
Phase-wise Parameter Aggregation For Improving SGD Optimization

Takumi Kobayashi

National Institute of Advanced Industrial Science and Technology

1-1-1 Umezono, Tsukuba, Japan

takumi.kobayashi@aist.go.jp

Abstract

Stochastic gradient descent (SGD) is successfully ap-

plied to train deep convolutional neural networks (CNNs)

on various computer vision tasks. Since fixed step-size SGD

converges to so-called error plateau, it is applied in com-

bination with decaying learning rate to reach a favorable

optimum. In this paper, we propose a simple yet effective

optimization method to improve SGD with a phase-wise de-

cay of learning rate. Through analyzing both a loss surface

around the error plateau and a structure of the SGD opti-

mization process, the proposed method is formulated to im-

prove convergence as well as initialization at each training

phase by efficiently aggregating the CNN parameters along

the optimization sequence. The method keeps the simplicity

of SGD while touching the SGD procedure only a few times

during training. The experimental results on image clas-

sification tasks thoroughly validate the effectiveness of the

proposed method in comparison to the other methods.

1. Introduction

As deep convolutional neural networks (CNNs) pro-

duce promising performance on variety of computer vi-

sion tasks, optimization of the deep models is also an ac-

tive research topic in this literature. Stochastic gradient de-

scent (SGD) [26, 23] is arguably one of the most success-

ful approaches by effectively leveraging large-scale train-

ing dataset via mini-batches to train the huge number of

parameters with favorable stochasticity in a simple formu-

lation [38, 35]. In recent years, much research effort has

been made to improve SGD especially in terms of adap-

tive scaling [34, 15, 25, 20]. Though the adaptive method,

such as ADAM [15], contributes to rapid training time,

the generalization performance is still unclear and in some

practical cases is even inferior to SGD. Some variants of

ADAM [25, 20] are proposed to alleviate the shortcomings

toward filling the performance gap against SGD.

Thus, SGD is still a competitive optimization method to

train deep CNNs, and optimization behavior of SGD is ac-

tively analyzed in the framework of deep learning [32, 2,

7, 6]. On a strongly convex loss function, SGD equipped

with a fixed learning rate exhibits linear convergence up to

a radius around the optimal solution [1, 21]. In the case of

training a deep CNN which imposes a non-convex loss, the

fixed step-size SGD (with momentum [23]) also converges

to non-optimal loss, so-called error plateau [17, 10]. As

a common practice toward better optimization, we usually

decay (decrease) the learning rate so that SGD proceeds be-

yond the error plateau.

In this study, we consider a training phase, a period of

constant learning rate as shown in Fig. 1a, and focus on the

error plateau to which SGD locally converges at each train-

ing phase. Through analyzing a loss surface around the er-

ror plateau and a phase-wise structure of SGD optimization,

the proposed method aggregates (averages) the model pa-

rameters along the optimization sequence within a phase for

effectively enhancing the local convergence of SGD as well

as providing the favorable initialization for the next phase.

Thereby, the proposed method improves the whole SGD

optimization process through repeated phase-wise modifi-

cation while keeping almost the same computation cost as

the original SGD. The contributions of this paper are sum-

marized as follows; (1) through the phase-wise analysis of

SGD optimization process, we propose a simple yet effec-

tive practical method to improve SGD by means of phase-

wise parameter averaging and (2) in the experiments using

various datasets/CNNs on image classification, the method

is thoroughly evaluated to exhibit favorable performance in

comparison with the other methods.

1.1. Related works

We briefly review the related methods which aggregate

CNN models in a way of external or internal fusion. En-

semble of CNN models independently trained with differ-

ent random seeds is used to externally fuse their outputs

for final classification [17] and recently, those models are

sampled along the optimization sequence [6] without re-

peating whole training process. Model ensemble, how-

ever, requires large amount of computation cost and mem-

2625



ory consumption in accordance with the number of models

to use. On the other hand, from optimization viewpoint,

internally averaging model parameters along the optimiza-

tion sequence has been shown to be effective for conver-

gence by Polyak-averaging [24], while averaging parallel

training [8] demands extra computation resources. Based

on [6], stochastic weight averaging [13] aggregates param-

eters of models which are diversely trained through fine-

tuning. These internal methods work rather after training,

thus being complementary to the following methods and

ours that operate on the optimization process itself during

training. In [27], the aggregation weights are adaptively

learned, though requiring k-times extra-memory to store k

multiple model parameters. Toward faster convergence, the

Lookahead method [36] efficiently applies model aggrega-

tion every k updates by means of moving average which

requires a buffer only for single model parameter. The pro-

posed method is connected to the above-mentioned inter-

nal parameter fusion to improve optimization process dur-

ing training. While the works [6, 13] focus on the behav-

ior around the optimum based on pre-trained models, our

first analysis (Sec. 2.1.1) reveals that the similar behavior

can be found in early phase of training, which is distinc-

tively necessary for constructing our repeated procedure

(Algorithm 1). Through phase-wise analyses of SGD pro-

cess, we formulate an efficient optimization method to im-

prove performance with almost the same amount of compu-

tation as the original SGD, in contrast to the previous meth-

ods [27, 36]. It might be noteworthy that those external and

internal fusion techniques are also applied in the framework

of semi-supervised learning [18, 30].

