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Abstract

Object recognition ability is indispensable for robots to

act like humans in a home environment. For example, when

considering an object searching task, humans can recognize

a naturally arranged object previously held in their hands

while ignoring never observed objects. Even in such a sim-

ple task, we need to deal with three complex problems: do-

main adaptation, open-set recognition, and continual learn-

ing. However, most existing datasets are simplified to focus

on one problem and do not measure the object recognition

ability for home robots when multiple problems are simulta-

neously present. In this paper, we propose the COSDA-HR

(Continual Open Set Domain Adaptation for Home Robot)

dataset that requires dealing with the above three problems

simultaneously. The COSDA-HR dataset focuses particu-

larly on the scenario in which naturally arranged objects in

a room are recognized by training with handheld objects to-

wards the goal of creating a user-friendly teaching system

for home robots. We provide various baselines to address

the problems in the COSDA-HR dataset by combining state-

of-the-art methods from each research area and analyze the

limitations of such simple combinations. We consider that it

is necessary to study the methods of handling multiple prob-

lems simultaneously instead of solving each problem to re-

alize practical object recognition systems for home robots.

1. Introduction

Home-assistant robots are one of the applications where

visual recognition plays a vital role. For example, for ob-

ject retrieval or tidying-up tasks in a home environment, a

robot is required to recognize multiple objects in cluttered

∗now at Google.

environments. With the rapid progress of visual recognition

techniques, the development of such cognitive robots has

been gaining considerable attention and expectation. How-

ever, to put a robot in a home environment with a realistic

application scenario, how to train the systems remains a big

challenge. Because the environment and types of objects

considerably vary from home to home, it is very difficult to

pre-train a recognition system that is universally applicable

to all homes. Therefore, we need an efficient framework to

train the recognition ability of robots in each environment

without much burden for end-users. We consider that dis-

playing objects in front of robots is one of the user-friendly

scenarios of teaching objects for a visual recognition system

in home robots.

To attain this scenario more realistically, we claim that

the following three aspects are important and considered si-

multaneously. (i) Domain adaptation: it is difficult and not

realistic for end-users to collect sufficient training data (im-

ages and annotations) in a real target environment (e.g., a

desk or a shelf), which is often complex and messy. A more

controllable and feasible way of teaching a robot would be

to show an object one by one in front of its eye camera.

However, this means that a huge domain shift inevitably oc-

curs between the source domain (handheld object) and the

target domain. (ii) Open-set recognition: in a real environ-

ment, there should be a number of unknown objects not pre-

sented in the training phase. The recognition system must

be able to distinguish such unknown objects from known

ones. (iii) Continual learning: as novel objects continu-

ally appear in our daily life, the recognition system should

be able to update the knowledge timely to handle them. A

naive strategy is to keep all previous training data and re-

train the system from scratch every time new data are added.

However, this approach is extremely expensive in terms of

computation and memory costs, and not feasible in practical

user-side systems. Therefore, we need an efficient frame-
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Dataset Handheld OS DA CL
Robot

eye-level
Depth # Objects (# Categories) # Images

ROD [17] X X 300 (51) 250,000

ARID [23] X X X 153 (51) 28,316

OpenLORIS-object [37] X X X 69 (19) 430,560

CORe50 [24] X X X 50 (10) 164,866

iCWT [30] X X X X 200 (20) 414,483

COSDA-HR (ours) X X X X X X 160 (16) 89,339

Table 1: Properties of datasets to evaluate object recognition ability of robots. Our proposed COSDA-HR dataset is the first

attempt to measure the object recognition ability of a home robot when recognizing naturally arranged objects in a room

by training with handheld ones in a realistic situation where in the three problems of domain adaptation (DA), open-set

recognition (OS), and continual learning (CL) are simultaneously present.

Figure 1: Overview of the task pipeline in the COSDA-HR dataset. The system is given some labeled handheld images as

the training data of the source domain while it also explores the environment and detects object-like regions from unlabeled

target images. Using the source and target data, the system performs domain adaptation and recognition under the open-set

situation. This procedure is incrementally repeated using n different subsets of classes.

work to incrementally train the system by only using the

novel data without forgetting the knowledge obtained in the

past.

