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Figure 1: To extract a supervisory signal from a given pixel-wise semantic segmentation, we propose a loss that is differ-

entiable with respect to pose and shape parameters. Given fixed per-vertex semantic labels and pose and shape estimates

(col. 1), we project the labelled vertices to 2D. We represent both these vertex projections (col. 2) and the given pixel-wise

labels (col. 5) as mixtures of Gaussians (col. 3-4) and measure segmentation loss using the geometric Rényi divergence.

Abstract

In this paper, we show how to estimate shape (restricted

to a single object class via a 3D morphable model) us-

ing solely a semantic segmentation of a single 2D image.

We propose a novel loss function based on a probabilistic,

vertex-wise projection of the 3D model to the image plane.

We represent both these projections and pixel labels as mix-

tures of Gaussians and compute the discrepancy between

the two based on the geometric Rényi divergence. The re-

sulting loss is differentiable and has a wide basin of con-

vergence. We propose both classical, direct optimisation

of this loss (“analysis-by-synthesis”) and its use for train-

ing a parameter regression CNN. We show significant ad-

vantages over existing segmentation losses used in state-of-

the-art differentiable renderers Soft Rasterizer and Neural

Mesh Renderer.

1. Introduction

It is widely known that the silhouette of an object pro-

vides an important cue for 3D shape estimation and the the-

ory of multiview shape-from-silhouette is well understood

[16]. Restricting consideration to a single object class al-

lows the problem to be tackled using model-based meth-

ods in which the solution is constrained by a 3D morphable

model (3DMM) [8]. Such model-based approaches have

been used for reconstruction of faces from multiview sil-

houettes [21] and even for reconstruction from single sil-

houettes while simultaneously learning a morphable model

for a new object class [6]. A silhouette can be viewed as a

binary semantic segmentation of the image into foreground

and background. A more fine-grained segmentation into se-

mantic object parts presumably conveys richer information

about 3D shape, including occluding and internal contours

and the layout of internal features. This is particularly inter-

esting because of the recent great successes in learning auto-

matic semantic segmentation using fully convolutional net-

works [2]. To the best of our knowledge, the reconstruction

of a 3D model using only semantic segmentation informa-

tion in a single image has not previously been studied and

we coin this problem shape from semantic segmentation.

In contrast to landmarks, which are sparse but have well

defined one-to-one correspondence to the reference model,

pixel-wise semantic segmentation information is dense but

only provides one-to-many correspondence (a pixel may

correspond to any vertex within the semantic model part).
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In this paper we consider the problem of shape from se-

mantic segmentation using a 3DMM, specifically a human

face model. The crucial ingredient is a measure of the dis-

crepancy between an observed and predicted semantic seg-

mentation in image space that is both differentiable and has

a wide basin of convergence. This enables the measure to

be used as a loss in gradient-based direct optimisation or

in training of a parameter regression CNN. To this end,

we propose to use geometric Rényi divergence and show

that this has benefits over other soft segmentation difference

measures. In particular, it is able to converge to a good so-

lution from an initial estimate that is far from ground truth

in both pose and shape. The resulting shape estimation

improves upon previous face 3DMM fitting approaches by

avoiding conservative underfitting, ensuring the model ex-

pands to fit boundary features such as ears and neck and by

providing robustness to large image space transformations

of the input. In addition, we provide an efficient closed form

solution for computing the GRD so that it can be incorpo-

rated into the training of a parameter regression CNN.

1.1. Related work

One-to-many distance measures When aligning point

clouds to point clouds or vertices to pixels with unknown

correspondence, a variety of soft distance measures have

been considered to ensure a useful gradient is provided even

from a poor initialisation. Of particular relevance to our

work are those methods based on probabilistic representa-

tions. Jian and Vemuri [13] use the L2 distance between

two mixture of Gaussians (MoG) for point cloud registra-

tion. Wang et al. [28] use closed-form Jensen Rényi di-

vergence for MoG for group-wise point cloud registration.