2. Optimization by SGD

Stochastic gradient descent (SGD) [26, 23] is widely ap-

plied to train neural networks by efficiently minimizing an

objective loss, such as a softmax cross-entropy loss for clas-

sification. For optimizing a deep CNN on large-scale train-

ing data, SGD iteratively updates the model parameters θ

by means of gradients of the loss on a mini-batch with a

learning rate λ:

Mini-batch wise: θ[b] = θ[b−1] + λδ[b], (1)

Epoch-wise: θt = θt−1 + λ

B
∑

b=1

δt,[b], (2)

where b indicates the mini-batch index and δ[b] is composed

of a (negative) gradient of the loss w.r.t θ and its momentum

computed over the training samples in the b-th mini-batch.

B mini-batches are drawn so as to visit all the training sam-

ples in a cycle, so-called epoch, and we also show in (2)

an epoch-wise update for θt by aggregating δt,[b] at the t-th

epoch.

To produce favorably optimal CNNs, we can employ the

standard training practice regarding a learning rate as fol-

lows. The learning rate λ is initially set to small value,

e.g., λ = 0.1, and then is decayed by a certain factor, e.g.,

λ = 0.1 → 0.01, after passing through some epochs, as

shown in Fig. 6. According to this standard practice, we

partition the whole SGD training process into several train-

ing phases. The training phase is a period of constant learn-

ing rate and is of the higher level than epoch (Fig. 1a).

2.1. Proposed method

We analyze the SGD optimization process in a phase-

wise manner from the following two perspectives, error

plateau (Sec. 2.1.1) and repeated structure (Sec. 2.1.2), to-

ward improving SGD.

2.1.1 Error plateau

In the case of strongly convex loss functions, SGD with

properly fixed learning rate λ renders linear convergence up

to a radius around the optimal solution [1, 21], depending

on the variances of stochastic gradients; toward faster con-

vergence, some variants of SGD are proposed to reduce the

gradient variance, such as in SVRG [14] and SAGA [3],

though being less effective for training deep neural net-

works [4]. We here practically analyze the SGD optimiza-

tion on each training phase (fixed λ) for a CNN which poses

a non-convex loss.

Fig. 1 shows how the training of WideResNet-28-

10 [33] on Cifar-100 [16] dataset proceeds by SGD (mo-

mentum=0.9) over 3 phases of the learning rates λ ∈
{0.1, 0.01, 0.001}. The training loss in Fig. 1a converges to

non-zero value, error plateau [10], in each phase. To mon-

itor the model parameters in the 1st training phase, Fig. 1b

shows 2-D PCA subspace of the last FC classifier weights in

the CNN which approximately represent the status of CNN

parameters; the classifier weight matrix of 640×100 is flat-

tened into a 64K-dimensional vector. In addition, similarly

to an attracter analysis [29], the time-delayed representa-

tions of the parameters are also shown in Fig. 1 whose coor-

dinates are described by Euclidean distances between adja-

cent parameters (‖θt−θt−1‖2, ‖θt−θt−2‖2). Those results

demonstrate that the fixed step-size SGD actually converges

around the optimum while exhibiting a certain curvature of

the optimization sequence.

We then explore the loss surface on which the SGD se-

quence traverses. As in the model connectivity [6], we mea-

sure the training/test losses on a (line) segment connect-

ing two parameters of the SGD sequence. Fig. 2 shows

losses on four segments connecting five anchor points of

{θ1,θ20,θ40,θ60,θ80} in the 1st phase. During early train-

ing (θ1 ∼ θ20), there contains no barrier but a simply de-

creasing surface, which is also accordance with the anal-

2626



T
ra

in
in

g
 L

o
s
s

Epoch

1st Phase 2nd Phase 3rd Phase

learning rate

(a) Training loss

(b) 1st phase (c) 2nd phase (d) 3rd phase

Epoch 1

Epoch 80

P
C

2

PC1

Epoch 81

Epoch 120

P
C

2

PC1

Epoch 121

Epoch 160

P
C

2

PC1

Epoch 3

Epoch 80 Epoch 83

Epoch 120
Epoch 123

Epoch 160

Figure 1. Some visualization of training CNN. We apply momentum-SGD [23] to train Wide-ResNet-28-10 [33] on Cifar-100 dataset [16]

over three training phases of λ ∈ {0.1, 0.01, 0.001} (a). Each phase is detailed by PCA and time-delay (TD) plot in (b,c,d).

L
o
s
s

Train Loss

Test Loss

P
C

2

PC1

Figure 2. Training and test losses on the line segments connecting

five parameter points in the 1st training phase (λ = 0.1).

ysis of [7]. This indicates that SGD effectively proceeds

at the early training epochs by simply decreasing the loss.

On the other hand, the loss surfaces on the segments at

the later training epochs are concave, thereby demonstrat-

ing that SGD walks around the optimal point with a certain

radius while being trapped in an error plateau. According

to the standard practice of training CNNs, a learning rate

is decayed so as to go beyond the error plateau and further

decrease the loss by SGD.