Although there have been many sophisticated datasets

for visual recognition on robots [17, 23, 37, 24, 30], to

the best of our knowledge, none of them have covered the

above three problems simultaneously to recognize naturally

arranged objects in a room by training with handheld ones

for the goal of creating a user-friendly teaching system for

home robots (Table 1). As we have discussed, we consider

that it is essential to consider those problems simultane-

ously and this is also important from theoretical viewpoints

because the assumption of each specific problem is some-

times contradictory to others.

On the basis of this motivation, in this paper, we pro-

pose the COSDA-HR (Continual Open Set Domain Adap-

tation for Home Robot) dataset1 as the benchmark of object

1The COSDA-HR dataset and the codes for the baseline models will be

publicly available after the publication of this paper.

recognition ability of robots in a home environment with a

continual training and testing scenario (Figure 1). The as-

sumed scenario is that we present a robot with novel hand-

held objects every day for training, and the robot adapts the

visual knowledge from the handheld images to the home

environment by using the images explored in the home on

that day where many unknown objects also exist. We build

the baseline models by combining state-of-the-art methods

in each of the three problems and conduct several experi-

ments on the COSDA-HR dataset. We demonstrate that a

simple combination can only achieve 17% mean class ac-

curacy in known classes when the recall for the unknown

class is larger than 90%. This result implies that it is nec-

essary to study algorithms to deal with multiple problems

simultaneously instead of solving each problem separately.

In summary, our contributions are as follows:

• We newly propose the COSDA-HR dataset. It is the

first attempt to measure the object recognition ability

of a home robot when recognizing naturally arranged
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objects in a room by training with handheld ones in

a realistic situation wherein the three problems of do-

main adaptation, open-set recognition, and continual

learning are simultaneously present.

• We build the baseline models by thoroughly imple-

menting the state-of-the-art methods for each research

field of the three problems and analyze the limitations

of their simple combinations.

2. Related Work

2.1. Domain Adaptation

Domain shift, which is a discrepancy between the source

domain and the target domain, is known to significantly de-

grade the performance of learning models. Domain adap-

tation is the technique of alleviating the problem of the do-

main shift, which was firstly applied to visual object recog-

nition in [34], and then various approaches have been pro-

posed. Instance-based methods [12] use data importance

weighting or class importance weighting to find samples in

the source domain that are more related to the target do-

main. Feature-based methods either convert data from one

domain to another or try to learn a domain-invariant rep-

resentation to reduce the domain discrepancy. Recently,

methods based on deep neural networks have achieved sig-

nificant progress in the above approaches. For example,

various discrepancy-based approaches [25, 40, 52, 38] are

applied to deep features. Moreover, with the success of

Generative Adversarial Networks (GAN) [9], domain ad-

versarial training [7, 49, 43, 4, 26, 31] has become one of

the dominant approaches in the field.

Nevertheless, solely aligning the data distributions does

not guarantee the performance on the target domain owing

to the possibility that the conditional distributions may not

be aligned between the features in each domain. Therefore,

several approaches [46, 44, 53, 6, 35, 18, 13, 54] are pro-

posed to alleviate the insufficiency of global domain align-

ment.

2.2. Open Set Problems

Open-set recognition: The goal of open-set recognition is

to detect and reject unknown-class samples while maintain-

ing the recognition performance for known classes. In re-

cent years, deep open-set classifiers have become the stan-

dard approach for open-set recognition. The OpenMax

method [3] modifies the prediction based on the Weibull

distribution trained with respect to the distance from the

mean vector of each class. As the extensions of OpenMax,

G-OpenMax [8] and CROSR [47] are proposed. Both meth-

ods take advantage of unsupervised learning.

Open-set domain adaptation: Open-Set Domain Adapta-

tion (OSDA) is the mixed problem of open-set recognition

and domain adaptation, and it is firstly proposed in [29].

Unlike the standard domain adaptation, in OSDA, there are

some unknown classes in the target domain that do not ap-

pear in the source domain. OSDA is considered to be a

more challenging but practical setting since it is difficult to

guarantee that none of an unknown class appears in the tar-

get domain. To realize OSDA, [29] assumed that the source

data contain the unknown class, but it is not always a feasi-

ble approach since it is difficult to define the contents of an

unknown class and collect sufficient data in advance. There-

fore, [36] extended the method so that it does not require an

unknown class data in the source domain by introducing ad-

versarial training. Since then, many OSDA methods with-

out an unknown class in the source domain are proposed

[48, 2, 22, 16, 28].

