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Okan Köpüklü Jiapeng Zheng Hang Xu Gerhard Rigoll

Technical University of Munich

Abstract

Distracted drivers are more likely to fail to anticipate

hazards, which result in car accidents. Therefore, detect-

ing anomalies in drivers’ actions (i.e., any action deviat-

ing from normal driving) contains the utmost importance

to reduce driver-related accidents. However, there are un-

bounded many anomalous actions that a driver can do while

driving, which leads to an ‘open set recognition’ prob-

lem. Accordingly, instead of recognizing a set of anoma-

lous actions that are commonly defined by previous dataset

providers, in this work, we propose a contrastive learning

approach to learn a metric to differentiate normal driv-

ing from anomalous driving. For this task, we introduce

a new video-based benchmark, the Driver Anomaly Detec-

tion (DAD) dataset, which contains normal driving videos

together with a set of anomalous actions in its training set.

In the test set of the DAD dataset, there are unseen anoma-

lous actions that still need to be winnowed out from normal

driving. Our method reaches 0.9673 AUC on the test set,

demonstrating the effectiveness of the contrastive learning

approach on the anomaly detection task. Our dataset, codes

and pre-trained models are publicly available 1.

1. Introduction

Driving has become an indispensable part of modern life

providing a high level of convenient mobility. However,

this strong dependency on driving also leads to an increased

number of road accidents. According to the World Health

Organization’s estimates, 1.25 million people die in road ac-

cidents per year, and up to 50 million people injure. Human

factors are the main contributing cause in almost 90% of

the road accidents having distraction as the main factor for

around 68% of them [7]. Accordingly, the development of

a reliable Driver Monitoring System (DMS), which can su-

pervise a driver’s performance, alertness, and driving inten-

tion, contains utmost importance to prevent human-related

road accidents.

Due to the increased popularity of deep learning meth-

1https://github.com/okankop/Driver-Anomaly-Detection

Figure 1: Using contrastive learning, normal driving tem-

plate vector vn is learnt during training. At test time, any

clip whose embedding is deviating more than threshold γ
from normal driving template vn is considered as anoma-

lous driving. Examples are taken from new introduced

Driver Anomaly Detection (DAD) dataset for front (left)

and top (right) views on depth modality.

ods in computer vision applications, there has been sev-

eral datasets to facilitate video based driver monitoring

[23, 26, 1]. However, all these datasets are partitioned into

finite set of known classes, such as normal driving class and

several distraction classes, with equivalent training and test-

ing distribution. In other words, these datasets are designed

for closed set recognition, where all samples in their test set

belong to one of the K known classes that the networks are

trained with. This arises a very important question: How

would the system react if an unknown class is introduced

to the network? This obscurity is a serious problem since

there might be unbounded many distracting actions that a

driver can do while driving.

Different from available datasets and majority research

on DMS applications, we propose an open set recognition

approach for video based driver monitoring. Since the main

purpose of a DMS is to ensure that driver drives attentively

and safely, which is referred as normal driving in this work,

we propose a deep contrastive learning approach to learn a

metric in order to distinguish normal driving from anoma-

lous driving. Fig. 1 illustrates the proposed approach.

In order to to facilitate further research, we introduce a

large scale, multi-view, multi-modal Driver Anomaly De-
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tection (DAD) dataset. The DAD dataset contains normal

driving class together with a set of anomalous driving ac-

tions in its training set. However, there are several unseen

anomalous actions in the test set of DAD dataset that still

need to be distinguished from normal driving. We believe

that DAD dataset addresses to the true nature of driver mon-

itoring.

Overall, the main contributions of this work can be sum-

marized as:

• We introduce DAD dataset, which is the first video

based open set recognition dataset for vision based

driver monitoring application. The DAD dataset is

multi-view (front and top views), multi-modal (depth

and infrared modalities) and large enough to train deep

Convolutional Neural Network (CNN) architectures

from scratch.

• We propose a deep contrastive learning approach to

distinguish normal driving from anomalous driving.

Although contrastive learning has been popular for un-

supervised metric learning recently, we prove its ef-

fectiveness by achieving 0.9673 AUC in the test set of

DAD dataset.