Yamashita et al. [29] represent volumetric point clouds us-

ing MoG and exploit this for fitting to 2D silhouettes using

KL divergence, though they require stochastic Monte Carlo

sampling and regularisation to obtain stable performance.

3DMM fitting and shape-from-geometric features The

earliest work on 3DMM fitting used landmark distance as

a sparse objective function for approximate initialisation

and within an analysis-by-synthesis framework [4]. Sub-

sequently, Romdhani and Vetter [23] used landmarks and

occluding contours within a multi-feature fitting approach.

Bas and Smith [3] explore to what extent geometric param-

eters can be estimated from landmarks and contours alone

and show that this leads to an ambiguity between shape

and face/camera distance. Many state-of-the-art methods

still rely on landmarks for supervision. E.g. RingNet [24]

trains a CNN to regress geometric parameters (shape and

pose) from a single image using only landmark supervision

and paired identity images. Beyond landmarks and con-

tours, silhouettes and segmentation information have been

much less widely used. In early work, Moghaddam et al.

[21] used a binary silhouette loss across multiple images.

Since this loss is discontinuous, they use the derivative-free

Nelder–Mead optimisation method. In very recent, ambi-

tious work, Li et al. [18] learn both a deformable model

and model fitting in a self-supervised fashion. One of their

training objectives is to ensure semantic consistency, mea-

sured by projecting the semantically labelled 3D model into

the image. They measure semantic loss using the Chamfer

distance which is sensitive to sampling differences between

pixels and vertices and tends to cause the model to shrink.

Differentiable rendering The recent topic of differen-

tiable rendering has emerged from a desire to include ex-

plicit rendering capability within a neural network such that

training can exploit 3D rendering as a supervision signal.

The fundamental challenge is that rasterisation of a continu-

ous 3D object onto a discrete pixel grid is fundamentally not

differentiable. Hence, approximations are used that provide

useful smooth gradients. Neural 3D Mesh Renderer (NMR)

[14] extrapolates a gradient outside triangles based on linear

interpolation of the derivative across a triangle edge. Soft

Rasterizer (SoftRas) [19] computes a soft (i.e. blurred) ras-

terisation of each triangle in a mesh. Two very recent works

include a face parsing loss as one of a number of losses with

which a face model fitting (i.e. parameter regression) CNN

is trained [32, 7]. They do so simply by rasterising the se-

mantic labels on the mesh using a differentiable renderer,

[32] using a variant of SoftRas [19] and [7] using TF Mesh

Renderer [10]. Note that the latter uses a hard rasterisation

and does not provide any useful gradient for changes in ras-

terisation or, therefore, for aligning discrete semantic seg-

ments. Meanwhile, SoftRas compares a soft rasterisation

to hard discrete input meaning that the minimum loss does

not correspond to optimal alignment. No previous work, in-

cluding [32, 7, 18], has considered the problem of estimat-

ing shape using only semantic segmentation information.

2. Overview

A pixel-wise semantic segmentation of a face image is

a discrete representation. Similarly, the rasterisation of a

3D face model into an image (and the corresponding pixel-

wise semantic segmentation) is also discrete. This means

that pixel-based measures for comparing the similarity of

the two semantic segmentations (such as intersection over

union) are discontinuous. Therefore, the gradient of such

measures provides no information about how to adjust the

parameters of the 3D model to achieve a similar semantic

segmentation to the given pixel-wise one.