The analysis based on Fig. 2 also brings us possibility

to construct a better parameter by simply aggregating (av-

eraging) the parameters on the later sequence of a phase to

approach the mode of the concave loss surface. For that

purpose, we analyze the granularity of the SGD sequence

points to be averaged. From a statistical viewpoint, it is

desirable to exploit samples θ of high diversity around the

error plateau for effectively estimating the better parameter

via averaging that produces a smaller loss. In this case, there

are several levels of granularity for measuring the diversity

from mini-batch (1) to epoch (2). Fig. 3 shows losses of

the two-point average 1
2 (θ80 + θ) at various temporal in-

tervals between θ and θ80. While the granularity of mini-

batch level is too small to sufficiently decrease the loss due

to less diversity, the interval greater than one epoch con-

tributes to favorably reducing the loss; we thus employ the

epoch-wise parameter representation θt for averaging. It

should be noted that it is desirable to consider favorably

smaller interval so that we can exploit samples as many as

possible for averaging.

Fig. 3 also demonstrates that the point far from the er-

ror plateau less contributes to decreasing loss. Considering

hardness to properly detect the period of an error plateau,

we apply the following exponential averaging to pay more

attention to the later training epochs at which the parameter

probably reaches the error plateau:

θ̄ =
1− γ

1− γT

T
∑

t=1

γT−t
θt ⇔ θ̄ ← γθ̄ + (1− γ)θt, (3)

where T is the number of epochs in the training phase, γ is a

(pre-fixed) decaying factor; the averaging is efficiently com-

puted by applying an iterative update based on the learnt pa-

rameter θt at the t-th epoch. In the case that CNNs contain

batch normalization [12], after averaging parameters in (3),

we additionally run only forward-pass of the network to cal-

ibrate the local statistics at the batch normalization layers as

in [13, 6].

The number of training epoch T is a hyper-parameter to

be tuned by users and thus is varied across phases, CNN

model and tasks; for example, we use T1 = 80 epochs to

reach the plateau in the first phase and T2 = 40 epochs in

the second phase in the case of Fig. 1a. It is necessary to

robustly cope with the training phase duration T of various

length. To this end, we define the decaying factor γ accord-

ing to T as γ = γ
80
T

0 where γ0 is a pre-fixed base factor;

in this study, we set γ0 = 0.9 as a rule of thumb based

on the ablation experiments in Sec. 3. Thereby, the weight

γT−t for the parameter θt in (3) is adaptively changed ac-

cording to the relative position of the current epoch t by

2627



Train Loss

Test Loss

L
o
s
s

Interval for 2-point averaging

1batch 10batch 100batch 1epoch 10epoch 50epoch

Figure 3. Losses by two-point average 1
2
(θ80 + θ) at various tem-

poral intervals.

Figure 4. Exponential weight for averaging parameters {θt}
T
t=1

on various T ; we set the base factor as γ0 = 0.9.

γT−t = γ
T−t

T
80

0 , as shown in Fig. 4.

2.1.2 Repeated optimization structure

After reaching the error plateau, the learning rate λ is de-

creased to further proceed the SGD optimization in the next

training phase (Fig. 1a). This procedure is repeated several

times to finally produce the optimal CNN model parame-

ter. Therefore, we regard such an SGD optimization not as a

whole but rather as a composite of several training phases.

Actually, as shown in Fig. 1b-d, the optimization in each

training phase proceeds similarly from the initial point to

the convergence even under the different learning rate. We

here focus on the initial parameter at the training phase. In

the first (p = 1) phase, some techniques such as [9] are

applied to initialize θ = θ
(1)
0 , while the second and later

(p > 1) phases receive as an initial point the last estima-

tion θ
(p−1)
Tp−1

that the previous (p− 1) phase finally produces.

From this viewpoint of phase-wise initialization, as the bet-

ter initialization can induce the better solution, we leverage

the averaged parameter θ̄(p−1) via (3) at the p− 1-th phase

to the initialization of the next p-th phase, instead of the

last estimate θ
(p−1)
Tp−1

. Namely, we improve the SGD opti-

mization simply yet effectively by injecting the parameter

aggregation (3) into the convergence at each training phase,

Algorithm 1 Proposed Optimizer

Input: {Tp, λp}
P
p=1: Number of epochs Tp and learning rate λp

at the p-th training phase,

θ: Model parameters,

γ0 = 0.9: Base decaying factor for averaging.

1: θ ← θ0: Parameter initialization

2: for p = 1 to P do

3: θ̄ ← 0, γ = γ
80
Tp

0

4: for t = 1 to Tp do

5: for b = 1 to B do

6: θ ← θ + λpδt,[b]: Mini-batch based update by SGD

7: end for

8: θ̄ ← γθ̄ + (1− γ)θ: Exponential moving average

9: end for

10: θ ← 1
1−γT θ̄: Initialization for the next training phase

11: end for

Output: θ: Optimized model parameters

which simultaneously provides the better initialization for

the next phase.

Based on these two analyzes (Sec. 2.1.1&2.1.2), the pro-

posed method is formulated to improve SGD optimization,

as summarized in Algorithm 1. It is so simple that the SGD

optimization procedure is modified only once at each train-

ing phase (line 8 in Algorithm 1).