• We present a detailed ablation study on the DAD

dataset and proposed contrastive learning approach in

order give better insights about them.

2. Related Work

Vision Based Driver Monitoring Datasets. There are

several hand-focused datasets such as CVRR-HANDS 3D

[24], VIVA-Hands [5] and DriverMHG [19]. Although

these datasets aim to facilitate research on hand gesture

recognition for human machine interaction, they can be

used to detect hand position [21], which is highly correlated

to the drivers’ ability to drive. Ohn-bar et al. introduces ad-

ditional two datasets [24, 25] in order to study hand activity

and pose which can be used to identify driver’s state.

Drivers’ face and head information also provides very

important cues to identify driver’s state such as head pose,

gaze directions, fatigue and emotions. There are several

datasets such as [2, 27, 8] that provide eye-tracking annota-

tions. This information together with the interior design of

the cabin help identifying where the driver is paying atten-

tion, as in DrivFace dataset [6]. In addition, datasets such

as DriveAHead [32] and DD-Pose [29] provide head pose

annotations of yaw, pitch and roll angles.

There are also datasets that focus on the body actions of

the drivers. StateFarm [9] is the first image-based dataset

for this purpose, which contains safe driving and 9 addi-

tional distracting classes. A similar image-based dataset

AUC Distracted Driver (AUC DD) [1] is proposed using

a side-view camera to capture drivers’ actions. However,

these two datasets are image-base and lack important tem-

poral information. A simple modification on AUC DD

dataset to investigate importance of spatio-temporal infor-

mation is presented in [20]. Recently, Drive&Act dataset

is introduced in [23], which is recorded for 5 NIR cameras

where subjects perform distraction-related actions for au-

tonomous driving scenario.

None of the datasets mentioned above is designed for

open set recognition scenarios [31], where unknown actions

are performed at the test time. In this perspective, the intro-

duced DAD dataset is the first available dataset designed for

open-set-recognition.

Contrastive Learning Approaches. Since its initial

proposition [11], these approaches learn representations by

contrasting positive pairs against negative pairs. In [35],

the full softmax distribution is approximated by the Noise

Contrastive Estimation (NCE) [10]; a memory bank and the

Proximal Regularization [28] are used in order to stabilize

learning process. Following works use similar approaches

with several modifications. In [38], instances that are close

to each other on the embedding space used as positive pairs

in addition to the augmented version of the original images.

In [12], a dynamic dictionary with a queue and a moving-

average encoder are presented. Authors in [33] try to bring

different views of the same scene together in embedding

space, while pushing views of different scenes apart. A pro-

jection head is introduced in [4], which improves the quality

of the learned representations. It has been proven that mod-

els with unsupervised pretraining achieves better than mod-

els with supervised pretraining in various tasks [4]. More-

over, performance of supervised contrastive learning is also

validated in [16].

Lightweight CNN Architectures. Since DMS appli-

cations need to be deployed in car, it is critical to have

a resource efficient architecture. In recent years, several

lightweight CNN architectures are proposed. SqueezeNet

[15] is the first and most well-know architecture, which con-

sists of fire modules to achieve AlexNet-level accuracy with

50x fewer parameters. MobileNet [14] contains depthwise

separable convolutions with a width multiplier parameter to

achieve thinner or wider network. MobileNetV2 [30] con-

tains inverted residuals blocks and ReLU6 activation func-

tion. ShuffleNet [37] proposes to use channel shuffle op-

eration together with pointwise group convolution. Shuf-

fleNetV2 [22] upgrades it with several principles, which

are effective in designing lightweight architectures. Net-

works using Neural Architecture Search (NAS) [39], such

as NASNet[40], FBNet[34], provide another direction for

designing lightweight architectures. In this work, we have

used 3D version of several resource efficient architectures,

which are introduced in [18].
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(a) Camera placements in the simulator (b) Camera

(c) Top depth image (d) Top infrared image

(e) Front depth image (f) Front infrared image

Figure 2: Environment for data collection. (a) Driving sim-

ulator with camera placements. (b) Infineon CamBoard

pico flexx camera installed for front and top views. Ex-

amples of (c) top depth, (d) top infrared, (e) front depth and

(f) front infrared recordings.