For this reason, we propose a soft, probabilistic mea-

sure for comparing pixel-wise and vertex-wise semantic

segmentations in 2D. Figure 1 shows an overview of our

proposed loss. Given estimates of 3DMM shape parame-

ters and the pose (camera parameters), we project the 3D

vertices of the 3DMM to 2D. The vertices themselves have

fixed semantic labels (which we later show how to automat-
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(a) Soft label on pixels (b) Soft label on vertices

Figure 2: Representing pixels (a) and vertices (b) of a given

semantic class (shown in white) as mixtures of Gaussians.

ically infer from a given labelled 2D image dataset). We

assume that we are given a target pixel-wise semantic seg-

mentation (i.e. in the context of CNN training, we assume a

supervised scenario). These input labels could themselves

be predicted by a 2D semantic segmentation network. Then,

we represent both the projected vertices and the pixel labels

probabilistically as a mixture of Gaussians. Our key contri-

bution is to measure the difference between these two dis-

tributions using the geometric Rényi divergence. This new

measure has advantages that: 1) it varies smoothly with re-

spect to the displacement of the projection; 2) optimal align-

ment corresponds to the minimum value; 3) the gradient

does not vanish even if the displacement is large. Hence,

this method can enable accurate and stable 2D-3D align-

ment of the model. For practical application, we propose

both direct optimisation of the loss given a single input seg-

mentation (“analysis-by-synthesis”) and use it for training a

parameter regression CNN.

3. GRD-based semantic segmentation loss

We begin by showing how to compute a semantic seg-

mentation loss between pixels and projected vertices of a

given semantic class.

3.1. Pixel and vertex labels as mixtures of Gaussians

In order to obtain long-range gradients from the discrep-

ancy between semantic labels on input images and projected

vertices, we soften both labels by analytically convolving

Gaussian kernels on representative points (see Figure 2).

Hence we represent softened semantic label P on image co-

ordinate z with Mixture of Gaussian:

P (z) =

N
∑

i=1

αi

2πσ2
exp

(

−
1

2σ2
(z− xi)

T
(z− xi))

)

=

N
∑

i=1

αiG
(

z− xi, σ
2I
)

(1)

where xi is the centre of ith Gaussian kernel (corresponding

to either a pixel centre or projected vertex position), and σ is

the corresponding standard deviation of Gaussian function.

αi is weight of ith Gaussian kernel, and is allocated based

on corresponding area on the image. For input pixel-wise

semantic labels, αi is set to 1 so that it represents the area

of one pixel. For vertices, αi is set to the average of the

projected area of the neighboring faces.

3.2. Geometric Rényi divergence

We employ closed-form geometric Rényi divergence

(GRD) as a cohesive measure between two mixture of

Gaussian (MoG) distributions, which represent ground truth

and projected semantic labels. Wang et al. [28] proposed

closed-form Jensen-Rényi divergence (JRD) for MoG and

applications to group-wise shape registration. JRD for K

groups is defined as:

JRDπ,q (P1, P2, . . . , PK) =

Hq

(

K
∑

i=1

πiPi

)

−

K
∑

i=1

πiHq (Pi) , (2)

where Hq is qth order Rényi entropy, and π =
{π1, π2, . . . , πn|πi > 0,

∑

i πi = 1} are the weights for the

weighted arithmetic mean of the distributions and the en-

tropies. qth order Rényi entropy is defined as:

Hq(P ) =
1

1− q
log

(
∫

P (z)
q
dz

)

. (3)

When q → 1, (3) is Shannon entropy, and (2) is Jensen-

Shannon divergence. Wang et al. [28] employed q = 2
as it has a closed-form for MoG. However, non-negativity

of JRD is not guaranteed when q > 1, and optimal reg-

istration does not necessarily correspond to minimal diver-

gence. Therefore, order 2 JRD is not a preferable measure

for alignment of two distributions. To resolve the negativity

issue, Antolı́n et al. [1] proposed geometric Rényi diver-

gence (GRD):

GRDπ,q (P1, P2, . . . , PK) =

(q − 1)

[

Hq

(

K
∏

i=1

Pπi

i

)

−
K
∑

i=1

πiHq (Pi)

]

. (4)

For arbitrary q, non-negativity of GRD is guaranteed. In

addition, when q = 2, a closed-form GRD can be derived

for comparison of two distributions in the same way as JRD.

