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Abstract

In the supervised learning framework, a softmax cross-

entropy loss is commonly applied to train deep neural net-

works for high-performance classification. It, however, de-

mands large amount of annotated data and fails to learn the

discriminative networks on a smaller amount of data. In

this paper, we propose a novel loss measure to train the net-

works such that discriminative feature representation can

be learned even on the smaller-scale dataset. By means of

feature grouping, we effectively expose non-discriminative

feature components to representation learning and formu-

late two types of group softmax losses to cope with the

grouped features. The proposed method encourages dis-

criminative representation across all feature components,

and from a theoretical viewpoint it renders adversarial

training which works for alleviating over-fitting especially

on scarce training data. The experimental results on im-

age classification tasks demonstrate that the proposed loss

favorably improves performance of CNNs on various-scale

data.

1. Introduction

Deep neural networks (DNNs) have been producing

promising performance on various fields of pattern recogni-

tion, such as by convolutional neural networks (CNNs) [22,

34] for image classification and recurrent neural net-

works [9, 27] for recognizing time-series signals. While

exhibiting favorable applicability in the framework of unsu-

pervised learning [44, 3], they perform extraordinarily well

through an end-to-end supervised training based on ground-

truth labels [15, 41]. The DNNs are equipped with lots of

parameters, therefore demanding huge amount of labeled

data for being successfully trained. Though much research

effort has been devoted to mitigating the problem from the

viewpoints of network architecture [15, 41, 17], layer-wise

operation [35, 18] and data augmentation [7, 43], the data-

hunger nature is the major drawback of DNNs; actually, it is

hard to train the networks from scratch on the smaller-scale

datasets due to over-fitting.

Toward effective training, there is also a research direc-

tion to focus on a loss function which is fundamental for op-

timizing networks. In the supervised learning, the softmax

cross-entropy loss is arguably the most commonly used loss

measure, and for improving generalization performance, as

in SVMs [37], a large margin criterion can be introduced

to the softmax loss in various ways [26, 38, 5, 23]. In the

end-to-end learning framework of DNNs, the large-margin

losses contribute not only to improving a classifier but also

to providing a more discriminative feature representation.

The other variants of softmax loss are also proposed to

mitigate the bottleneck of the softmax formulation [20, 4].

These works directly modify the loss function itself based

on the logits that the last fully-connected (FC) layer pro-

duces.

In this work, we focus on the other aspect of loss. While

the previous works mainly investigate what type of loss is

useful, we analyze how the loss is applied to features for

further effective training. Softmax loss is applied to the

logits, i.e., inner-products between the feature vector at the

penultimate layer and FC weights, and thus deals with the

features as a whole rather ignoring their individual charac-

teristics. In contrast, we focus on discriminativity of each

feature component for further encouraging effective fea-

ture learning across all the feature components. For that

purpose, the whole feature components are separated into

several groups to reveal each feature’s discriminativity in

a loss, and the same partitioning can be applied to the FC

classifier in accordance with the feature grouping. Thereby,

this grouping keeps the form of FC classifier embedded in

NNs, without degeneration nor reformulation in the layer.

To cope with the grouping in a loss, we formulate two types

of group softmax loss as well as provide an effective fea-

ture grouping to gather non-discriminative feature compo-

nents which are fed into the group softmax loss separately

from the discriminative ones for fairly promoting discrimi-

native learning across all the components. From a theoreti-

cal viewpoint, our method renders adversarial training [13]

at the level of loss which works as a favorable regularization
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to mitigate overfitting especially on scarce data. Thus, the

group softmax loss equipped with the discriminative feature

grouping facilitates training networks even on smaller-scale

datasets. Our contributions are summarized as follows; 1)

Grouping feature components naturally induces two types

of group softmax loss. 2) The feature grouping is formu-

lated in a computationally efficient form to fairly encour-

age discriminative feature representation across all the fea-

ture components. 3) The proposed loss is thoroughly ana-

lyzed/evaluated in the experiments on various datasets.

1.1. Related works

Loss and regularization. There are a variety of softmax

loss variants such as for enhancing large-margin [26, 5]

and mitigating softmax bottleneck [20, 4]. These methods

design novel types of loss functions, thus being different

from ours which considers how to apply a loss function

to features via feature grouping. To work with the losses,

some regularization methods, such as DropOut [35, 30] and

CenterLoss [39], are proposed; in this work, we consider

DropOut applied only at the penultimate layer for fair com-

parison. From an adversarial viewpoint, our method is also

regarded as regularization via manipulating feature com-

ponents like [35, 30] without imposing any explicit reg-

ularization term [39]; the discussion on the connection to

DropOut [35, 30] is shown in Sec. 3.2.