3. Driver Anomaly Detection (DAD) Dataset

There are several vision-based driver monitoring datasets

that are publicly available, but for the task of open set recog-

nition such that normal driving should still be distinguished

from unseen anomalous actions, there has been none. In

order to fill this research gap, we have recorded the Driver

Anomaly Detection (DAD) dataset, which contains the fol-

lowing properties:

• The DAD dataset is large enough to train a Deep Neu-

ral Network architectures from scratch.

• The DAD dataset is multi-modal containing depth and

infrared modalities such that system is operable at dif-

ferent lightning conditions.

• The DAD dataset is multi-view containing front and

top views. These two views are recorded syn-

chronously and complement each other.

Figure 3: The DAD dataset statistics.

• The videos are recorded with 45 frame-per-second pro-

viding high temporal resolution.

We have recorded the DAD dataset using a driving simu-

lator that is shown in Fig. 2. The driving simulator contains

a real BMW car cockpit, and the subjects are instructed to

drive in a computer game that is projected in front of the car.

Two Infineon CamBoard pico flexx cameras are placed on

top and in front of the driver. The front camera is installed to

record the drivers’ head, body and visible part of the hands

(left hand is mostly obscured by the driving wheel), while

top camera is installed to focus on the drivers’ hand move-

ments. The dataset is recorded in synchronized depth and

infrared modalities with the resolution of 224 x 171 pixels

and frame rate of 45 fps. Example recordings for the two

views and two modalities are shown in Fig. 2.

For the dataset recording, 31 subjects are asked to drive

in a computer game performing either normal driving or

anomalous driving. Each subject belongs to either training

or test set. The training set contains recordings of 25 sub-

jects and each subject has 6 normal driving and 8 anomalous

driving video recordings. Each normal driving video lasts

about 3.5 minutes and each anomalous driving video lasts

about 30 seconds containing a different distracting action.

The list of distracting actions recorded in the training set can

be found in Table 1. In total, there are around 550 minutes

recording for normal driving and 100 minutes recording of

anomalous driving in the training set.

The test set contains 6 subjects and each subject has 6

video recordings lasting around 3.5 minutes. Anomalous

actions occur randomly during the test video recordings.

Most importantly, there are 16 distracting actions in the test

set that are not available in the training set, which can be

found in Table 1. Because of these additional distracting

actions, the networks need to be trained according to open

set recognition task and distinguish normal driving no mat-

ter what the distracting action is. The complete test consists

of 88 minutes recording for normal driving and 45 minutes

recording of anomalous driving. The test set constitutes the

17% of the complete DAD dataset, which is around 95 GB.

The dataset statistics can be found in Fig. 3.
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Anomalous Actions in Training Set Anomalous Actions in Test Set

Talking on the phone-left Talking on the phone-left Adjusting side mirror Wearing glasses

Talking on the phone-right Talking on the phone-right Adjusting clothes Taking off glasses

Messaging left Messaging left Adjusting glasses Picking up something

Messaging right Messaging right Adjusting rear-view mirror Wiping sweat

Talking with passengers Talking with passengers Adjusting sunroof Touching face/hair

Reaching behind Reaching behind Wiping nose Sneezing

Adjusting radio Adjusting radio Head dropping (dozing off) Coughing

Drinking Drinking Eating Reading

Table 1: Anomalous actions in the training and test sets. 16 actions in the test set that are not available in the training set are

highlighted in red color.

4. Methodology

4.1. Contrastive Learning Framework

Our motivation is to learn a compact representation for

normal driving such that any action deviating from normal

driving beyond a threshold can be detected as anomalous

action. Accordingly, Inspired by recent progress in con-

trastive learning algorithms, we try to maximize the simi-

larity between normal driving samples and minimizing the

similarity between normal driving and anomalous driving

samples in the latent space using a contrastive loss. Fig. 4

illustrates the applied framework, which has three major

components:

• Base encoder fθ(.) is used to extract vector repre-

sentations of input clips. fθ(.) refers to a 3D-CNN

architecture with parameters θ. We performed exper-

iments with ResNet-18 and various resource efficient

3D-CNNs to transform input xi into hi ∈ R
512 via

hi = fθ(xi).