3.3. Closed­form 2nd order GRD between two
MoGs

We now derive a closed-form 2nd order GRD between

two MoGs, i.e. for the special case π = 1
2 , q = 2:

GRD1/2,2 (Px, Py) =

H2

(

√

PxPy

)

−
1

2
(H2 (Px) +H2 (Py)) (5)

2314



Figure 3: Loss landscape of GRD (top-left), JRD (top-right), L2 (bottom-left), and IoU (bottom-right) with respect to t pixel

horizontal translation.

Based on the closed-form integral of the product of two
Gaussians, we obtain:

H2

(

√

PxPy

)

=

∫

Px(z)Py(z)dz

= − log

[

M
∑

i=1

N
∑

j=1

αiβj

∫

G(z− xi, σ
2
I)G(z− yj , σ

2
I)dz

]

= − log

[

M
∑

i=1

N
∑

j=1

αiβjG(xi − yj , 2σ
2
I)

]

, (6)

and

H2 (Px) =

∫

Px(z)
2
dz

= − log

[

M
∑

i=1

M
∑

j=1

αiαj

∫

G(z− xi, σ
2
I)G(z− xj , σ

2
I)dz

]

= − log

[

M
∑

i=1

N
∑

j=1

αiαjG(xi − xj , 2σ
2
I)

]

. (7)

From (5), (6) and (7), we obtain closed-form divergence:

GRD1/2,2 (Px, Py) = − log

[

M
∑

i=1

N
∑

j=1

αiβjG(xi − yj , 2σ
2
I)

]

+
1

2
log

[

M
∑

i=1

N
∑

j=1

αiαjG(xi − xj , 2σ
2
I)

]

+
1

2
log

[

M
∑

i=1

N
∑

j=1

βiβjG(yi − yj , 2σ
2
I)

]

. (8)

3.4. Numerical stability

The GRD becomes numerically unstable when the dif-

ference between two MoG distributions is large. That is be-

cause all the exponential functions in (6) output zero value

for large ‖xi − yi‖
2
2. To avoid this issue, in practice we

implement (6) as:

H2

(

√

PxPy

)

= log





M
∑

i=1

N
∑

j=1

exp (−eij +min{eij})





−min{eij}+ log
( αi

2πσ2

)

, (9)

where eij = −
(xi−xj)

T (xi−xj)
2σ2 − log(αiαj).

3.5. Loss landscape and comparison

We now illustrate the attractive properties of the GRD

using a toy example. We draw a circle with 10 pixel diam-

eter onto a 100× 100 pixel image. We generate two MoGs

by putting Gaussian kernels on each pixel in the circle, and

transform one MoG while fixing the other. In Figure 3, a

horizontal translation of t pixels is applied, and in Figure

4, magnification by factor s is applied. We compare GRD

with JRD, L2 loss, and IoU loss. L2 loss LL2 for two dis-

tributions Px and Py is defined as LL2 = ‖Px − Py‖
2
2.

Following [27] and [19], we define a soft IoU loss LIoU for

two distributions Px and Py as:

LIoU = 1−
‖Px ⊙ Py‖1

‖Px + Py − Px ⊙ Py‖1
(10)
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Figure 4: Loss landscape of GRD (top-left), JRD (top-right), L2 (bottom-left), and IoU (bottom-right) with respect to mag-

nification by s.

In the case of translation, the gradient of JRD, L2, and

IoU becomes flat when the displacement is large, whereas

GRD increases quadratically. That means only GRD is suit-

able for large scale alignment. In the case of scaling, JRD

goes negative when the difference in scale is large, while L2

exhibits non-optimal local minima and IoU shows flat gra-

dient. These examples indicate that GRD is more suitable

as a measure for region alignment than other metrics.

4. GRD loss based fitting/supervision

We now show how to integrate our GRD-based semantic

segmentation loss into either analysis-by-synthesis or CNN-

based 3DMM fitting regimes.