2.2. Discussion

We discuss connection between aggregating parameters

in (3) and decaying learning rate, and the computation cost

of the proposed method (Algorithm 1), and convergence

analysis.

Connection to Decayed Learning Rate: Given the epoch-

wise update formula in (2), the parameter averaging (3) with

the weight αt =
1−γ

1−γT γ
T−t can be unfolded to

θ̄ =

T
∑

t=1

αtθt = θ0 +

T
∑

t=1

αt(θt − θ0) (4)

= θ0 +

T
∑

t=1

αt

t
∑

τ=1

λ∆τ = θ0 +

T
∑

τ=1

[

T
∑

t=τ

αt

]

λ∆τ

(5)

= θ0 +

T
∑

τ=1

1− γT−τ+1

1− γT
λ∆τ , (6)

where θ0 is an initial parameter and ∆t is the update at

the t-th epoch summing up the mini-batch wise updates,

∆t =
∑B

b=1 δt,[b] in (2). This implies that averaging pa-

rameters (3) is related to updating θ with the decayed learn-

ing rate 1−γT−t+1

1−γT λ (Fig. 6). It, however, should be noted

that in (6) the update ∆t is computed at the parameters θt
sequentially trained with the constant learning rate λ. Thus,

2628



the averaging in (3), equivalently (6), can be regarded as a

posteriori decay of learning rate in contrast to the a priori

approach that updates parameters θ with the decayed learn-

ing rate 1−γT−t+1

1−γT λ. These two approaches are empirically

compared in Sec. 3.

On the other hand, it is also possible to embed the ex-

ponential moving average (EMA), θ̄ ← γθ̄ + (1 − γ)θt,
into the parameter updating (2) during training in an in-vivo

manner [27, 36]. In case of injecting EMA into every up-

date, however, the parameter update formula is reduced into

θt−1 ← θ̄, θt = θt−1 + λ∆t, θ̄ ← γθ̄ + (1− γ)θt (7)

⇔ θ̄ ← θ̄ + (1− γ)λ∆t, (8)

which corresponds to constantly decaying the learning rate

by the factor of 1 − γ; this frequent injection is essentially

equivalent to the original SGD. In [36], the issue is ad-

dressed by updating every k steps. In contrast, we disen-

tangle the two effects of learning rate and EMA by inject-

ing the averaged parameters into training only at the end of

each training phase. Thus, the proposed method retains the

favorable characteristics of SGD optimization at early train-

ing epochs (Fig. 2) while alleviating the convergence issue

as well as improving the initialization at each phase.

Computation cost: The proposed method in Algorithm 1

requires almost the same computation cost as the standard

SGD. The extra operation to update θ̄ is performed only

once per epoch and extra memory is used only for storing θ̄,

which can be done on CPU without consuming GPU mem-

ory. Transferring memory from CPU to GPU is only once

at the end of each training phase to replace θ with θ̄.

Convergence analysis: We can simply apply the conver-

gence analysis of SGD such as [1, 21, 37, 24] since the pro-

posed method does not interfere the SGD optimization dur-

ing each training phase. The method provides better initial

point to the subsequent training phase as well as finally pro-

duces better convergent point [24]. We empirically show

in Sec. 3 the effectiveness of the intervention in the initial

points at respective training phases.

3. Experimental Results

We apply the proposed method to train various CNNs on

image classification tasks as follows.

Dataset: We use Cifar-100/10 [16] and SVHN [22] of 32×
32 pixel images as well as ImageNet [5] dataset of larger-

sized images.

CNN: On Cifar-100/10 and SVHN, we apply the deep

CNNs of VGG-like 13-layer network [30] with a weight

decay of 0.0001 as well as ResNet34 [10], Wide-ResNet28-

10 [33] and DenseNet121 [11] with a weight decay of

0.0005. The size of mini-batch is 128. For ImageNet, we

train ResNet50 [10], ResNeXt50 [31] and VGG16 [28] with

a weight decay of 0.0001 and a mini-batch size of 256.

Data augmentation: 32 × 32 pixel images are pre-

processed by standardization (0-mean and 1-std) and are

subject to random cropping through 4-pixel padding as data

augmentation; on Cifar-100/10, we additionally apply ran-

dom horizontal flipping. For ImageNet classification, we

follow the standard procedure of data augmentation [10].

Evaluation: We report the average and standard deviation

of error rates (%) over three runs with different random

seeds on Cifar and SVHN, while measuring top-1 error rate

(%) by single crop testing protocol [17] on ImageNet.

3.1. Ablation Study

We first analyze the proposed method from various as-

pects on Cifar-100 dataset [16]. According to the common

practice, we apply the baseline SGD optimizer with a mo-

mentum of 0.9 and an initial learning rate of 0.1. The learn-

ing rate is then divide by 10 after the 80th and 120th training

epochs to provide three training phases of T ∈ {80, 40, 40}
and λ ∈ {0.1, 0.01, 0.001}, as shown in Fig. 6.