Dividing feature space. Grouping feature components is

related to the concept of splitting a feature space found

in product quantization (PQ) [19, 12] which are extended

in the framework of deep learning [42, 21]. The PQ

methods leverage the feature sub-spaces to efficiently en-

code/quantize feature vectors into a large number of codes

which are combinatorially described by means of a Carte-

sian product of sub-codes. In this work, we harness the fea-

ture partition in a loss function for effectively learning the

discriminative features, apart from the Cartesian product of

sub-space codes. Splitting feature channels into groups can

be embedded in CNNs by group convolution [22, 41, 16]. It

is one of the CNN techniques to make the convolution oper-

ation computationally efficient with less number of weight

parameters, which exhibits clear difference from our fea-

ture grouping in the loss. In addition, the group convolu-

tion slices the input feature channels in a fixed way, sharply

contrasting with our discriminative feature grouping which

dynamically changes groups during the training.

Product of softmax. The group softmax loss is con-

nected to a product form of the softmax probabilities which

is utilized in the hierarchical softmax for efficiently com-

puting the posterior over a lot of class categories [28]

and for exploiting semantic structure of the visual cate-

gories [31, 25, 6]. These methods are based on the hier-

archical structure of the class categories which probabilis-

tically induces the product (chain) of the softmax probabil-

ities. Recently, the balanced group softmax loss [24] has

been proposed by grouping imbalanced class categories to

cope with imbalanced long-tail object detection. In con-

trast to those works, we formulate the group softmax loss

through dividing feature space without considering class

categories, and it is an upper bound on the softmax loss

(Sec. 3.1).

Upper bound on the loss. In the field of distance met-

ric learning (DML), the upper bounds on the triplet loss

are presented in [8, 29] for efficiently training DML mod-

els based on the triplet loss which requires to cope with a

huge number of triplet samples in a naive approach. In this

work, we derive the upper bound on the softmax loss, which

is a standard classification loss applied in versatile classifi-

cation tasks, for enhancing discriminative feature represen-

tation. It might be noteworthy that our approach to discrim-

inative feature grouping is slightly connected to the sample

mining technique used in the pairwise loss of DML [33].

The proposed upper bounds on the softmax loss are also

different from the method [2] that formulates some bounds

on the softmax function, actually the log-sum-exp function

contained in the softmax, for efficient Bayesian inference.

In this work, while retaining the fundamental form of the

softmax loss function, we propose a novel way to apply the

loss function to a feature vector through grouping its com-

ponents.

2. Method

We begin with the standard softmax cross-entropy loss

while introducing the notations used in this paper, and then

propose the grouped form of softmax loss as well as dis-

criminative feature grouping.

2.1. Softmax cross­entropy loss

A feature vector x ∈ R
D is produced at the penultimate

layer in NNs. It is fed into the final linear classification layer

parameterized by weights W = [w1, · · · ,wC ] ∈ R
D×C

and biases b ∈ R
C to provide C-class logits z̄ ∈ R

C for the

softmax loss ℓ1 as

z̄ = W
⊤
x+ b, (1)

py(z̄) =
exp(z̄y)

∑C

c=1 exp(z̄c)
, ℓ1(z̄, y) = − log py(z̄), (2)

where y ∈ {1, · · · , C} is the ground-truth label assigned

to the feature vector x and z̄c indicates the c-th element

of z̄. In this work, we further decompose the logit z̄c into

ingredient logits {zjc}
D
j=1;

zjc = Wjcxj +
1

D
bc (3)

⇒ z̄c =

D
∑

j=1

zjc, py(z̄) =
exp(

∑D

j=1 zjy)
∑C

c=1 exp(
∑D

j=1 zjc)
, (4)
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where Wjc, xj and bc are the (j, c)-th, j-th and c-th el-

ements of W , x and b, respectively, and the whole in-

gredient logits are represented by a matrix form of Z =
{zjc}

D,C
j=1,c=1 ∈ R

D×C . This is computed by element-wise

multiplication between the feature vector x and the classi-

fier weights W .