4.1. 3DMM and image formation model

We represent 3D face models based on a 3DMM:

vj =

Ns+Ne
∑

i=1

αibij + aj , rj =

Nr
∑

i=1

βicij + dj (11)

where vj is the 3D position and rj is the RGB reflectance

of jth vertex respectively. bij is the ith linear basis of the

vertex position and aj is its mean. In the same manner, cij
is the ith linear basis of the vertex reflectance and dj is its

mean. αi and βi is the coefficient of the linear combination

and that is the representation of 3D face model which we

use. We use the Basel Face Model 2017 [11] as the basis

of our representation which has Ns = 199, Ne = 100,

and Nr = 199 dimensions for facial identity shape, facial

expression shape, and skin reflectance respectively.

Each vertex is projected onto the image plane based on a

full perspective camera model:

λj

[

x́j

1

]

= A(Rvj + t) (12)

where x́j is jth projected vertex position, A is an intrinsic

camera matrix, R is a 3D rotation matrix, and t is a 3D

translation vector. In addition, each vertex is shaded using

spherical harmonic lighting for image generation and super-

vision based on photometric discrepancy:

ij = rj

27
∑

k=1

γkHk(nj), (13)

where ij is jth shaded vertex colour, Hk is a function to

obtain kth spherical harmonic basis from jth vertex normal

nj , γk is the coefficient for the kth basis. We employ sec-

ond order spherical harmonic lighting, which has 9 bases

for each colour channel. We calculate nj by averaging the

surface normal of neighbouring faces of each vertex.

4.2. Automatic labelling of model vertices

In order to apply our GRD loss, we require semantic

labels for each vertex in the 3D face model that are con-

sistent with ground truth semantic labels provided on im-

ages. In order to transfer the semantics of the image la-

bels to the model automatically, we propose the following

process. First, we pre-train an image-to-image face parsing

network using the given labelled image dataset. Specifically

we use CelebAMask-HQ [17]. Next, we randomly sample
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Figure 5: Automatic semantic labelling of model vertices.

face models from the 3DMM, render to images and pass

them through the face parsing network. For a given image,

each visible vertex is assigned the semantic label of high-

est probability from the face parsing network output. Then,

across all images we take a majority vote to assign a single

semantic label to each vertex in the model. We note that hu-

man annotators may not be entirely consistent in how they

segment face regions (e.g. how they delineate the boundary

of the nose region). Our automatic labelling seeks to be op-

timal in aggregate across the training set. We show a visual

overview of this process in Figure 5.

4.3. Analysis­by­synthesis

We use GRD for MoG to optimise shape and pose pa-

rameters so that the discrepancy of given semantic labels

on vertices and pixels is minimised. We directly minimise

parameters in an analysis-by-synthesis manner as shown in

Figure 1. We place a Gaussian kernel on each projected

vertex x́j calculated from (12), and obtain softened seman-

tic label Ṕl of lth label on image coordinate z:

Ṕl(z) =

∑Nv

j=1 λ́ljvjG
(

z− x́j , σ
2I
)

∑Nv

j=1 λ́ljvj
, (14)

where Nv represents the number of vertices, λ́lj represents

lth label on jth vertex, which returns 1 if a vertex belongs

to the label and 0 otherwise, vj represents average area of

three neighboring faces of jth vertex projected on the image

plane. The area is regarded as zero if the vertex normal

points away from the camera (i.e. self-occluded).

For pixel labels, we place a Gaussian kernel on each

pixel with image coordinate [u, v], and obtain softened se-

mantic label P̂l of lth label on image coordinate z:

P̂ (z) =

∑NH−1
v=0

∑NW−1
u=0 λ̂l(u, v)G

(

z− [u, v]T , σ2I
)

∑NH−1
v=0

∑NW−1
u=0 λ̂l(u, v)

(15)

where λ̂l(u, v) represents lth label on image coordinate

[u, v], NW is a number of horizontal pixels, and NH is a

number of vertical pixels.

ProjectionEncoder

Input Image

3DMM

Reconstruction

Pose

Lighting

3DMM CoefficientsGT Label Projected Label

Semantic Label Loss

Photometric Loss

Figure 6: Parameter regression CNN architecture with se-

mantic segmentation supervision.