Weight for averaging: In the exponential averaging (3),

we apply the decaying factor γ = γ
80
T

0 where T denotes

a period of a training phase (Sec. 2.1); thereby the pa-

rameters {θt}
T
t=1 are adaptively averaged even with var-

ious T (Fig. 4). We evaluate various base factor γ0 ∈
{0.99, 0.95, 0.9, 0.8, 0.5} and show the performance results

in Table 1a. Too large γ0 takes into account rather whole

parameter points in a phase including ineffective ones far

from the error plateau which degrade performance. On the

other hand, the effect of averaging is impeded by smaller γ0
which looks at only a few last samples near by θT . Thus, the

moderately large γ is effective for the exponential averaging

to provide the better convergent point θ̄ for improving clas-

sification performance; based on Table 1a, we set γ0 = 0.9,

thereby γ = 0.9
80
T in (3).

We then compare the exponential averaging with the

method that learns weights for averaging [27]. For fair

comparison, we replace the exponential weight αt =
1−γ

1−γT γ
T−t in (3) by the weights that the method [27] learns

based on {θt}
T
t=1 in our optimization framework (Algo-

rithm 1). The performance comparison in Table 1a shows

that the exponential weighting by γ = 0.9
80
T outperforms

the learnt one. As shown in Fig. 5, the learnt weight is

so long-tailed that irrelevant samples at the early training

epochs contribute to averaging, while the simple exponen-

tial weighting is designed to focus on the more informa-

tive later epochs based on the analysis of error plateau in

Sec. 2.1.

Training Epochs: We evaluate the robustness of the set-

ting γ = 0.9
80
T across various numbers of training epochs

T per phase. Table 1b shows the performance results on

shorter (Tp ∈ {60, 30, 30}), medium (Tp ∈ {80, 40, 40})
and longer (Tp ∈ {100, 50, 50}) training duration, demon-

2629



Table 1. Ablation study on Cifar-100 dataset [16].

(a) Weights for averaging

γ0

CNN 0.99 0.95 0.9 0.8 0.5 Learnt [27]

WRN28-10 18.58±0.12 18.25±0.10 18.34±0.05 18.38±0.22 18.79±0.14 19.45±0.18

ResNet34 22.49±0.38 21.78±0.34 21.72±0.29 22.07±0.57 21.99±0.39 22.92±0.35

DenseNet121 20.24±0.22 20.11±0.37 20.14±0.37 20.31±0.39 20.49±0.41 20.75±0.44

13-layer 26.47±0.13 26.12±0.04 26.05±0.08 26.20±0.14 26.57±0.09 26.65±0.19

(b) Training epochs (Tp)

Tp ∈ {60, 30, 30} Tp ∈ {80, 40, 40} Tp ∈ {100, 50, 50}

CNN SGD Ours SGD Ours SGD Ours

WRN28-10 19.47±0.11 18.84±0.19 19.02±0.11 18.34±0.05 18.73±0.24 18.15±0.10

ResNet34 23.05±0.24 22.31±0.20 22.62±0.33 21.72±0.29 22.09±0.35 21.34±0.26

DenseNet121 20.88±0.18 20.37±0.13 20.68±0.43 20.14±0.37 20.25±0.24 19.51±0.35

13-layer 26.69±0.18 25.88±0.22 26.52±0.16 26.05±0.08 26.02±0.15 25.15±0.07

(c) Frequency of averaging (d) Learning rate

No At the end Phase-wise Every k steps

CNN (SGD) [24] (ours) [36] 1−γT−t+1

1−γT λ cos [19]

WRN28-10 19.02±0.11 18.94±0.09 18.34±0.05 19.12±0.09 18.93±0.32 18.64±0.12

ResNet34 22.62±0.33 22.37±0.34 21.72±0.29 22.12±0.66 21.86±0.38 22.04±0.40

DenseNet121 20.68±0.43 20.78±0.41 20.14±0.37 20.25±0.33 20.29±0.22 20.20±0.27

13-layer 26.52±0.16 26.58±0.12 26.05±0.08 26.64±0.23 26.75±0.13 26.74±0.14

T
ra

in
in

g
 L

o
s
s

W
e
ig

h
t 
o
n

Epoch in the 1st phase

Exponential Avg.

Learnt Avg. [27]

Figure 5. Weights for averaging {θt}
80
t=1 in the first training phase.

L
e

a
rn

in
g

 R
a

te

Epoch

Baseline

Decayed

Cosine-anneal. [18]

Figure 6. Various types of schedules for decaying learning rate.

strating that the proposed method with γ = 0.9
80
T robustly

contributes performance improvement. Thus, we can apply

γ = 0.9
80
T as a rule of thumb to various training settings.

Injection Timing: The proposed method triggers averag-

ing parameters at the end of each training phase. According

to the discussion in Sec. 2.2, we here compare the timing

to inject the averaging into training process. The method

of least frequent timing aggregates parameters at the end

of whole training as in Polyak averaging [24], while a fre-

quent injection is effectively performed by the LookAhead

(LA) method [36] which replaces parameters with the mov-

ing averaging one every k steps; k = 5 as suggested in [36].