2.2. Group softmax loss

The standard softmax loss (4) uniformly aggregates all

the ingredient logits Z, correspondingly all feature compo-

nents of x, and hence could be dominated by only a few

discriminative feature components as follows. Let such a

discriminative feature index set be denoted by D, and it pro-

duces ℓ1(z̄) ≈ ℓ1(z̄
D) by z̄

D = {z̄Dc =
∑

j∈D zjc}
C
c=1 in

which z̄Dy is significantly larger than the other logits. Those

prominent features are implied in the literature of network

pruning [10]. Thus, through the uniform aggregation (4),

the softmax loss disregards how much each feature com-

ponent is learnt while concentrating on a small number of

prominent features of high discriminativity (Fig. 1a). The

few prominent features hinder non-discriminative compo-

nents from being properly learned, although diversely dis-

criminative features are required to improve generalization

performance; it is especially hard to propagate discrim-

inative learning across all the components on the scarce

training data. To mitigate the issue, we partition the D

feature components, actually ingredient logits zjc in (3),

into several groups in a loss formulation so that even non-

discriminative features can enjoy effective learning sepa-

rately from the discriminative ones (Fig. 1b). We here for-

mulate a loss to cope with so grouped features and then pro-

vide discriminative feature grouping in Sec. 2.3 for endow-

ing effective feature leaning with all components of x.

Let the whole feature index set be denoted by G1 =
{1, · · · , D}, and suppose G1 is sliced into G groups

{Gi
G}

G
i=1 which are disjoint and non-empty; |Gi

G| > 0,

Gi
G ∩ Gi′

G = ∅,
∑G

i=1 |G
i
G| = D where |G| indicates the

cardinality of the set G and i 6= i′. This partitioning is ap-

plied to the features x as well as the classifier weights W

to produce group-wise logits as

z̄
Gi
G

c =

{

∑

j∈Gi
G

Wjcxj

}

+
|Gi

G|

D
bc =

∑

j∈Gi
G

zjc (5)

⇒ py(z̄) =

∏G

i=1 exp(z̄
i
y)

∑C

c=1

∏G

i=1 exp(z̄
i
c)
. (6)

which aggregates the ingredient logit zjc in the i-th group

Gi
G; for brevity, z̄

Gi
G

c is simply denoted by z̄ic. The group

logits (5) which satisfy z̄c =
∑G

i=1 z̄
i
c further rewrite the

softmax (4) into the group-wise form (6). By factorizing it

with respect to groups, we can formulate two types of group
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(a) Softmax loss (G=1) (b) Ours (G=2)

Figure 1. Group softmax loss with discriminative feature group-

ing. The ingredient logits zjc (3) are depicted by gray-scale col-

ors for values and shapes for class c; the circle © indicates the

ground-truth class y. The indexes j are equally divided into two

groups of G1

2 and G2

2 after sorting by the discriminativity score λ,

and partial softmax losses are computed on the respective groups.

Non-discriminative features are exposed in our loss (b), while they

are buried in the standard softmax loss (a).

softmax losses as

ℓIG(Z, y;GG)=−
1

G

G
∑

i=1

log

[

exp(Gz̄iy)
∑C

c=1 exp(Gz̄ic)

]

, (7)

ℓIIG (Z, y;GG)=−
G
∑

i=1

log

[

exp(z̄iy)
∑C

c=1 exp(z̄
i
c)

]

. (8)

These losses partition the softmax loss in terms of fea-

ture grouping {Gi
G}

G
i=1 in contrast to [24] which groups

class categories. The type-I loss ℓIG introduces scaling by

G to make the scale of z̄ic close to that of z̄c as done in

DropOut [35], while the type-II loss ℓIIG is simply composed

of group-wise softmax loss based on group logits {z̄ic}
C
c=1.

Both types of losses are naturally extended from the soft-

max loss ℓ1 (2) since they are reduced into ℓ1 = ℓI1 = ℓII1
in case of G = 1 (single group); theoretically, the group

softmax losses (7, 8) are upper bound on the softmax loss

as described in Sec. 3.1.

2.3. Discriminative feature grouping

For enhancing discriminativity of all feature compo-

nents, it is necessary to apply the group softmax loss (7, 8)

with the proper feature grouping that effectively conveys

non-discriminative feature components to the loss; actually,

a naive random grouping is less effective in the group loss

as empirically shown in Sec. 4.1. That is, we require the

group that contains only the less discriminative features, ex-

cluding discriminative ones, so as to let the group loss (7, 8)

focus on improving them (Fig. 1b). To this end, we mea-

sure discriminative power of each feature component based

on ingredient logits.

The discriminativity at each component j can be evalu-
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Algorithm 1 Group softmax loss with discriminative feature grouping

Input: x ∈ R
D: feature vector produced by CNN, y ∈ {1, · · · , C}: ground-truth label,

W ∈ R
D×C , b ∈ R

C : classifier parameters, G: number of feature partition

1: Ingredient logit (3): Z = W ⊙ (x1⊤
C) +

1
D
1Db

⊤ ∈ R
D×C where 1C ∈ R

C is the vector whose elements are 1 and ⊙
indicates Hadamard product.

2: Discriminativity score (9): λ = Z(ey −
1
C
1C) ∈ R

D where ey is one-hot vector activating the y-th element.