Original Selected Rasterised Corrected

Figure 7: Label correction based on rasterised semantic la-

bels generated by a provisional network.

We calculate GRD for each label based on (8) and min-

imise average GRD of all the labels while optimising all

shape and camera parameters.

4.4. CNN­based regression

Our semantic label loss can be combined with a CNN-

based regression network. Figure 6 shows a network for 3D

face reconstruction based on semantic label loss. This can

be viewed as a variant of MoFA [25] with additional seman-

tic segmentation supervision. An encoder network predicts

pose parameters and 3DMM coefficients. Semantic label

loss is calculated as it is for analysis-by-synthesis applica-

tion. To reconstruct colour information, we also estimate

lighting and 3DMM reflectance coefficients, and minimise

L2 norm of the difference of the colour between input image

and shaded vertices based on (13).

Label correction Pixel-wise labels contain some classes

or face regions not present in the model. For example,

glasses may occlude the face while the neck and forehead

are cropped in the model. We propose to correct these labels

using a provisional network. Having trained using classes

from the original labels that are present in the model (see

Figure 7, col. 2), we obtain initial model-based estimates

(col. 3). We update the original labels by allowing a poten-

tial occluder class to be replaced with a face class or a face

class to be replaced with background (col. 4). This can be

viewed as a statistical inpainting of occluded regions.
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Figure 8: Convergence of direct optimisation of our GRD, NMR [14], and SoftRas [19] segmentation losses. Upper rows

show an easy case, lower rows a challenging one. Target ground truth labels are shown in the final column.

GRD (Ours) NMR [14] SoftRas [19]

IoU mean 0.931 0.789 0.423

IoU std 0.013 0.150 0.124

Table 1: Direct optimisation results for semantic labels ran-

domly synthesised from the BFM [11].

5. Experiments

Analysis-by-synthesis We apply our approach to

analysis-by-synthesis and evaluate it both quantitatively and

qualitatively based on synthetic data. We also compare our

approach with Neural Mesh Rendenderer (NMR) [14] and

Soft Rasterizer (SoftRas) [19].

Synthetic pixel label images are generated by perturbing

3DMM coefficents, focal length, image centre, pose rota-

tion, and pose translation. Pose rotation is parameterised by

Euler angle. We directly optimise 299 dimensional 3DMM

coefficients, and 9 dimensional camera parameters with re-

spect to average GRD between projected MoG and pixel

MoG among 11 labels. We employ Adam optimiser with

learning rate 0.2 for GRD, and 0.01 for NMR and SoftRas.

For GRD, we chose σ = 5 as a parameter of Gaussian ker-

nel. In optimisation with NMR, we differentiably rasterise

semantic labels as an 11 channel image, and compute L2

norm between a rasterised image and a ground truth pixel

label image. In optimisation with SoftRas, we differentiably

rasterise semantic labels as an 11 channel image. We also

reasterise an object silhouette and multiply it to the seman-

tic labels. L2 norm between a rasterised image and a ground

truth pixel label image is employed as a loss function. We

chose σ = 10−3 and γ = 10−3 for SoftRas parameters.

Figure 8 shows the convergence of projected semantic la-

bels during direct optimisation of GRD (Ours), NMR, and

SoftRas losses. Upper rows show an example of a success-

ful case, and lower rows show an example of a difficult

case. In both cases, our approach converges well to the

ground truth despite large rotation from the initial pose to

the ground truth. In a successful case, both NMR and Sof-

tRas converges to the ground truth. The result of SoftRas

shows slight shrinking due to the gap between original se-

mantic label images and blurred rasterisation. In a difficult

case, both NMR and SoftRas converges to a local minima.

We also calculate mean and standard deviation of IoU be-

tween the ground truth and the rasterised semantic labels

(Table 1). The result indicates our method successfully con-

verges to the ground truth in all 16 cases, whereas NMR and

SoftRas fails in some cases.

