methods with a mask AP

score of 39.8. Under the same setting, i.e., input size and

backbone, our method outperforms CenterMask [25] and

PointRend [24] with a healthy margin (+ 1.0).

5.3.2 Qualitative results

Improved Boundary Prediction Fig. 4 shows visual mask

results of BlendMask [6] and ours on the COCO validation

set. The first column (a) is the BlendMask result, and the

second column (b) is our result. The third column (c) is the

corresponding holistic image boundary bases that are used

in (b) to predict final masks. The first image is monochrome

photography with the salt and pepper noise. BlendMask

is vulnerable to this noise, and thus the object and its sur-

roundings are not delineated accurately. In the second im-

age, BlendMask misses predicting the gull’s wing on the

boundary area. In the third image, BlendMask fails to pre-

dict the kite area correctly due to the overlapping similar

textures. On the other hand, we can clearly see that our re-

sult has a much better mask prediction quality, especially in

the boundary area.
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Backbone Method epochs Aug AP AP50 AP75 APs APm APl

R-50 FPN

Two-Stage:

Mask R-CNN 12 34.6 56.5 36.6 15.4 36.3 49.7

MS R-CNN 12 35.8 56.5 38.4 16.2 37.4 51.0

BMask R-CNN 12 35.9 57.0 38.6 15.8 37.6 52.2

Single-Stage:

TensorMask 72 X 35.5 57.3 37.4 16.6 37.0 49.1

CondInst 12 X 35.9 56.4 37.6 18.4 37.9 46.9

PointRend 12 36.3 - - - - -

Blendmask 12 34.3 55.4 36.6 14.9 36.4 48.9

Blendmask* 12 X 35.8 56.4 38.3 16.9 38.8 51.1

B2Inst-Blend 12 X 36.8 55.7 39.9 17.2 39.9 52.5

B2Inst-Blend 36 X 39.0 58.7 42.3 19.9 42.0 55.4

R-101 FPN

Two-Stage:

MNC 12 24.6 44.3 24.8 4.7 25.9 43.6

FCIS 12 29.2 49.5 - - - -

FCIS++ 12 33.6 54.5 - - - -

MaskLab 12 35.4 57.4 37.4 16.9 38.3 49.2

Mask R-CNN 12 36.2 58.6 38.4 16.4 38.4 52.1

MS R-CNN 12 37.5 58.7 40.2 17.2 39.5 53.0

BMask R-CNN 12 37.7 59.3 40.6 16.8 39.9 54.6

Mask R-CNN* 36 X 38.8 60.9 41.9 21.8 41.4 50.5

Single-Stage:

YOLACT-700 54 X 31.2 50.6 32.8 12.1 33.3 47.1

TensorMask 72 X 37.3 59.5 39.5 17.5 39.3 51.6

CondInst 36 X 39.1 60.9 42.0 21.5 41.7 50.9

Centermask* 36 X 39.8 - - 21.7 42.5 52.0

PointRend 36 X 39.8 - - - - -

Blendmask 36 X 38.4 60.7 41.3 18.2 41.5 53.3

Blendmask* 36 X 39.5 61.1 42.3 19.5 42.9 56.2

B2Inst-Blend 12 X 38.9 58.4 42.1 18.4 42.3 55.6

B2Inst-Blend 36 X 40.8 61.0 44.2 19.8 44.1 58.3

Table 4. Quantitative comparisons with the state-of-the-art methods. We use MS-COCO test-dev2017 to obtain the final performances.

We compare our method with several state-of-the-art instance segmentation methods, including both the two-stage and single-stage. *

indicates the reproduced performance in our Detectron2 [38] platform. ’Aug.’ denotes using multi-scale training with shorter side range

in [640, 800].

Improved Mask Prediction Fig. 5 compares the visual

mask results of YOLACT [4], BlendMask [6] and ours.

The first column (a) is the YOLACT result, and the sec-

ond column (b) is the result of B2Inst-YOLACT. Similarly,

the third column (c) is the BlendMask result, and the fourth

column (d) is the result of B2Inst-BlendMask. Again, we

observe that our proposals successfully guide the baseline

models to better capture the target object.

6. Conclusion

In this paper, we propose B2Inst which learns an im-

age boundary representation to enhance instance segmen-

tation. We build upon the single-stage framework which

is drawing much attention nowadays due to its speed and

higher accuracy. Our B2Inst learns a boundary basis rep-

resentation by an explicit boundary prediction learning. In

particular, the boundary basis is assembled together with

the existing mask basis representations to compute the fi-

nal per-instance masks, providing a better understanding of

occlusions and complex shapes in a scene. In addition, we

present a quality metric that evaluates both the mask and

boundary prediction of each object and trains our model

to predict the unified score that can be used in mask rank-

ing at test time. Benefiting from these two proposed com-

ponents, our model delineates instance shapes more accu-

rately, especially for heavily occluded and complex scenes.

When applied to BlendMask and YOLACT, which are the

strongest single-stage methods, we exhibit consistent im-

provements over them both visually and numerically. Our

model outperforms the state-of-the-art segmenters both for

single-stage and two-stage frameworks. We hope our ini-

tial findings of the importance of boundary representation

invigorate the follow-up studies.
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Figure 4. Qualitative Comparisons on the Boundary Area. We compare the mask results of (a) BlendMask [6] and (b) Our proposed

B2Inst. (c) Our learned image boundary representation. We can clearly see that our proposals resolve ambiguities in a challenging scene

and produce more accurate masks.

Figure 5. Qualitative Comparisons between the Baselines [4, 6] and Ours on the COCO validation set. (a) is the YOLACT result and

(b) is the result of B2Inst-YOLACT. Similarly, (c) is the BlendMask result, and (d) is the result of B2Inst-BlendMask.
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