3: Grouping (10): determine the thresholds {τi}
G
i=0 via sorting {λj}

D
j=1 to provide the discriminative grouping {G̃i

G}
G
i=1.

4: Group logit (5): {z̄i = Z
⊤(

∑

j∈G̃i
G
ej) ∈ R

C}Gi=1.

Output: ℓIG=− 1
G

∑G

i=1 log
exp(Gz̄i

y)∑
C
c=1

exp(Gz̄i
c)

[type I], or ℓIIG =−
∑G

i=1 log
exp(z̄i

y)∑
C
c=1

exp(z̄i
c)

[type II]

ated by the difference between the ingredient logit zjy of

ground-truth label y and the others as

λj = zjy −
1

C − 1

∑

c 6=y

zjc =
C

C − 1

[

zjy −
1

C

C
∑

c=1

zjc

]

.

(9)

According to the discriminativity score λj , we can group

the feature index set G1 = {1, · · · , D} into G groups. Since

it is generally hard to clearly partition the (continuous) dis-

criminativity scores into two groups of discriminative and

non-discriminative ones, we here simply consider G ≥ 2
groups through sorting λj and equal partitioning; the pro-

cess is described by using G−1 thresholds {τi}
G−1
i=1 as

G̃i
G = {j|τi−1 < λj ≤ τi} ∧ |G̃i

G| =
D

G
, ∀i, (10)

where τi−1 < τi, τ0 = −∞, τG = ∞, (11)

which provides highly imbalanced grouping in terms of

discriminativity; G̃1
G contains least discriminative features

while G̃G
G is highly discriminative. In practice, to further

promote computational efficiency, the feature grouping is

constructed in the mini-batch by averaging the discrimina-

tivity score λj over the mini-batch samples and the discrim-

inative grouping G̃G is shared in the mini-batch.

By integrating the discriminative grouping with the

group softmax loss (7, 8), discriminative feature compo-

nents are encapsulated in one group and their effects are

restricted in one part of loss (Fig. 1b). Thereby, the non-

discriminative feature components are freed from the effects

of those prominent features and encouraged to effectively

increase the discriminativity; throughout training, the less-

discriminative components are exposed to the loss of the

group that those components belong to. The practical pro-

cedure to compute the loss is summarized in Algorithm 1.

As the training proceeds, the number of non-

discriminative components are reduced and accordingly the

optimal cardinality of group |Gi
G| to capture them could be

smaller. To cope with the situation, we integrate multiple

group softmax losses by

ℓI(Z, y) =
1

|G|

∑

G∈G

ℓIG(Z, y; G̃G), (12)

ℓII(Z, y) =
1

|G|

∑

G∈G

ℓIIG (Z, y; G̃G), (13)

where ℓIG and ℓIIG are defined in (7, 8) computed by Algo-

rithm 1, and G is the set of G, say G = {1, 2}; G = 1
indicates the standard softmax loss (2). The losses (12, 13)

hierarchically group feature components.

3. Discussion

3.1. Adversarial training

The proposed method can be analyzed from an adver-

sarial viewpoint. We first show the following relationship

among the group losses (7, 8) and the softmax loss (2).

Proposition 1. Given the feature grouping {Gi
G}

G
i=1, the

softmax loss ℓ1 (2) is upper bounded by the group softmax

losses (7, 8) as

ℓ1(z̄, y) ≤ ℓIG(Z, y;GG) ≤ ℓIIG (Z, y;GG). (14)

Proof. The proof is given in the supplementary material.

In addition, these upper-bound losses ℓIG (7) and ℓIIG (8)

are roughly maximized with respect to grouping G by the

discriminative feature grouping G̃G (10) which provides the

groups of highly imbalanced discriminativity (9); the detail

is described in the supplementary material.

Therefore, minimizing the group softmax loss (7, 8)

with the discriminative feature grouping (10) roughly corre-

sponds to the following adversarial training [30] at the loss;

min
θ

max
G

ℓG(Z(θ), y;G), (15)

where θ is a parameter set of the network to be opti-

mized and note that ℓG is reduced to the softmax loss by

G = G1. In other words, the proposed method adversarially
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increases the softmax loss via feature grouping and thus in

end-to-end learning it works as adversarial regularization at

the level of loss which is effective for training especially on

scarce data by alleviating over-fitting. While the standard

adversarial training [13] is applied to input data (images) in

a similar way to data augmentation, it should be noted that

the proposed method works on features (at the penultimate

layer) as in the framework of adversarial dropout [30].