Table 1c shows the performance comparison of those meth-

ods, demonstrating that our approach outperforms the oth-

ers. As shown in (8), frequently injecting the parameter

averaging into training seems to be less contributing to im-

prove the SGD optimization itself, being rather connected

to decaying the learning rate. On the other hand, param-

eter aggregation at the end of training does not affect the

optimization process of SGD while slightly improving the

last convergence. The proposed method favorably modifies

SGD by improving convergent point as well as initialization

at each training phase. It is noteworthy that in this case the

SGD optimization is modified only three times by the pro-

posed method.

Decayed Learning Rate: As shown in (6), the exponential

2630



Table 2. Performance comparison on various datasets.

CNN ADAM AMSGRAD ADABOUND SGD LA Ours

Cifar-100

WRN28-10 29.16±0.24 28.47±0.55 22.63±0.21 19.02±0.11 19.12±0.09 18.34±0.05

ResNet34 28.17±0.39 27.11±0.18 24.68±0.24 22.62±0.33 22.12±0.66 21.72±0.29

DenseNet121 26.62±0.27 26.30±0.30 23.48±0.20 20.68±0.43 20.25±0.33 20.14±0.37

13-layer 27.73±0.15 28.02±0.08 30.02±0.30 26.52±0.16 26.64±0.23 26.05±0.08

Cifar-10

WRN28-10 8.19±0.14 7.99±0.13 5.41±0.08 4.07±0.09 4.11±0.16 3.74±0.11

ResNet34 6.74±0.02 6.56±0.17 5.63±0.19 4.82±0.05 4.90±0.16 4.58±0.09

DenseNet121 7.10±0.16 6.42±0.08 5.37±0.04 4.79±0.03 4.56±0.05 4.49±0.03

13-layer 7.18±0.11 6.91±0.05 7.99±0.03 6.13±0.09 6.37±0.09 5.94±0.08

SVHN

WRN28-10 3.73±0.11 3.66±0.08 2.97±0.08 2.64±0.05 2.63±0.05 2.51±0.02

ResNet34 3.59±0.07 3.64±0.05 3.00±0.08 2.81±0.05 2.86±0.14 2.65±0.03

DenseNet121 3.66±0.06 3.55±0.06 2.98±0.04 2.91±0.06 2.84±0.07 2.77±0.03

13-layer 3.64±0.13 3.59±0.01 3.97±0.11 3.37±0.02 3.43±0.06 3.29±0.05

ImageNet

ResNet-50 33.79 31.15 24.72 23.98 23.48 23.16

ResNeXt-50 31.87 28.60 24.15 22.57 22.41 21.72

VGG16 36.34 30.37 25.77 25.41 24.89 24.67

averaging (3) is implicitly connected to decayed learning

rate λt =
1−γT−t+1

1−γT λ where T and λ are the training dura-

tion and learning rate at the training phase. For comparison,

we train CNNs by using so-decayed learning rate that de-

creases continuously and also apply the sophisticated learn-

ing rate of cosine-annealing [19]. These various types of

learning rate are visualized in Fig. 6 and the performance re-

sults are shown in Table 1d. While the methods of decayed

learning rates comparably perform slightly improving per-

formance of the baseline SGD, the proposed method consis-

tently outperforms them. It is generally hard to design the

optimal schedule of decaying a learning rate in advance. In

contrast, our method exploits fixed step-size SGD through

aggregating parameters to improve convergence and initial-

ization at each training phase without touching the learning

rate.

3.2. Performance comparison

Finally, we compare the performance of various optimiz-

ers; in addition to LA method [36], we apply the adap-

tive methods of ADAM [15] AMSGRAD [25] and AD-

ABOUND [20] by setting an initial learning rate to 0.001 and

the other hyper-parameters to the values suggested in the re-

spective papers. Those methods are evaluated not only on

the datasets of 32× 32 pixel images but also the large-scale

ImageNet dataset [5]. On the ImageNet classification, we

apply three training phases of Tp ∈ {60, 30, 30} with λp ∈
{0.1, 0.01, 0.001} for SGD, LA [36] and ours, while we

changed the learning rate λp ∈ {0.001, 0.0001, 0.00001}
for the adaptive methods. Table 2 shows performance com-

parison on those datasets using diverse CNNs. The pro-

posed method effectively improves SGD to favorably out-

perform the others, demonstrating the generality over vari-

ous datasets and CNNs.

3.3. Application to Adaptive Optimization Methods

We have discussed so far the effect of the proposed

method on SGD optimization. The method is so simple

as to be applicable to the other types of optimization such

as adaptive methods which are considered as comparison

methods in the previous section; in Algorithm 1, the param-

eter updating by SGD in line 6 is simply replaced by the

updating of adaptive methods, such as ADAM. One of the

favorable characteristics of the adaptive methods is faster

convergence compared to SGD, and thus we analyze such

an aspect by applying the proposed method to them.

We train CNNs by the adaptive methods (ADAM, AMS-

GRAD and ADABOUND) over 80 epochs with a (constant)

initial learning rate of 0.001 and then accordingly apply the

proposed method with the decaying factor γ = 0.9
80
80 =

0.9. For comparison, SGD is also applied with the same

setting (80 epochs and constant learning rate of 0.1). Ta-

ble 3 shows the performance results on Cifar-10/100 and

SVHN datasets. The adaptive methods provides better per-

formance, i.e., faster convergence, than SGD due to the

adaptive scaling; the performance is effectively improved

2631



Table 3. Performance by adaptive optimization methods on 80-epoch training.

