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Abstract

Pedestrian action prediction has been a topic of active

research in recent years resulting in many new algorith-

mic solutions. However, measuring the overall progress

towards solving this problem is difficult due to the lack of

publicly available benchmarks and common training and

evaluation procedures. To this end, we introduce a bench-

mark based on two public datasets for pedestrian behav-

ior understanding. Using the proposed evaluation pro-

cedures, we rank a number of baseline and state-of-the-

art models and analyze their performance with respect

to various properties of the data. Based on these find-

ings we propose a new model for pedestrian crossing ac-

tion prediction that uses attention mechanisms to effec-

tively combine implicit and explicit features and demon-

strate new state-of-the-art results. The code for models

and evaluation is available at https://github.com/

ykotseruba/PedestrianActionBenchmark.

1. Introduction

In the context of assistive and autonomous driving sys-

tems, the ability to predict pedestrian actions, crossing in

particular, is deemed important for robust and reliable fu-

ture planning. During the past decade, the topic of pedes-

trian action prediction has attracted significant interest in

computer vision and robotics communities. As a result

of compelling efforts in this field, many approaches have

been proposed which report promising results on pedestrian

crossing prediction.

To further advance research on pedestrian action pre-

diction, it is important to compare the performance of the

algorithms which requires common evaluation guidelines.

As of now, such comparisons are difficult if not impossible

due to the lack of agreed-upon evaluation criteria even if

the performance of the models is assessed using the same

datasets [47]. For instance, some works make continuous

prediction even after the crossing even already began, use

inconsistent data splits and sampling procedures. To this

end, we propose a new benchmark for pedestrian cross-

observation event

?

?

1-2s TTE~0.5s

Figure 1: Crossing prediction task: given a set of observa-

tion frames predict action some time in the future to give

the driver or autonomous vehicle sufficient time to react to

pedestrian behavior.

ing prediction based on two publicly available datasets for

pedestrian behavior understanding: Joint Attention for Au-

tonomous Driving (JAAD) [44] and Pedestrian Intention

Estimation (PIE) [42]. We evaluate the performance of

baseline and state-of-the-art (SOTA) crossing prediction al-

gorithms based on evaluation protocol established accord-

ing to pedestrian behavioral studies. Besides ranking the

algorithms by their performance in the same conditions,

we examine the effect of different data properties across

two datasets. Finally, based on the evaluation results and

analysis of the data, we propose a novel method for cross-

ing action prediction which achieves SOTA performance on

benchmark datasets. As part of our effort for supporting fu-

ture research on pedestrian action prediction, we will make

the benchmarking code for all the algorithms public.

2. Related work

2.1. Behavior prediction

Behavior prediction is a topic of interest in many do-

mains such as assistive robotics [35, 4, 30, 64], surveil-

lance [27, 25, 17, 33], sports forecasting [29, 39, 10] and

autonomous driving systems [46, 42, 32, 62]. Behavior pre-

diction can be either implicit in the form of future trajec-

tories or poses [4, 61, 25, 42, 39] or explicit in terms of

predicting future actions or events [35, 46, 27, 17, 10].
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Action prediction. Action prediction has a wide range

of applications including human-object [23, 16, 1, 63] and

human-human [17, 11, 48] interaction, accident prediction

[60, 54, 55] and road traffic understanding [8, 18, 46, 28].

These methods are inherently similar to approaches used

in action and activity recognition algorithms. Some com-

monly used learning architectures include 2D/3D convolu-

tional networks [8, 18, 23], recurrent networks [55, 16, 63]

or a combination of both [1] (see [41] for more details).

Pedestrian crossing prediction is a sub-problem within

action prediction where the objective is to forecast whether

a given pedestrian will cross the road at some point in the

future. Crossing prediction algorithms rely on a variety of

data modalities and architectures. For example, in one of

the early works [44] static representations of traffic scene

and pedestrian looking and walking actions encoded by

CNNs are used to predict crossing action in a given frame.

More recent approaches take advantage of sequence analy-

sis techniques. In [49, 36], the authors use DenseNet-based

architectures to make prediction based on pedestrian image

sequences (along with pose features as in [36]). The method

of [46] uses a multimodal approach and inputs different

modalities, e.g. scenes, trajectories, according to a different

level of complexity, into different levels of a stacked GRU

network. Graph-based models are also used to model the

connection between different body parts [5] or interactions

between different agents [28] as part of the prediction sys-

tem. Another group of algorithms relies on generative mod-

els to predict future scene representations, which in turn are

fed into a classifier to predict whether a crossing event, by

any pedestrians, is taking place [18, 9].