• Projection head gβ(.) is used to map hi into another

latent space vi. According to findings in [4], it benefi-

cial to define the contrastive loss on vi rather than hi.

gβ(.) refers to MLP with one hidden layer with ReLU

activation and has parameters β to achieve transforma-

tion of vi = gβ(hi) = W (2)max(0,W (1)hi), where

vi ∈ R
128. After MLP, ℓ2 normalization is applied to

the embedding vi.

• Contrastive loss is used to impose that normalized

embeddings from the normal driving class are closer

together than embeddings from different anomalous

action classes. For this reason, positive pairs in the

contrastive loss are always selected from normal driv-

ing clips, whereas anomalous driving clips are used

only as negative samples.

We divide our normal and anomalous videos into clips

for the training. Within a mini-batch, we have K normal

driving clips and M anomalous driving clips with index

i ∈ {1, ...,K+M}. Final embedding of the ith normal

and anomalous driving clips are denoted as vni and vai,

respectively. There are in total K(K−1) positive pairs and

KM negative pairs in every mini-batch. For the supervised

contrastive learning approach that we have applied for the

task of driver anomaly detection task, the loss takes the fol-

lowing final form:

Lij = − log
exp(vni

Tvnj/τ)

exp(vni
Tvnj/τ) +

M∑
m=1

exp(vni
Tvam/τ)

(1)

L =
1

K(K − 1)

K∑

i=1

K∑

j=1

✶j 6=iLij (2)

where ✶ ∈ {0, 1} is an indicator function that returns 1 if

j 6= i and 0 otherwise, and τ ∈ (0, ∞) is a scalar temper-

ature parameter that can control the concentration level of

the distribution [13]. Typically, τ is chosen between 0 and

1 to amplify the similarity between samples, that is bene-

ficial for training. The inner product of vectors measures

the cosine similarity between encoded feature vectors be-

cause they are all ℓ2 normalized. By optimizing Eq. (2), the

encoder is updated to maximize the similarity between the

normal driving feature vectors vni and vnj while minimiz-

ing the similarity between the normal driving feature vector

vni and all other anomalous driving feature vectors vam in

the same mini-batch.

Noise Contrastive Estimation. The representation

learnt by Eq. (2) can be improved by introducing many more

anomaly driving clips (i.e. negative samples). In the ex-

treme case, we can use the complete training samples of

the anomalous driving. However, this is too expensive con-

sidering the limited memory of the used GPU. Noise Con-

trastive Estimation [10] can be used to approximate the full

softmax distribution as in [10, 35]. In our implementation,
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Figure 4: Contrastive learning framework for driver anomaly detection task. A pair of normal driving clips a number of

anomaly driving clips (2 in this example) are fed to a base encoder fθ(.) and projection head gβ(.) to extract visual represen-

tations of hi and vi, respectively. Once training is completed, projection head is removed, and only the encoder fθ(.) is used

for test time recognition.

we have used the m negative samples in our mini-batch

and applied (m+1)-way softmax classification as also used

[33, 12, 3]. Different from these works, we do not use a

memory bank and optimize our framework using only the

elements in the mini-batch.

4.2. Test Time Recognition

The common practice to evaluate learned representations

is to train a linear classifier on top of the frozen base net-

work [33, 12, 3, 4]. However, this final training is tricky

since representations learned by unsupervised and super-

vised training can be quite different. For example, train-

ing of the final linear classification is performed with learn-

ing rate of 30, although unsupervised learning is performed

with initial learning rate of 0.01. In addition, authors in [35]

apply k-nearest neighbours (kNN) classification for the fi-

nal evaluation. However, kNN also requires distance cal-

culation with all training clips for each test clip, which is

computationally expensive.