3.2. Comparison to DropOut

From a regularization perspective, the proposed method

can be related to DropOut [35, 30]; we here consider the

DropOut procedure that is applied to the features x pro-

duced by the penultimate layer. As illustrated in Fig. 2, the

DropOut methods also operate on feature indexes through

dropping some of feature components randomly [35] or ad-

versarially [30], and the dropped components cannot en-

joy back-propagation updates. In contrast, our method

groups features without excluding any components and

therefore leverages all the features to representation learn-

ing through discriminative grouping beyond random one;

i.e., our method lets all feature components join in back-

propagation learning.

It is also possible to view the proposed method as merg-

ing group-wise DropOuts into a single loss (updating); see

Fig. 2. In our loss, group-wise parts of loss are exclusive

to each other and thus each part of loss can be regarded as

DropOut loss which drops the other groups; Fig. 2a con-

tains two DropOuts of the one excluding G̃1
2 and the other

excluding G̃2
2 . While standard DropOut methods [35, 30]

repeat such a process to drop components temporally along

the mini-batch iterations, our method merges them to effi-

ciently update all the feature components at one iteration.

In addition, we apply the discriminative feature group-

ing which is more sophisticated than random one similar

to the standard DropOut [35]. In that sense, adversarial

DropOut [30] could be closely related to ours as the method

adversarially drops the prominent (important) feature com-

ponents. It, however, might deteriorate stability in training

due to the lack of the prominent features throughout the

training, thus requiring the drop-out ratio to be carefully

tuned. Actually speaking, in the experiment on Food-101

(Sec. 4.1), the adversarial DropOut failed to properly train

ResNet50 by the drop-out ratio of p = 0.051∼ 0.01, while

p = 0.001 produces almost the same performance (error

rate 19.58%±1.06) as the standard softmax loss (error rate

19.67%±0.48); therefore, we apply p = 0.005 in the exper-

iments. In contrast, the proposed method is based on the

adversarial training in terms of feature grouping, not drop-

ping [30], which enables us to adversarially train networks

efficiently and stably by exploiting all the feature compo-

nents via grouping.

1In [30], p = 0.05 is applied to train the smaller network.
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Figure 2. Comparison to DropOut methods. For simplicity, we

regard the feature components of x4 ∼ x6 as discriminative (in

ours) and prominent (in [30]); note that those two characteristics

are not necessarily shared in the identical components due to the

difference criteria of ours and the adversarial DropOut [30].

3.3. Gradient­based update

The back-propagation in an end-to-end learning is

evoked by the gradient of a loss function. The standard and

group softmax losses provide the following derivatives,

∂ℓ1

∂zjc
= pc(z̄)− I[c = y], (16)

∂ℓIG
∂zjc

= pc(Gz̄
g)− I[c = y],

∂ℓIIG
∂zjc

= pc(z̄
g)− I[c = y],

(17)

where I is an indicator function and z̄
g = {z̄

Gg

G
c }Cc=1 ∈ R

C

and the group index g is such that j ∈ Gg
G. These deriva-

tives are similarly formulated based on the difference be-

tween the posterior probability pc and the ground-truth la-

bel I(c = y). Thus, the training procedure and techniques

developed for the standard softmax loss are directly applied

to the proposed losses.

Through our gradient-based updating, all the feature com-

ponents can effectively gain the discriminative power due

to the factorized form of the gradient (17) via grouping.

Namely, the less discriminative feature components enjoy

the larger update since the posterior pc(z̄
g) of the less dis-

criminative group Gg
G is different from the ground-truth one

I[c = y]. On the other hand, those components coupled

with the highly discriminative ones in the softmax loss re-

ceive less update since the discriminative feature compo-

nents dominate the posterior leading to pc(z̄) ≈ I[c = y]
in (16). Therefore, the proposed feature grouping (Sec. 2.3)

separates the less discriminative feature components from

the highly discriminative ones to fairly improve discrimina-

tivity of all the features components.

3.4. Computation cost

The group softmax loss is based on the partial inner-

product between the feature vector x and the classifier

weights W , and thus the computation cost for logits is the
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same as that of the inner product in the standard softmax

loss, in disregard of the bias addition which requires neg-

ligible extra cost of GC operation (addition) in the group

softmax loss. The difference regarding computation cost is

mainly in the process of discriminative feature grouping and

computing softmax function. The feature grouping, how-

ever, is performed in a computationally efficient manner by

sorting the score λj (9) which is also efficiently computed.

The group softmax loss requires G-times softmax compu-

tation while the standard softmax loss performs only one

computation, though the difference of the computation costs

is negligible.