2.3. Continual Learning

Continual learning, also termed as lifelong learning, has

attracted the attention of many researchers in the last few

years. Unlike the standard offline learning, training data of

novel classes are incrementally given in continual learning.

The main difficulty is that we have to realize an incremental

update of the knowledge with as less access to old data as

possible, which has the risk of catastrophic forgetting, that

is the model forgets what it previously learned. Various ap-

proaches have been proposed to deal with catastrophic for-

getting which can be roughly separated into two categories:

(1) without memory and (2) with memory.

(1) Without memory: This is the most strict setting of

continual learning where the model is only allowed to ac-

cess the current data and can not retain the old data. To

retain the knowledge obtained from the old data, LwF [19]

applies the distillation approach. EWC [14] takes an ap-

proach to force a constraint such that the parameters useful

for the old data are not largely changed at the next update.

DGR [39] uses Generative Adversarial Models [9] to pro-

duce synthetic data of the previous classes. Generally, the

without-memory setting is quite challenging, and it is dif-

ficult to achieve strong performance comparable to offline

training.

(2) With memory: This approach relaxes the condition by

allowing the model to have a small fixed-size memory to

store the past data [32, 27, 5, 41, 1, 50]. Some of the old

data can be saved in the memory which is replayed during

the incremental training at each step.

2.4. Benchmark Dataset for Object Recognition in
Robotics

We review several benchmark datasets for robotic vision

tasks that are related to our work and summarize the prop-

erties of these datasets in Table 1.

RGB-D Object Dataset (ROD) [17] consists of 300 ob-

jects in 51 categories of common household objects. ROD

not only contains RGB-D multiview images but also in-
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cludes eight video sequences of common indoor environ-

ments. The images of 300 objects are collected using a

turntable, which are comprehensive in terms of object ap-

pearance. However, in practical scenarios, such a special

instrument and labor might not be practical for end-users.

In the COSDA-HR dataset, we rotate an object by the hand,

thus it does not require such a special instrument.

Autonomous Robot Indoor Dataset (ARID) [23] consists

of 153 objects in 51 categories. ARID has images captured

at the first-person view of a robot working in a home envi-

ronment under different lighting conditions. It also provides

web-domain images to investigate the transferability of the

knowledge from the web domain to the real-world domain.

OpenLORIS-object Dataset [37] is a benchmark dataset

for continual learning. It is mainly focused on continual

learning and considers many environmental factors, such

as illumination, occlusion, clutter, object size, and camera

pose in various indoor environments including home, of-

fice, coffee shop, and mole. Although the considered en-

vironmental conditions are more diverse than our dataset,

OpenLORIS is not targeted to open-set and domain shift

problems.

CORe50 Dataset [24] and iCubWorld Transformations

Dataset [30] consist of many categories of handheld im-

ages such as source images in our COSDA-HR dataset. In

their setting, [30] focused on object recognition in a wide

variety of visual transformations, and [24] focused on ob-

ject recognition in continual learning.

Why COSDA-HR dataset? It is important to provide a

less burdensome way of the teaching system for end-users,

and we consider that displaying handheld objects to a home

robot is one of the user-friendly scenarios. When consider-

ing such a scenario in a practical situation, we consider that

it is necessary to deal with the three problems of contin-

ual learning, open-set recognition, and domain adaptation

simultaneously. To the best of our knowledge, all exist-

ing datasets are not suitable for measuring the recognition

ability in such a scenario. ROD, ARID, and OpenLORIS

dataset do not provide handheld images, thus, it is diffi-

cult to extend them for our scenario. The CORe50 dataset

has the handheld objects and naturally arranged objects as

test images, however, it is difficult to apply domain adap-

tation methods since they do not provide sufficient images

in their test domains. In our scenario, domain adaptation is

essential since a home environment is considerably differ-

ent from home to home, and it is very difficult to pre-train

a recognition system that works in all environments. The

iCWT dataset also has the handheld images, however, they

do not provide the naturally arranged paired objects for test-

ing, thus iCWT could not be extended for our purpose. For

the above reasons, we built the COSDA-HR dataset from

scratch instead of extending the existing datasets.