For the test time recognition, we propose an evaluation

protocol that does not require neither any further training

nor complex computations. After the training phase, we

throw away the projection head as in [4] and use the trained

3D-CNN model to encode every normal driving training

clips xi, i ∈ {1, ..., N} into a set of ℓ2 normalized 512-

dimensional feature representations. Afterwards, normal

driving template vector vn can be calculated with:

vn =
1

N

N∑

i=1

fθ(xi)

‖fθ(xi)‖2
(3)

To classify a test video clip xi, we encode it again into

a ℓ2 normalized 512-dimensional vector and compute the

cosine similarity between the encoded clip and vn by:

simi = vn
T fθ(xi)

‖fθ(xi)‖2
(4)

Finally, any clip whose similarity score below a thresh-

old, simi < γ, is classified as anomalous driving. This

way, only a simple vector multiplication is performed for

test time evaluation. Moreover, similarity score of the test

clip simi gives the severity of the anomalous behavior.

Fusion of Different Views and Modalities. The DAD

dataset contains front and top views; and depth and infrared

modalities. We have trained a separate model for each view

and modality and fused them later with decision level fu-

sion. As an example, the fused similarity score for top view

depth and infrared modalities is calculated with:

sim
(top)
(DIR) =

sim
(top)
(D) + sim

(top)
(IR)

2
(5)

It must be noted that each applied view and modality

increases the required memory and inference time, which

would be critical for autonomous driving applications.
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4.3. Training Details

We train our models from scratch for 250 epochs using

Stochastic Gradient Descent (SGD) with momentum 0.9

and initial learning rate of 0.01. The learning rate is re-

duced with a factor of 0.1 every 100 epochs. The DAD

dataset videos are divided into non-overlapping 32 frames

clips. In every mini-batch, we have 10 normal driving clips

and 150 anomalous driving clips. We have set the temper-

ature τ = 0.1. Several data augmentation methods are ap-

plied: multi-scale random cropping, salt and pepper noise,

random rotation, random horizontal flip (only for top view).

We have used 16 frames input clips, which are downsam-

pled from 32 frames and resized to 112 × 112 resolution.

At test time, the output score of a 16 frames clip is assigned

to the middle frame of the clip (i.e. 8th frame). For the

evaluation metric, we have mainly used area under the cure

(AUC) of the ROC curve since it provides calibration-free

measure of detection performance.

We have implemented our code in PyTorch, and all the

experiments are done using a single Titan XP GPU.

5. Experiments

Baseline Results. We have used ResNet-18 as base encoder

for the baseline results. All the models in the experiments

are trained from scratch unless otherwise specified. For ev-

ery view and modality, a separate model is trained and in-

dividual results as well as fusion results are reported in Ta-

ble 3. The thresholds that are achieving highest classifica-

tion accuracy are reported in Table 3. However, true positive

rate and false positive rates change according to the applied

threshold value. Therefore, we have also reported AUC of

the ROC curve for baseline evaluation.

Fusion of different modalities as well as different

views always achieves better performance compared to

single modalities and views. This shows that different

views/modalities in the dataset contains complementary in-

formation. Fusion of top/front views and depth/infrared

modalities achieves the best performance with 0.9655 AUC.

Using this fusion network, the visualization for a continu-

ous video stream is illustrated in Fig. 5.

Metric Thresholds γ Acc. (%) AUC

Top(D) 0.89 89.13 0.9128

Top(IR) 0.65 83.63 0.8804

Top(DIR) 0.76 87.75 0.9166

Front(D) 0.75 87.21 0.8996

Front(IR) 0.82 83.68 0.8695

Front(DIR) 0.81 88.68 0.9196

Top+Front(D) 0.83 91.60 0.9609

Top+Front(IR) 0.80 87.06 0.9311

Top+Front(DIR) 0.81 92.34 0.9655

Table 3: Results obtained by using a ResNet-18 as base en-

coder. Thresholds that result in highest classification accu-

racy are reported.

Contrastive Loss or Cross Entropy Loss? We have com-

pared the performance of contrastive loss and cross entropy

(CE) loss. We have trained a ResNet-18 with a final fc layer

with CE loss to perform binary classification. However,

since the data distribution for normal and anomalous driving

is unbalanced in the training set of DAD dataset, we have

also experimented with weighted CE loss, where weights

are set by inverse class frequency. Comperative results are

reported in Table 2. Our findings are in accordance with

[16]. Except for front view infrared modality, contrastive

loss always outperforms CE loss.