4. Experimental results

We evaluate the performance of CNNs trained by the

proposed loss on image classification tasks. In the exper-

iments, all the CNNs are trained by applying SGD with the

batch size of 256, the momentum of 0.9, the weight decay

of 0.0001, and the initial learning rate of 0.1 which is di-

vided by 10 at some epochs; the details are shown in the

supplementary material. The performance is measured by

single-crop top-1 error rate (%).

4.1. Ablation study

We apply the loss to train ResNet50 [15] on Food-101

dataset [1] for analyzing the method in an ablation manner;

ResNet50 produces 2048-dimensional feature vector x, i.e.,

D = 2048. Food-101 [1] contains images of 101 food cat-

egories, each of which comprises 750 training and 250 test

images, to provide 101,000 food images in total; this is re-

garded as a middle-scale dataset. While the test images are

clean through manual review, the training samples contain

realistic issues regarding such as intense colors and wrong

labels. Thus, we can say that Food-101 dataset reflects

the realistic setting in terms of both the number of train-

ing samples and quality of annotation/images. ResNet50

is trained/evaluated on the predefined training/test set three

times with different initial random seeds.

Number of groups G. Our loss form (12, 13) integrates

multiple group softmax losses of which the numbers of

groups G are gradually increased to hierarchically incorpo-

rate various grouping resolution. Table 1a shows the perfor-

mance results regarding the number of partition G, in com-

parison with the standard softmax loss which is realized by

G = {1} in (12, 13). The grouped loss either of type-I (7)

or type-II (8) favorably improves performance; especially in

this Food-101 classification, type-II loss is superior to type-

I. As discussed in Sec. 3, type-II is a further upper bound

on type-I, providing higher (adversarial) regularization to

cope with the smaller number of training samples by miti-

gating over-fitting; type-I loss, the tighter bound on the soft-

max loss, performs well on the rather larger-scale dataset as

Table 1. Performance results (error rate %) on Food-101 by

ResNet-50; our loss form is given in (12, 13).

(a) Various numbers of feature groups

Loss # of groups Error (%)

Softmax, ℓ1 G = {1} 19.67±0.48

Type-I, ℓIG G = {1, 2} 18.23±0.27

Type-I, ℓIG G = {1, 2, 4} 18.43±0.31

Type-II, ℓIIG G = {1, 2} 17.45±0.69

Type-II, ℓIIG G = {1, 2, 4} 16.10±0.29

Type-II, ℓIIG G = {1, 2, 4, 8} 16.23±0.25

(b) Various types of feature grouping

Type-I Type-II

Grouping G = {1, 2} G = {1, 2, 4}

Discriminative 18.23±0.27 16.10±0.29

Random 19.63±0.50 17.70±0.69

Pre-fixed 19.53±1.28 18.18±0.96

(a) Softmax loss (b) Ours (type-II)

Figure 3. Feature distribution on Food-101. Class categories are

indicated by colors. Best viewed in color.

shown in the later. The performance is further improved

by integrating multiple grouping; we apply G = {1, 2} for

type-I and G = {1, 2, 4} for type-II in the following exper-

iments.

Type of grouping. The discriminative feature grouping

(Sec. 2.3) is compared with the naive approaches that di-

vide the whole indexes G1 in random and pre-fixed manners;

the whole set G1 is randomly split into G groups at every

mini-batch while the pre-fixed one uses the constant group-

ing {Gi
G}

G
i=1 throughout the training. Table 1b demon-

strates that the discriminative grouping outperforms the oth-

ers. The naive approaches are problematic in completely

ignoring discriminativity of feature components and fail to

expose non-discriminative features to training. In contrast,

our grouping enhances discriminativity of all the features

by revealing (non-)discriminative components (Fig. 1).

Feature analysis. The distribution of the feature vector

x ∈ R
2048 is shown in Fig. 3 by applying t-SNE [36] to test

samples randomly drawn from the first 20 classes. We ap-

ply type-II loss in comparison to the standard softmax loss.

Compared to the feature distribution learned by the softmax
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Figure 4. Distribution regarding two characteristics of feature

components.

loss (Fig. 3a), our loss provides the discriminative distribu-

tion with clear class separability (Fig. 3b). We then mea-

sure the discriminativity of feature components by means

of Fisher discriminant score [11]; the score ranges from 0

to 1 and the higher score means the higher discriminativity.

Fig. 4a shows the distribution of the Fisher scores computed

on the respective feature components of x ∈ R
2048. The

proposed loss endows all the feature components with high

discriminative power in contrast to the softmax loss which

provides lower discriminativity; only the limited number of

feature components gain the higher discriminative power by

the softmax loss. On the other hand, the diversity (or redun-

dancy) of the feature components is also measured by cor-

relation coefficients among components. While redundant

feature components exhibit higher correlation with the oth-

ers, the diverse features are less correlated, producing coef-

ficients close to zero. Fig. 4b shows that both the softmax

loss and ours favorably produce features of high diversity,

exhibiting less correlation among feature components; the

two distributions are heavily overlapped around zero. These

results validate that our loss is capable of learning discrim-

inative and diverse features across all components.