3. COSDA-HR: Continual Open Set Domain

Adaptation for Home Robot

3.1. Collecting Images and Annotations

All the images in the COSDA-HR dataset are captured

by the Xtion RGB-D sensor mounted at the eye-level of

the Toyota Human Support Robot (HSR) [42] whose ap-

pearance and specifications are shown in the supplementary

material. In addition to RGB images, depth information is

also available in our dataset, although we do not use it in

this paper. There are 16 super categories and each cate-

gory has 10 different instances, thus there are 160 classes

in total. The 16 super categories are selected from those

commonly appearing in a home environment, which include

ball, book, bowl, toy block, can, cup, dish, glass bottle, mo-

bile phone, pen, plastic bottle, plush doll, TV controller,

scissors, socks, and towel. There are two types of image:

Source (i.e., handheld object images) and Target (i.e., home

explored images). In the target domain, we consider the un-

known class not included in the source dataset. We describe

the details of the source and target data in the following.

Source (handheld object images): Figure 2 shows some

examples of source images. We show each object to the

HSR in front of a uniform background while rotating it

by hand. Therefore, each image contains exactly one ob-

ject. We manually annotate both the class label and object

bounding box for each image. There are 53,991 images for

training and 16,000 images for testing, which are denoted as

Sourcetrain and Sourcetest, respectively. Although Sourcetest

does not directly correspond to the goal of the COSDA-HR

dataset, it can be useful for the comparative evaluation of

the methods in within-domain scenarios.

Target (home explored images): We manipulate the HSR

and collect images in an experimental home environment as

illustrated in Figure 3 (bottom). In the environment, multi-

ple objects are manually placed at plausible locations such

as the table and kitchen. The HSR starts exploring from the

red circle and finishes the exploration at the green circle go-

ing along the path indicated by the black arrow. We conduct

22 explorations randomly changing the objects and their lo-

cations for each exploration. Half of the explorations were

conducted in the daytime with sufficient sunlight while the

other half of the explorations were conducted at night where

only room lights are available. The examples of images in

the target data are shown in Figure 3 (top). Out of the 22

explorations, 10 are used for training (i.e., domain adap-

tation), another 10 are used for testing, and the last two

are used for tuning an objectness detector. They are de-

noted as Targettrain, Targettest, and Targettune, respectively.

While Targettrain does not have any annotation, Targettest

has ground-truth object label and bounding box annotations,

which are only used for evaluation purposes. Targettune only

has object bounding boxes (without class labels).
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Figure 2: Examples of source images. Each object

belongs to a different super category and is shown

to the robot while being rotated by hand.

Figure 3: Experimental home environment. The bottom image shows

the map and the trajectory of the robot. Each colored circle indicates

the position of the robot, and the corresponding target images cap-

tured there are shown on the top.

Figure 5: Failure case of object proposals by object detector

with default hyperparameters. The left and right images are

object proposals with default and tuned hyperparameters,

respectively.

3.2. Converting to a Classification Problem

Unlike the source domain dataset, target domain images

are not object-centric, and thus we should somehow detect

the object regions both in the training phase (i.e., domain

adaptation using Targettrain) and in the testing phase. Be-

cause the object detection part will significantly affect the

overall outcome of a system but is not the central interest

of the COSDA-HR dataset, we also provide a preprocessed

target dataset by fixing the detection process to focus on

the problem of the COSDA-HR dataset. Specifically, we

crop the object images with an off-the-shelf objectness de-

tector and set up the problem as the standard classification.

To do this, we use a general objectness detector that is im-

plemented with the RetinaNet [20] pre-trained on COCO

dataset [21]. As can be seen in Figure 5, we found that

the pre-trained model often fails to detect target objects in

our environment, we tune the hyperparameter (i.e., detec-

tion threshold) of the detector with Targettune data so that it

maximizes the recall score2 for the tuning data because this

2The bounding box predictions are regarded as correct if its IoU with

any one of the ground-truth bounding boxes is greater than 0.5. Note that

is the very first step in the detection pipeline and it is more

important to keep as many true positives as possible. As a

result, our objectness detector achieves 0.015 precision and

0.967 recall on Targettune even though 7 super categories

in the COSDA-HR dataset does not exist in categories of

COCO dataset.