2.2. Crossing prediction evaluation

Comparing pedestrian crossing algorithms is difficult

due to differences in their evaluation criteria. Such dis-

crepancies exist even when the same datasets are used. Ta-

ble 1 lists the recent models that were trained and tested

on two publicly available datasets JAAD and PIE and the

corresponding evaluation protocols in terms of observation

endpoint and length as well as prediction horizon.

There are significant differences in how the observation

frames are selected. About half of the works use only the

frames preceding the crossing event for training and evalu-

ation. For example, in [57] the last frame before the pedes-

trian starts to cross is used for predicting the behavior. In

[34] observations from 2s before crossing to 0.5s after the

crossing began. The rest of the models sample the entire

trajectory. This is beneficial for training since there is more

data available. In practice, however, the time before and

immediately after the crossing point is the most crucial as

the vehicle must decide whether to yield to the pedestrian or

continue driving. Using the entire trajectory also affects the

evaluation since prediction no longer applies if the action

Model Year Dataset
Observation

endpoint

Observation

length (s)

Prediction

horizon

ATGC [44] 2017 JAAD before event 0.3-0.5 next frame

Fang et al. [15] 2018 JAAD all frames 0.46 next frame

Varytimidis et al. [57] 2018 JAAD before event 0.03 (one frame) next frame

CPN+GCN [5] 2019 JAAD before event 10 next frame

Res-EnDec [18] 2019 JAAD all frames 0.533 0.533

Neogi et al. [34] 2019 JAAD before event - 1.33

Pop et al. [38] 2019 JAAD all frames 0.666 1.33

ST-DenseNet [49] 2019 JAAD all frames 0.533 next frame

SF-GRU [46] 2019 PIE before event 0.5 2

Chaabane et al. [9] 2020 JAAD all frames 0.533 0.533

Kotseruba et al. [26] 2020 PIE before event 0.5 0.3/0.5/1

Liu et al. [28] 2020 JAAD before event - 1/2/3

FuSSI-Net [36] 2020 JAAD before event 0.533 0.533

VRUNet [40] 2020 JAAD all frames 0.5/1 1

Table 1: Pedestrian action prediction models trained and

evaluated on JAAD and PIE datasets. Observation endpoint

indicates whether the entire pedestrian trajectory was sam-

pled or only frames preceeding the crossing action. Obser-

vation length is specified in seconds (‘-’ for value not spec-

ified). Prediction horizon indicates how early the action is

predicted.

is already in progress. As experiments in previous works

[46, 34, 28] and in Section 5.2 of this paper demonstrate,

action prediction becomes progressively easier closer to the

event (in terms of TTE) because the pedestrian is closer and

more visual cues are observable. When the pedestrian is

already crossing, most models achieve high prediction ac-

curacy boosting their overall score and confounding their

performance during the crucial moments before the cross-

ing commences. To mitigate this, some authors subdivide

samples into more fine-grained categories, e.g. stopping,

continuous crossing, starting and standing in [34] and sim-

ilar groups in [37], and evaluate the models on each subset.

The observation length also varies widely from a single

frame used in [57] to 300 frames (10s) [5], although around

0.5s (or 15− 16 frames at 30 fps) observation is more com-

mon. As for the prediction horizon, one-third of the mod-

els predict the action immediately following the observation

and the rest predict the crossing action sometime in the fu-

ture (0.5− 3s) which is more desirable for practical scenar-

ios as it gives the driver or an autonomous vehicle the time

to respond to the unexpected events.

With the aim of resolving some of the inconsistencies

pointed out above, our paper offers the following contribu-

tions: 1) establishing common evaluation criteria motivated

by the behavioral literature for the pedestrian crossing pre-

diction task, 2) implementations of baselines and state-of-

the-art models, 3) analysis of their performance with respect

to various data properties, 4) a new model that achieves

SOTA on accurate crossing prediction.

3. Benchmark

Crossing action prediction task. We formulate the pedes-

trian action prediction as a binary classification problem

where the objective is to predict whether the pedestrian will
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start crossing the street at some time t given the observation

of length m. We define the event at the time the pedestrian

starts to cross or the last frame the pedestrian is observable

in case no crossing takes place.