Comparison. Our loss is compared with the other meth-

ods related to loss, the softmax variants [26, 20, 4, 5] and

the regularization methods [39, 35, 30], on various scenar-

ios; ResNet50 [15] and VGG16 [34] with batch-norm [18]

are trained from scratch and fine-tuned. Note that for fair

comparison, DropOut [35, 30] is applied only at the penul-

timate layer and backbone CNNs contain no DropOut. To

report the performance results, we implemented those com-

parison methods by utilizing the codes that authors pro-

vide and properly tuned hyper-parameters based on sug-

gestion in the papers/codes; for example, as discussed in

Sec. 3.2, the drop-out ratio of adversarial DropOut [30]

is set to p = 0.005. The performance comparison in

Table 2 demonstrates that the proposed method is supe-

rior to the others. The comparison methods except for

DropOut [35, 30] are built on the inner product of the whole

feature vector x as in the softmax loss, and thus are vulner-

able to the issue regarding the discriminative feature learn-

ing (Sec. 2.2&Fig. 1a). In contrast, our methods exploit all

Table 2. Performance comparison (error rate %) of various meth-

ods on Food-101.

ResNet50 (D=2048) VGG16 (D=4096)

Loss
From

scratch
Fine
tune

From
scratch

Fine
tune

Softmax 19.67±0.48 12.55 17.86±0.22 13.09

L-Softmax [26] 18.81±0.83 12.48 17.14±0.26 12.01

SigSoftmax [20] 21.12±0.60 13.09 18.15±0.14 13.78

Noisy Softmax [4] 18.64±0.21 12.61 17.49±0.53 12.96

Virtual Softmax [5] 18.25±0.32 15.49 20.78±2.44 16.80

CenterLoss [39] 17.98±0.09 12.95 16.26±0.41 13.35

DropOut (p = 0.2) [35] 18.77±0.68 12.49 17.84±0.35 13.28

DropOut (p = 0.5) [35] 18.96±0.42 12.53 19.15±0.96 12.92

Adv. DropOut [30] 19.31±0.94 12.30 18.39±0.45 12.41

Ours, Type-I 18.23±0.27 12.28 16.62±0.12 12.16

Ours, Type-II 16.10±0.29 11.88 15.33±0.22 11.78

feature components in the group softmax loss through dis-

criminative grouping to encourage feature learning on non-

discriminative components, thereby favorably outperform-

ing those comparison methods as well as DropOut [35, 30]

which randomly/adversarially drops some features.

In the fine-tuning scenario, CNNs are first pre-trained on

ImageNet by the standard softmax loss and then the iden-

tical pre-trained CNNs are fine-tuned to Food-101 by the

methods (losses) for fair comparison. In this case, CNNs

are already endowed with the discriminative feature repre-

sentation through pre-training on the large-scale ImageNet

dataset, and thus the superiority of the proposed losses is

slightly smaller compared to the case of the training from

scratch. It, however, can be seen that the discriminative fea-

ture learning by our loss still contributes to performance

improvement. It might be noteworthy that the proposed

method can be combined with those methods except for

DropOut; the softmax variants [26, 20, 4, 5] can replace the

softmax function in (7, 8) and the regularization term [39]

can be simply added to our loss. It is also noteworthy that

the proposed method tackles data-hunger issue of neural

networks in a form of loss and thous would be coopera-

tive with data-augmentation techniques which work on the

problem by touching input data; our future work includes

such a practical combination with those related methods.

4.2. ImageNet dataset

We utilize the large-scale ImageNet for further analyzing

the proposed loss from various perspectives.

Number of classes. We analyze performance on various

numbers of classes, by randomly picking up the sub-set of

C ∈ {100, 200, 500, 1000} categories from the whole 1000

categories to construct C-class classification task; note that

each class contains roughly 1000 training samples. As
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Table 3. Performance results (error rate %) on ImageNet.

(a) Number of classes (ImageNet subset)

# of classes 100 200 500 1000

# of total samples 127K 258K 639K 1281K

Softmax 15.4 18.1 20.2 23.5

Type-I 14.6 16.3 19.0 23.3

Type-II 13.0 15.6 19.1 24.1

(b) Various CNNs (ImageNet full-set)

Loss ResNet50 ResNeXt50 VGG16

Softmax 23.45 22.42 25.04

Type-I 23.31 22.09 24.26

Type-II 24.13 22.16 24.65

Table 4. Performance results on smaller-scale datasets.