We apply the objectness detector to Targettrain and ob-

tain the set of cropped object images, which is denoted as

Target∗train. It has 205,392 images in total and the minimum,

average, and maximum size across all cropped images are

24 x 15, 100 x 140, and 480 x 640 pixels, respectively. It is

a very noisy open-set dataset where most of the data belong

to the unknown class that contains both unknown objects

and false-positive object proposals. Some examples can be

seen in Figure 1 (in green boxes on the target side).

As for the testing data, we apply the objectness detector

and crop the regions whose IoU with any one of the original

ground-truth bounding boxes is larger than 0.5, which are

regarded as the object regions for the corresponding labels.

If a proposed region does not have an IoU of more than 0.5

with any ground-truth boxes, it is regarded as an unknown

class. In this way, we set up a classification dataset by sam-

pling 15,094 images for the known 160 classes (i.e., closed

set) and 15,094 images for the unknown class, which we

name Target∗test. The correct classification of those images

means the correct object detection (with unknown rejection)

in the overall pipeline.

Table 2 summarizes the properties of the original and the

converted datasets. In the rest of this paper, we focus on

the classification problem with Sourcetrain, Target∗train, and

Target∗test

we do not fine-tune the detection model itself.
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Subsets # Explorations (day/night) # Images (known/unknown) # Classes Annotations

Sourcetrain - 53,991 (53,991/0) 160 bbox + label

Sourcetest - 16,000 (16,000/0) 160 bbox + label

Targettrain 10 (5/5) 1,552 160+1

Targettest 10 (5/5) 7,851 160+1 bbox + label

Targettune 2 (1/1) 1,390 160+1 bbox

Target∗train 10(5/5) 205,392 160+1

Target∗test 10(5/5) 30,188 (15,094/15,094) 160+1 label

Table 2: Properties of the COSDA-HR dataset. In addition to the domain shift, the target data include the unknown class that

contains unknown objects not presented in the source. Target∗ represents the pre-processed dataset of Target.

3.3. Evaluation

Clearly, there is a trade-off between the performances

of closed-set accuracy and unknown rejection. Considering

that there could be an infinite amount of unknown objects

in a real home environment, we believe it is more important

to be able to correctly reject a majority of unknown inputs

in the first place. The standard criteria, such as mean class

accuracy and macro F1 score, can not be used to properly

evaluate this point. Therefore, we propose the t-threshold

top-m accuracy and denote it as top-m (t=n). It represents

the top-m accuracy in the closed set classes when the ac-

curacy (recall) for the unknown class is larger than n. In

our experiments, we mainly evaluate the recognition ability

when m and n are 1 and 0.9, respectively.

4. Experiments

In the following experiments, except for the simple open-

set recognition methods, we train the model with Sourcetrain

+ Target∗train and evaluate with Target∗test. For open-set meth-

ods, we only use Sourcetrain for training as they have no

clear way of utilizing Target∗train data. In addition to the

open-set evaluation of top-1 (t=0.9), we also evaluate top-1

(t=0.0), which is the case when an unknown class is not re-

jected and corresponds to the standard closed-set evaluation

of top-1 accuracy within the known 160 classes.

We use ResNet-18 [10] pre-trained on ImageNet-1k [33]

as the backbone feature extractor for all experiments. Im-

age preprocessing and data augmentation are applied in the

same way that are shown in [10]. Other implementation de-

tails (e.g., optimizer, learning schedule) are shown in the

supplementary material.

4.1. Open Set Domain Adaptation

We first consider the open set domain adaptation with-

out the continual learning issue in which we use the whole

training data in one step. The performances of various

methods are summarized in Table 3. First, we test some

state-of-the-art unsupervised domain adaptation methods

(i.e., AFN [46], BSP [6], DAAN [49], DTA [18] and

MRAN [54]), which do not consider the open-set prob-

lem by themselves. As they cannot handle the unknown

class, we only evaluate the closed top-1 (t=0.0) accuracy

for these methods. As can be seen in Table 3, MRAN [54]

achieves the best performances of 37.35%, but this is rela-

tively low even though we ignore the unknown samples in

testing. This result indicates the difficulty of domain align-

ment with the existence of unknown class data in Targettrain.