Datasets. For this benchmark we use two large public nat-

uralistic datasets for studying pedestrian behavior in traffic:

Joint Attention for Autonomous Driving (JAAD) [44] and

Pedestrian Intention Estimation (PIE) [42] because they are

freely available for unrestricted use by both academia and

industry. JAAD contains 346 clips of pedestrians prior to

crossing events filmed in several countries and under vary-

ing weather conditions. PIE contains 6 hours of continuous

footage recorded in Toronto, Canada in clear weather.

Different from the JAAD dataset that focuses on pedes-

trians intending to cross, PIE provides annotations for all

pedestrians sufficiently close to the road who may or may

not attempt to cross in front of the ego-vehicle. As a re-

sult, both datasets have imbalances: JAAD behavioral data

(JAADbeh) is skewed towards pedestrians who are cross-

ing (495) or are about to cross (191), whereas the complete

JAAD dataset (JAADall) adds 2100 other visible pedestri-

ans who are far away from the road and are not crossing.

Like JAAD, PIE also contains more non-crossing pedestri-

ans (1322 non-crossing vs 512 crossing), however they are

more diverse in terms of appearance, type of behavior they

exhibit, and location with respect to the curb.

Data sampling. For the JAAD dataset we use the same

data split as in [45] which includes 323 clips (excluding

ones recorded at lower resolution and clips with adverse

weather and night conditions). The data is divided into 177,

117 and 29 clips for training, testing and validation respec-

tively. The number of pedestrian tracks in data splits is 324,

48 and 276 in JAADbeh and 1355, 202 and 1023 in JAADall.

In the PIE dataset, we follow the data split defined in [42]:

videos from set01, set02 and set06 are used for train-

ing, set04 and set05 for validation and set03 for test-

ing. The number of pedestrian tracks in PIE is 880, 243 and

719 in train, validation and test sets.

As illustrated in Figure 1, observation data for each

pedestrian is sampled so that the last frame of observa-

tion is between 1 and 2s (or 30 − 60 frames) prior to the

crossing event start (as provided in the dataset annotations).

This time-to-event (TTE) is motivated by traffic studies

[47]. Although pedestrians are unlikely to cross < 2s TTE

[43] some time should be allotted for emergency maneuver.

Longer prediction horizon is impractical due to the unpre-

dictable nature of most urban scenarios and human dynam-

ics. The observation length for all models is fixed at 16
frames. The sample overlap is set to 0.6 for PIE and 0.8 for

JAAD.

Features. Observation consists of several explicit fea-

tures annotated in the JAAD and PIE datasets: bound-

ing box coordinates, ego-vehicle speed (sensor data in PIE

dataset, and qualitative labels in JAAD), and various at-

tributes for pedestrians and the scene.

In addition, we use pose information generated by Open-

Pose [6] (18 body joint coordinates concatenated into a 36D

feature vector) and optical flow for the entire scene calcu-

lated using FlowNet2 [21].

Several types of visual features are generated: scene -

the entire frame, local box - frame cropped to the size of

the bounding box, local context - image area 1.5 the size

of the bounding box which gives a wider view of the scene

around the pedestrian, and local surround - local context

where area inside the pedestrian bounding box is grayed

out.

Metrics. We report the results using standard binary

classification metrics: accuracy, ROC curve, AUC, preci-

sion, recall and F1 defined as F1 = 2∗(precision∗recall)
precision+recall .

4. Baselines and state-of-the-art models

We included several models covered in Section 2.2 that

provided implementations in addition to a number of base-

lines adopted from the activity recognition domain. Ap-

proaches proposed in [18, 9] predict crossing action for

the scene, not individual pedestrians, and thus were not in-

cluded in the benchmark.

Static. A baseline model that uses VGG16 [53] and

ResNet50 [19] backends and an fully-connected (fc) layer

to predict the action using only the last frame in the obser-

vation sequence.

Are They Going to Cross (ATGC) [44]. An architecture

consisting of three CNN streams that encode scene features,

pedestrian gait and head pose into shared representation for

each frame which is then fed into SVM. The final prediction

is computed as the mean over all observation frames.

ConvLSTM [51]. A model that takes as input a stack of im-

ages, pre-processes them with pre-trained CNN and feeds

the extracted features into convolutional LSTM. The last

hidden state is input into fc layer for prediction.

SingleRNN (RNN) [26]. The input features are concate-

nated into a single vector and fed into a recurrent network

(GRU [13] or LSTM [20]) followed by an fc layer for action

prediction.