Caltech-256 [14] SUN-397 [40]

Loss ResNet50 VGG16 ResNet50 VGG16

Softmax 48.4±0.5 51.3±2.0 55.7±0.6 58.8±1.4

L-Softmax [26] 43.0±1.6 44.5±1.0 56.3±1.6 53.1±0.7

SigSoftmax [20] 48.2±2.2 54.6±1.7 56.9±0.5 59.6±1.2

Noisy Softmax [4] 43.2±0.7 51.2±1.2 56.0±1.4 57.5±0.8

Virtual Softmax [5] 46.9±0.5 54.5±2.8 56.9±0.5 56.4±0.2

CenterLoss [39] 53.5±1.3 44.6±1.2 60.6±1.0 52.9±0.4

DropOut (p=0.2) [35] 44.9±0.6 50.5±0.3 56.5±0.3 57.2±0.7

DropOut (p=0.5) [35] 44.7±1.7 47.1±0.6 54.8±0.7 55.5±0.9

Adv. DropOut [30] 43.8±0.8 45.4±1.7 53.4±0.9 54.0±0.4

Ours, Type-I 42.8±0.6 46.1±0.8 52.9±0.5 52.2±0.9

Ours, Type-II 37.5±0.2 41.8±0.5 50.4±0.5 50.0±0.2

Hand-craft [32] 42.7±0.2 52.8±0.2

shown in Table 3a, the type-II loss outperforms the type-

I on the smaller number of classes, since type-II is further

upper bound on type-I to effectively cope with smaller-scale

data. On the other hand, as the number of classes increases,

the type-I loss exhibits superiority, being competitive to the

softmax loss on the full ImageNet dataset (C = 1000).

Diverse training samples contribute to training discrimina-

tive feature representation and the tighter upper-bound loss

(type-I) effectively leverages them to improve performance.

Therefore, the type-I loss is rather preferable for the larger-

scale data, while the type-II loss is quite effective on the

small/middle-scale one; further analyses are conducted in

the supplementary to support this claim.

Comparison on various CNNs. Then, the type-I loss

is tested on the full set of ImageNet dataset by using

three deep CNNs of ResNet50 [15], ResNeXt50 [41] and

VGG16 [34]. Table 3b shows that the type-I loss contributes

to performance improvement of various CNNs trained on

the large-scale training samples. In particular, the pro-

posed methods enhancing discriminative feature represen-

tation work favorably on the rather complicated CNNs of

ResNeXt50 [41] which exploits wide feature channels and

VGG16 [34] which contains huge number of parameters.

4.3. Smaller­scale datasets

Finally, we apply the proposed losses to train CNNs on

the smaller-scale datasets to which the hand-crafted meth-

ods [32] have been successfully applied. For fair compari-

son, we train the CNNs of ResNet50 [15] and VGG16 [34]

from scratch on the following two datasets.

Caltech-256 [14] is composed of 30,607 images in 256 ob-

ject categories, each of which contains at least 80 images.

According to the standard protocol, we randomly pick up

60 training images per category and use the rest for test. We

report the averaged classification error rate over three trials.

SUN-397 [40] contains roughly 100K images of 397 scene

categories covering as many of visual world scenes as pos-

sible. Following the protocol of [40], we used 50 training

and 50 test samples per category and measured the classifi-

cation error rate averaged over three trials.

Table 4 presents the performance comparison results of

various methods including the Fisher kernel [32], a repre-

sentative hand-crafted method. The CNNs trained by the

standard softmax loss are inferior even to the hand-crafted

method on these smaller-scale datasets. The softmax loss

fails to learn generalizable feature representation on these

small-scale datasets, while the other comparison methods

improve the feature representation such as by incorporat-

ing large-margin criterion, regularization and perturbation.

On the other hand, our loss, especially the type-II, enables

the CNNs to outperform the hand-crafted method. It should

be noted that the proposed losses are simply applied to the

CNNs as in the other experiments without introducing tricks

tailored for these small-scale datasets. Thus, the proposed

loss would contribute to further enlarging the applicability

of CNNs to various datasets including smaller-scale one.

5. Conclusion

We have proposed the group softmax loss with discrim-

inative feature grouping method for encouraging discrim-

inative representation across all the feature components.

Through partitioning feature components into groups, we

derive two types of group losses and the effective feature

grouping to expose non-discriminative components to fea-

ture learning. These methods are tightly coupled toward

learning discriminative features even on small/middle-scale

data, while theoretically providing adversarial training. In

the experiments on supervised image classification tasks,

the proposed loss is thoroughly evaluated and exhibits fa-

vorable performance in comparison to the other methods.
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