Then, we consider the open-set domain adaptation prob-

lem. Not surprisingly, simple open-set recognition methods

do not work because of the huge domain shift. A straight-

forward approach to OSDA is to combine the methods of

open-set recognition and domain adaptation individually

developed in each field. For this category, MRAN + Soft-

max thresholding achieves 13.38% top-1 (t=0.9) accuracy.

A more plausible approach is to use the methods spe-

cially designed for open-set domain adaptation, which con-

sider both problems simultaneously. We test two standard

methods in this category: OPDABP [36] and UDA [48].

Overall, the best score is achieved by UDA.

4.2. Continual Open Set Domain Adaptation

On the basis of the results discussed in the previous sec-

tion, we consider the open-set domain adaptation with con-

tinual learning as our final goal. In this experiment, 160

classes are randomly split into 10 subsets to form the se-

quence of continual learning. The performance is evaluated

in terms of the final 160 class classification after inputting

the 10 subsets one by one. We check the performance us-

ing four types of criteria on top-1/10 (t=0.0), and top-1/10

(t=0.9).

We combine state-of-the-art continual learning methods

with open-set domain adaptation methods evaluated in the

previous section. For the continual learning methods, we

use LwF [19] as a representative method without memory,

and the simple rehearsal method (Rehearsal) and BiC [50]

as memory-based methods because they achieved the best

results among several methods in our preliminary exper-

iment using the closed dataset in the source domain (see

supplementary material). We set the size of the memory as

2000 for the memory-based methods. ”Cumulative” corre-

sponds to the standard off-line training strategy and can be
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Method DA OS top-1(t=0.0) (%) top-1(t=0.9) (%)

AFN [46] X 22.63 NA

BSP [6] X 29.80 NA

DAAN [49] X 31.33 NA

DTA [18] X 31.21 NA

MRAN [54] X 37.35 NA

Softmax thresholding X 15.63 4.03

Openmax [3] X 10.58 3.00

CROSR [47] X 6.80 2.29

OPDABP [36] X X 19.04 6.73

UDA [48] X X 35.53 15.89

MRAN+Softmax X X 37.35 13.38

MRAN+Openmax X X 17.66 8.91

Table 3: Closed-set (t=0.0) and open-set (t=0.9) evaluation results on the COSDA-HR dataset in open-set domain adaptation

setting. DA and OS indicate that a method covers domain adaptation and open-set issues, respectively.

Method top-1 (t=0.0) (%) top-1 (t=0.9) (%) top-10 (t=0.0) (%) top-10 (t=0.9) (%)

LwF+UDA 6.85 2.93 24.96 8.68

Rehearsal+UDA 32.75 16.71 72.61 29.03

BiC+UDA 32.39 17.27 72.08 28.84

UDA (Cumulative) 34.38 15.89 73.52 24.22

BiC+MRAN+Softmax 31.93 15.17 71.47 15.18

BiC+MRAN+Openmax 11.24 0.90 42.23 2.89

Table 4: Closed-set (t=0.0) and open-set (t=0.9) evaluation results on the COSDA-HR dataset in continual open-set domain

adaptation setting.

regarded as the upper-bound baseline for continual learning.

The results are shown in Table 4. It shows that while

a no-memory method (LwF + UDA) performs significantly

poorer than the non-continual baseline (UDA(Cumulative)),

memory-based continual learning methods can somewhat

alleviate the problem of catastrophic forgetting. The most

interesting finding is that while UDA(Cumulative) outper-

forms its continual versions (w/ Rehearsal and BiC) on

closed-set evaluation (t=0.0), which is not surprising, con-

tinual ones perform better in terms of open-set evaluation

(t=0.9). This is perhaps because memory-based CL meth-

ods retain only a limited amount of informative examples

that lead to loose estimation of the posterior probability dis-

tributions of known labels. This result indicates the impor-

tance of considering continual learning effects simultane-

ously with open-set and domain adaptation to address the

problems in the COSDA-HR dataset.

Overall, the best combination in this experiment is BiC

+ UDA, which achieves 17.27% in top-1 (t=0.9), but we

should say that the performances of those baseline meth-

ods are far from satisfactory for home robots. In addi-

tion to the significant domain shift, the open-set issue is

hardly handled in these methods. For example, BiC + UDA

achieves 32.39% on closed-set evaluation top-1 (t=0.0) but

only achieves 17.27% open-set top-1 (t=0.9). It means that

almost half of the correct prediction is wrongly detected as

the unknown class and rejected. More studies are required

to alleviate these difficulties. We also provide some empir-

ical analyses of hard examples in the supplementary mate-

rial.