CNN-based parameter regression We now use our loss

to train a network to reconstruct 3D faces from a single im-

age and show qualitative results and landmark evaluation.

The network estimates 3DMM coefficents for both shape
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AFLW Dataset AFLW2000-3D Dataset

Method Mean[0-30] Mean[0-90] Std[0-90] Mean[0-30] Mean[0-90] Std[0-90]

LBF [22] 7.17 17.72 10.64 6.17 16.19 9.87

ESR [5] 5.58 12.07 7.33 4.38 11.72 8.04

CFSS [31] 4.68 12.51 9.49 3.44 13.02 10.08

MDM [26] 5.14 13.40 9.72 4.64 13.07 10.07

SDM [30] 4.67 9.19 6.10 3.56 9.37 7.23

3DDFA [33] 4.11 4.55 0.54 2.84 3.79 1.08

PRNet [9] 4.19 4.77 - 2.75 3.62 -

Guo [12] 3.98 4.43 - 2.63 3.51 -

Ours 3.98 10.14 5.99 4.97 10.49 5.64

Table 2: Normalized Mean Error on AFLW [20] and

AFLW2000-3D [33] datasets.

and albedo, pose parameters, and lighting parameters. Pose

parameters are represented by a 3D translation vector, a ro-

tation matrix, and a parameter to express perspective ef-

fect. We use Basel Face Model 2017 as 3DMM, which has

299 bases for shape and 100 for albedo. Rotation matrix is

parameterised by 6D redundant expression, which consists

of two 3D vector. Rotation matrix is generated from the

vectors in Gram-Schmidt process. We employ individual

VGG19 networks to estimate 3DMM coefficients, lighting

parameters, and pose parameters respectively.

We train our network using CelebAMask-HQ dataset.

We use left/right ears, left/right eyes, left/right eyebrows,

upper/lower lips, nose, face, and neck labels for train-

ing and visualisation. We split the dataset into 29,000

training images and 1000 test images. We augment with

random 2D similarity transformations (magnification ra-

tio: [0.654, 1.105], translation: [−56, 56] pixels, rotation:

[−180◦, 180◦]). The background region is filled by ran-

dom images from ImageNet [15] with blended boundary.

Finally, we crop the image by 224× 224 pixels.

We begin by only training the pose estimation network

for 10,000 iterations with batch size 5 using the original

labels. Then, using the corrected labels, we train pose

and lighting estimation networks for 40,000 iterations with

batch size 5. Consequently, we add the 3DMM estimation

network and train the networks for 240,000 iterations with

batch size 2. We employ Adadelta optimiser to train the

networks with learning rate 0.001 for the final training of

lighting and pose and 0.01 for the rest of the training.

Figure 9 shows qualitative results of the reconstruction.

Our method successfully reconstructs 3D face including

ears under arbitrary 2D similarity transformation. We quan-

titatively evaluate our method based on landmarks (Table

2). We follow the evaluation protocol proposed in Zhu et

al. [33] and compare our result with supervised facial land-

mark detection methods. Our network shows comparable

result to landmark-based methods for modest pose angles.

6. Conclusion

We have presented the first method that uses closed-

form GRD for spatial alignment of two MoG distributions

based on gradient-based optimisation. Our segmentation

Input Reconstruction Geometry GT label Output label

Figure 9: Reconstruction results based on CNN trained with

semantic label loss and photometric loss.

loss shows preferable characteristics over alternative mea-

sures and state-of-the-art differentiable renderers on both

direct optmisation and training of neural networks. Our

approach has further potential of application to other com-

puter vision tasks such as point cloud registration, image

registration, and general 3D reconstruction. Especially, our

approach is suitable for alignment based on soft landmarks,

which predicts landmark position with uncertainty. Our loss

could also be used for multiview silhouette fitting, extended

to other object classes or combined with pixel-wise seman-

tic segmentation for a self-supervised pipeline.
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