Resource Efficient Base Encoders. For autonomous appli-

cations, it is critical that the deployed systems should be de-

signed considering resource efficiency. Therefore, we have

experimented with different resource efficient 3D CNNs

[18] as base encoder. Comperative results are reported

in Table 4. Out of all resource efficient 3D CNNs, Mo-

bileNetV2 stands out with its performance achieving close

to ResNet-18 architecture. More importantly, MobileNetV2

has around 11 times less parameters and requires 13 times

less computation compared to ResNet-18. ROC curves for

different base encoders are also depicted in Fig. 6, where

ResNet-18 and MobileNetV2 again stands out in terms of

performance compared to other networks.

Model Loss

AUC

Top Front Top+Front

Depth IR D+IR Depth IR D+IR Depth IR D+IR

ResNet-18 CE Loss 0.7982 0.8183 0.8384 0.8416 0.8493 0.8816 0.8783 0.8967 0.9190

ResNet-18 Weighted CE Loss 0.8047 0.8169 0.8399 0.8921 0.8808 0.9044 0.9017 0.9070 0.9275

ResNet-18 Contrastive Loss 0.9128 0.8804 0.9166 0.8996 0.8695 0.9196 0.9609 0.9321 0.9655

Table 2: Performance Comparison of contrastive loss, CE loss and weighted CE loss for different views and modalities.
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Figure 5: Illustration of recognition for a continuous video stream using fusion of both views and modalities. Similarity score

refers to cosine similarity between the normal driving template vector and base encoder embedding of input clip. The frames

are classified as anomalous driving if the similarity score is blow the preset threshold.

Model Params MFLOPS

AUC

Top Front Top+Front

Depth IR D+IR Depth IR D+IR Depth IR D+IR

MobileNetV1 2.0x 13.92M 499 0.9125 0.8381 0.9097 0.9018 0.8374 0.9057 0.9474 0.9059 0.9533

MobileNetV2 1.0x 3.01M 470 0.9124 0.8531 0.9146 0.8899 0.8355 0.8984 0.9641 0.9154 0.9608

ShuffleNetV1 2.0x 4.59M 413 0.8884 0.8567 0.8926 0.8869 0.8398 0.9000 0.9358 0.9023 0.9480

ShuffleNetV2 2.0x 6.46M 383 0.8959 0.8570 0.9066 0.9002 0.8371 0.9054 0.9490 0.9131 0.9531

ResNet-18 (from scratch) 32.99M 6104 0.9128 0.8804 0.9166 0.8996 0.8695 0.9196 0.9609 0.9311 0.9655

ResNet-18 (pre-trained) 32.99M 6104 0.9200 0.8857 0.9228 0.9020 0.8666 0.9128 0.9646 0.9227 0.9620

ResNet-18 (post-processed) 32.99M 6104 0.9143 0.8827 0.9182 0.9020 0.8737 0.9223 0.9628 0.9335 0.9673

Table 4: Comparison of different network architectures over AUC, number of parameters and MFLOPS. All architectures

takes 16 frames input with 112× 112 spatial resolution.

With or Without Pre-training? Transfer learning is a

common and effective strategy to improve generalization in

small-scale datasets by pretraining network initially with a

large-scale dataset [36]. Therefore, in order to investigate

the effect of pretraining, we have pretrained our ResNet-18

base encoder on Kinetics-600 for 100 epochs with con-

trastive loss similar to our contrastive learning approach de-

scribed in Section 4. We have not applied CE loss that is

common for training classification tasks since feature rep-

resentations learnt by CE loss and contrastive loss would be

quite different, hence can hinder the transfer learning per-

formance. Before fine-tuning, we have modified the initial

convolution layer of the pretrained network to accommo-

date single channel input by averaging weights of 3 chan-

nels. Afterwards, we fine-tune the network using the DAD

dataset. Comparative results are reported in Table 4 that

pretrained base encoder does not show apparent advantages

compared to base encoder trained from scratch. We infer

that our DAD dataset is large enough and the networks that

are trained from scratch can already learn all distinctive fea-

tures without the need of transfer learning.