ADAM AMSGRAD ADABOUND SGD

CNN Orig. Ours Orig. Ours Orig. Ours Orig. Ours

Cifar-100

WRN28-10 35.91±0.90 27.42±0.39 35.61±0.83 27.15±0.31 31.19±0.78 21.67±0.29 39.62±1.92 19.35±0.19

ResNet34 35.13±0.23 26.27±0.14 34.74±1.05 25.60±0.27 32.72±0.67 24.02±0.08 40.17±2.61 23.65±0.34

DenseNet121 32.64±0.86 24.85±0.32 31.87±0.71 24.68±0.22 31.55±0.95 22.19±0.23 39.37±1.13 21.86±0.14

13-layer 34.15±0.67 26.32±0.11 33.31±0.26 26.94±0.36 32.88±0.36 29.30±0.06 37.18±0.59 25.39±0.03

Cifar-10

WRN28-10 12.83±0.40 7.81±0.32 11.84±0.59 7.91±0.34 9.66±0.69 5.19±0.13 13.61±0.80 4.78±0.06

ResNet34 11.20±0.52 6.85±0.02 10.48±0.35 6.23±0.09 8.78±0.15 5.39±0.08 16.12±0.75 6.01±0.10

DenseNet121 10.72±0.71 6.54±0.05 9.55±0.48 6.35±0.17 8.65±0.49 5.14±0.15 15.90±1.60 5.92±0.15

13-layer 10.22±0.36 6.49±0.14 9.95±0.01 6.45±0.08 10.18±0.34 7.76±0.11 10.74±0.03 5.77±0.03

SVHN

WRN28-10 5.71±1.18 3.13±0.11 5.04±0.06 2.98±0.04 4.86±0.41 2.68±0.05 5.54±0.08 2.61±0.04

ResNet34 4.73±0.03 3.03±0.12 4.11±0.21 2.95±0.07 4.53±0.55 2.73±0.08 6.05±0.41 2.70±0.07

DenseNet121 4.43±0.35 2.98±0.02 4.52±0.31 2.98±0.04 4.66±0.25 2.74±0.02 5.99±0.19 2.82±0.06

13-layer 4.89±0.22 3.32±0.04 5.23±0.25 3.27±0.03 4.58±0.20 3.91±0.09 5.85±0.58 3.12±0.04

Table 4. Performance by adaptive optimization methods with the

proposed method on (full) 160-epoch training.

CNN ADAM AMSGRAD ADABOUND

Cifar-100

WRN28-10 29.62±0.16 28.91±0.37 21.72±0.31

ResNet34 26.37±0.21 26.59±0.15 24.09±0.11

DenseNet121 26.38±0.36 26.04±0.19 22.43±0.18

13-layer 27.44±0.14 27.83±0.54 29.94±0.05

Cifar-10

WRN28-10 8.26±0.14 8.10±0.04 5.22±0.06

ResNet34 6.90±0.07 6.18±0.07 5.39±0.10

DenseNet121 6.80±0.19 6.34±0.12 5.12±0.20

13-layer 6.80±0.14 6.63±0.13 7.86±0.10

SVHN

WRN28-10 3.74±0.04 3.63±0.11 2.74±0.08

ResNet34 3.64±0.05 3.54±0.13 2.90±0.07

DenseNet121 3.59±0.12 3.58±0.06 2.82±0.03

13-layer 3.59±0.03 3.46±0.07 3.94±0.12

by ADABOUND [20] which is the SOTA variant of ADAM.

By applying the proposed method, those performances are

further improved, even surpassing the performance of full

160-epoch training (Table 2). Based on these results, we

conjecture that the adaptive methods optimize CNN models

as the ones closely around the (local) optimal point even

by a constant initial learning rate and thus the proposed

method effectively works to push the models toward the op-

timum via efficient averaging. Actually, the performance is

not further improved even by further training with smaller

learning rate (Table 4). Therefore, we could suggest to com-

bine the adaptive methods equipped of a constant learning

rater with the proposed averaging method; our future work

includes the application of the adaptive methods to various

tasks other than vision ones.

It is noteworthy that SGD equipped with the proposed

method (Table 2) still outperforms those improved perfor-

mance of the adaptive methods (Table 3); the SGD with our

method is superior to the adaptive ones even on 80-epoch

training (Table 3). This implies that SGD with a constant

learning rate finds better local optima but cannot approach it

due to the large (constant) learning rate. Thus, further train-

ing with smaller learning rate contributes to performance

improvement as shown in Table 2.

4. Conclusion

We have proposed a simple yet effective optimization

method to improve SGD. For training CNNs, fixed step-

size SGD poses the issue regarding the error plateau while

exhibiting favorable optimization property at the early train-

ing period. Through analyzing the error plateau and the re-

peated structure of SGD process with phase-wise decay of

learning rate, the proposed method improves both the con-

vergence and the initialization at each training phase in SGD

optimization. The method is simple and requires almost the

same computation cost as SGD. In the experiments on var-

ious datasets using diverse CNNs on image classification

tasks, the proposed method produces favorable performance

in comparison with the other methods.