5. Analysis

5.1. Do better ImageNet­1k classifiers generalize
better?

It is empirically shown that the better the performance in

ImageNet-k, the better the transferability to other recogni-

tion tasks [15]. The results in Tables 3 and 4 are obtained

using ResNet-18 as the backbone feature extractor. In this

section, we investigate how much a strong backbone con-

tributes to improving performance.

The relationship between top1-error in ImageNet-1k

and open-set (t=0.9) evaluation results in the COSDA-HR

dataset with continual open-set domain adaptation setting is

shown in Figure 6. There is a trend that a stronger back-

bone gives better performance in the COSDA-HR dataset.

The result is still far from satisfactory for home robots

even when some strong backbones are used. In addi-

tion, some backbones (i.e., ResNet50, WideResNet50 [51],

WideResNet101, DenseNet121 [11] and ResNeXt50 [45])
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Figure 6: Relationship between top1-error in ImageNet-1k

and open-set (t=0.9) evaluation results in the COSDA-HR

dataset with continual open-set domain adaptation setting.

Figure 7: Examples of target images in the COSDA-HR

dataset under different light conditions.

Condition top-1 (t=0.9) (%)

Day 17.85

Night 15.95

Table 5: Open-set (t=0.9) evaluation results on the COSDA-

HR dataset under different light conditions.

show weaker performances than ResNet18 in the COSDA-

HR dataset even though ResNet18 shows the weaker per-

formance in ImageNet-1k. It implies that strong backbones

may give better performance, however, it is not surely guar-

anteed. We consider that using a strong backbone can not

be the solution to the COSDA-HR dataset.

5.2. Empirical analysis in hard examples

We analyze how our baseline makes a mistake in the

COSDA-HR dataset.

Light condition. Target∗test has two types of example that

are taken during the day and at night. We examine how

such light conditions affect recognition ability. As can be

seen in Figure 7, there are two types of light condition in

the COSDA-HR dataset: day (i.e., sunlight + indoor lights)

Super category top-1 (t=0.9) (%) False rejection rate (%)

glass bottle 45.38 28.53

socks 39.23 44.09

book 26.77 50.0

scissors 0.0 89.62

dish 4.31 80.43

plastic bottle 7.07 55.31

Table 6: Three easiest and hardest super categories. The top

three and bottom three are the result of easiest and hardest

categories, respectively.

and night (i.e, only indoor lights). The results of the perfor-

mance under each light condition are shown in Table 5. It

shows that the recognition ability is worse at night than dur-

ing the day even though the examples under both conditions

appear similar.

Misclassified examples. There are 16 super category and

we investigate which super categories are difficult to rec-

ognize. Table 6 shows three super categories that achieve

the highest top-1 (t=0.9) and the lowest ones. False rejec-

tion rate represents how many examples are rejected as the

unknown class. It shows that some super categories are

mostly rejected as the unknown class (e.g., scissors and

dish). There is the trend that the less the rejection rate in

the super category, the better the performance. It implies

that performance should be much improved by developing

better rejection mechanisms.

6. Conclusion

In this paper, we proposed the COSDA-HR dataset to

measure the ability of home robots to recognize naturally

arranged objects in a room by training with handheld ob-

jects. It is built to help to develop a user-friendly object

teaching system for home robots. Since we consider a re-

alistic situation for home robot applications, the COSDA-

HR dataset requires dealing with three problems of domain

adaptation, open-set recognition, and continual learning si-

multaneously.

We also performed experiments on the COSDA-HR

dataset by thoroughly combining state-of-the-art methods

of each of the three problems and confirmed that sim-

ple combinations still provide far from satisfactory results.

Much work is required to mitigate the difficulties by dealing

with the three problems simultaneously instead of solving

each problem separately.

Although we separately used an objectness detector to

focus on the classification problem in this paper, it would

be interesting to develop an end-to-end learning method in-

cluding the object detection process. It is also promising to

integrate the depth information to improve the performance.

We would like to leave these issues as our future work.
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