Post Processing. It is a common approach to apply post

processing in order to prevent fluctuation of detected scores

[17]. For instance, the misclassification between frames

6500 and 6750 in Fig. 5 can be prevented by such a post

processing. Therefore, we have applied a simple low pass

filtering (i.e. averaging) on the predicted scores. Instead

of making score predictions considering only the current

clip, we have applied a running averaging on the k-previous

scores. We have experimented with different k values and

best results are achieved when k = 6. Comparative results

with and without post processing are reported in Table 4,

where post processing slightly improves the performance.
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Figure 6: ROC curves using 5 different base encoders. The

curves are drawn for the fusion of both views and modali-

ties.

Closed-set and open-set anomalies. We have compared

the performance of proposed architecture over closed-set

and open-set anomalies separately in Table 5. According to

these results, we can verify that the proposed architecture

successfully detects open-set anomalies, although closed-

set performance is still better than open-set.

How Training Data Affects the Performance? The qual-

ity and the amount of training data is one of the most im-

portant factors on the performance of deep learning applica-

tions. Therefore we have investigated the impact of differ-

ent amounts of training data. First, we have created 5 equal

folds each containing training data of 5 subjects. Then,

keeping all the anomalous driving in the training set, we

have gradually increased the used folds for normal driving

data. We have applied the same procedure by switching the

normal and anomalous driving subsets. The comparative re-

sults are reported in Table 6, where λn and λa refers to the

proportion of the used training data for normal driving and

anomalous driving subsets, respectively.

The results in Table 6 show that as we increase the

amount of normal and anomalous driving videos, achieved

performance also increases accordingly. This is natural

since we need more normal driving data in order to increase

the generalization strength of the learned embeddings. We

also need enough anomalous driving data in the training set

to draw the boundary of the normal driving embedding and

Closed-set

Specificity

Open-set

Specificity

Average

Specificity

0.8713 0.8252 0.8565

Table 5: Performance comparison of ResNet-18 on closed-

set and open-set anomalies. Fusion of both views and

modalities are used, and threshold of 0.81 is applied.

Ratio AUC

λn λa Top Front Top+Front

20% 100% 0.7956 0.7639 0.8513

40% 100% 0.7795 0.8111 0.8561

60% 100% 0.8599 0.8166 0.8802

80% 100% 0.8998 0.8601 0.9382

100% 20% 0.8025 0.7873 0.8545

100% 40% 0.8103 0.8577 0.9070

100% 60% 0.8694 0.8911 0.9335

100% 80% 0.8854 0.8921 0.9484

100% 100% 0.9128 0.8996 0.9609

Table 6: Performance comparison using different amount of

normal and anomalous driving data in the training. Results

are reported for ResNet-18 base encoder on depth modality.

increase the compactness of the learned representation.

6. Conclusion

In this paper, we propose an open set recognition based

approach for a driver monitoring application. For this objec-

tive, we create and share a video based benchmark dataset,

Driver Anomaly Detection (DAD) dataset, which contains

unseen anomalous action classes in its test set. Correspond-

ingly, the main task in this dataset is to distinguish normal

driving from anomalous driving even some of the anoma-

lous actions have never been seen. We propose a contrastive

learning approach in order to generalize the learned embed-

ding of the normal driving video, which can later be used to

detect anomalous actions in the test set.

In our experiments, we have validated that the proposed

DAD dataset is large enough to train deep architectures

from scratch and has different views and modalities that

contain complementary information. Since autonomous

applications are limited in terms of hardware, we have

also experimented with resource efficient 3D CNN archi-

tectures. We specifically note that MobileNetV2 achieves

close to ResNet-18 performance, but contains 11 times less

parameters and requires 13 times less computations than

ResNet-18.

We believe that this work will bring a new perspective

to the research on driving monitoring systems. We strongly

encourage research community to use open set recognition

approaches for detecting drivers’ distraction.
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