2632



References

[1] Francis Bach and Eric Moulines. Non-asymptotic analysis

of stochastic approximation algorithms for machine learn-

ing. In Advances in Neural Information Processing Systems

(NeurIPS), pages 451–459, 2011.

[2] Pratik Chaudhari and Stefano Soatto. Stochastic gradient de-

scent performs variational inference, converges to limit cy-

cles for deep networks. arXiv, 1710.11029 , 2017.

[3] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.

Saga: a fast incremental gradient method with support for

non-strongly convex composite objectives. In Advances in

Neural Information Processing Systems (NeurIPS), pages

1646–1654, 2014.

[4] Aaron Defazio and Léon Bottou. On the ineffectiveness

of variance reduced optimization for deep learning. arXiv,

1812.04529, 2018.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255, 2009.

[6] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry

Vetrov, and Andrew Gordon Wilson. Loss surfaces, mode

connectivity, and fast ensembling of dnns. In Advances

in Neural Information Processing Systems (NeurIPS), pages

8789–8798, 2018.

[7] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong,

and Richard Socher. A closer look at deep learning heuris-

tics: Learning rate restarts, warmup and distillation. In In-

ternational Conference on Learning Representations (ICLR),

2019.

[8] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad

Mahdavi, and Viveck R. Cadambe. Local sgd with periodic

averaging: Tighter analysis and adaptive synchronization. In

NeurIPS, 2019.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In International Confer-

ence on Computer Vision (ICCV), pages 1026–1034, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

[11] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In CVPR, pages 2261–2269, 2017.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. Journal of Machine Learning Research,

37:448–456, 2015.

[13] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry

Vetrov, and Andrew Gordon Wilson. Averaging weights

leads to wider optima and better generalization. In Confer-

ence on Uncertainty in Artificial Intelligence (UAI), pages

876–885, 2018.

[14] Rie Johnson and Tong Zhang. Accelerating stochastic gradi-

ent descent using predictive variance reduction. In Advances

in Neural Information Processing Systems (NeurIPS), pages

315–323, 2013.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015.

[16] Alex Krizhevsky and Geoffrey E. Hinton. Learning multiple

layers of features from tiny images. Technical report, Uni-

versity of Toronto, 2009.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. In NeurIPS, pages 1097–1105, 2012.

[18] Samuli Laine and Timo Aila. Temporal ensembling for semi-

supervised learning. In ICLR, 2017.

[19] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In International Conference on

Learning Representations (ICLR), 2017.

[20] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun.

Adaptive gradient methods with dynamic bound of learning

rate. In ICLR, 2019.

[21] Deanna Needell, Nathan Srebro, and Rachel Ward. Stochas-

tic gradient descent, weighted sampling, and the randomized

kaczmarz algorithm. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), pages 1017–1025, 2014.

[22] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural

images with unsupervised feature learning. In NIPS Work-

shop on Deep Learning and Unsupervised Feature Learning,

2011.

[23] Boris T. Polyak. Some methods of speeding up the conver-

gence of iteration methods. USSR Computational Mathemat-

ics and Mathematical Physics, 4(5):1–17, 1964.

[24] Boris T. Polyak and Anatoli B Juditsky. Acceleration of

stochastic approximation by averaging. SIAM Journal on

Control and Optimization, 30(4):838–835, 1992.

[25] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the

convergence of adam and beyond. In ICLR, 2018.

[26] Herbert Robbins and Sutton Monro. A stochastic approx-

imation method. The Annals of Mathematical Statistics,

22(3):400–407, 1951.

[27] Damien Scieur, Edouard Oyallon, Alexandre d’Aspremont,

and Francis Bach. Nonlinear acceleration of cnns. In ICLR

Workshop, 2018.

[28] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[29] Floris Takens. Detecting strange attractors in turbulence. Dy-

namical Systems and Turbulence, Warwick 1980, pages 366–

381, 1981.

[30] A. Tarvainen and H. Valpola. Mean teachers are better role

models: Weight-averaged consistency targets improve semi-

supervised deep learning results. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 1195–1204,

2017.

[31] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, pages 5987–5995, 2017.

[32] Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua

Bengio. A walk with sgd. arXiv, 1802.08770, 2018.

[33] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016.

2633



[34] Matthew D. Zeiler. Adadelta: An adaptive learning rate

method. CoRR, abs/1212.5701, 2012.

[35] Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Brando

Miranda, Noah Golowich, and Tomaso Poggio. Theory of

deep learning III: Generalization properties of sgd. CBMM

Memo 67, 2017.

[36] Michael R. Zhang, James Lucas, Geoffrey Hinton, and

Jimmy Ba. Lookahead optimizer: k steps forward, 1 step

back. In Advances in Neural Information Processing Sys-

tems (NeurIPS), 2019.

[37] Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and

Vahid Tarokh. Sgd converges to global minimum in deep

learning via star-convex path. In ICLR, 2019.

[38] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen

Ma. The anisotropic noise in stochastic gradient descent: Its

behavior of escaping from sharp minima and regularization

effects. In ICML, 2019.

2634