Stacked RNN [59]. A stack of RNN layers where each

RNN in the stack receives hidden state of the RNN from the

layer below.

Multi-stream RNN (MultiRNN) [3] is comprised of sep-

arate RNN streams independently processing each feature

type. At the end, the hidden states of the RNNs are con-

catenated and input into an fc layer for prediction.

Hierarchical RNN [14]. An architecture where separate

RNN branches independently process each feature type.

The corresponding hidden states are concatenated and fed

into another RNN layer followed by an fc layer for classifi-

cation.
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Model name ModelVariants
PIE JAADbeh JAADall

Acc AUC F1 P R Acc AUC F1 P R Acc AUC F1 P R

Static
VGG16 0.71 0.60 0.41 0.49 0.36 0.59 0.52 0.71 0.63 0.82 0.82 0.75 0.55 0.49 0.63

ResNet50 0.70 0.59 0.38 0.47 0.32 0.46 0.45 0.54 0.58 0.51 0.81 0.72 0.52 0.47 0.56

ATGC [44] AlexNet 0.59 0.55 0.39 0.33 0.47 0.48 0.41 0.62 0.58 0.66 0.67 0.62 0.76 0.72 0.8

ConvLSTM [51]
VGG16 0.58 0.55 0.39 0.32 0.49 0.53 0.49 0.64 0.64 0.64 0.63 0.57 0.32 0.24 0.48

ResNet50 0.54 0.46 0.26 0.23 0.29 0.59 0.55 0.69 0.68 0.7 0.63 0.58 0.33 0.25 0.49

SingleRNN [26]
GRU 0.83 0.77 0.67 0.7 0.64 0.58 0.54 0.67 0.67 0.68 0.65 0.59 0.34 0.26 0.49

LSTM 0.81 0.75 0.64 0.67 0.61 0.51 0.48 0.61 0.63 0.59 0.78 0.75 0.54 0.44 0.7

MultiRNN [3] GRU 0.83 0.8 0.71 0.69 0.73 0.61 0.5 0.74 0.64 0.86 0.79 0.79 0.58 0.45 0.79

StackedRNN [59] GRU 0.82 0.78 0.67 0.67 0.68 0.6 0.6 0.66 0.73 0.61 0.79 0.79 0.58 0.46 0.79

HierarchicalRNN [14] GRU 0.82 0.77 0.67 0.68 0.66 0.53 0.5 0.63 0.64 0.61 0.8 0.79 0.59 0.47 0.79

SFRNN [46] GRU 0.82 0.79 0.69 0.67 0.7 0.51 0.45 0.63 0.61 0.64 0.84 0.84 0.65 0.54 0.84

C3D [56] RGB 0.77 0.67 0.52 0.63 0.44 0.61 0.51 0.75 0.63 0.91 0.84 0.81 0.65 0.57 0.75

I3D
[7] RGB 0.80 0.73 0.62 0.67 0.58 0.62 0.56 0.73 0.68 0.79 0.81 0.74 0.63 0.66 0.61

Optical flow 0.81 0.83 0.72 0.60 0.9 0.62 0.51 0.75 0.65 0.88 0.84 0.8 0.63 0.55 0.73

TwoStream [52] VGG16 0.64 0.54 0.32 0.33 0.31 0.56 0.52 0.66 0.66 0.66 0.6 0.69 0.43 0.29 0.83

Table 2: Evaluation results for baseline and state-of-the-art models and their variants on PIE and JAAD datasets. JAADbeh is

a subset of the dataset with behavioral annotations (i.e. only pedestrians that intend to cross) and JAADall includes all detected

pedestrians. Dashed lines separate different types of architectures: static, recurrent, 3D convolutional and two-stream.

Stacked with multilevel Fusion RNN (SFRNN) [46]. A

modification of the Stacked RNN, where the features are

processed hierarchically and are gradually fused at each

level with more complex features fed at the bottom layers

and simpler features at the top.

Convolutional 3D (C3D) [56] network takes as input a

stack of RGB frames and generates final prediction by feed-

ing the features to an fc layer.

Inflated 3D (I3D) [7] network takes as input a stack of RGB

frames and generates final prediction using an fc layer.

TwoStream [52] uses two CNN branches where the RGB

images and optical flow are processed in parallel and com-

bined to generate the final prediction. The prediction is

made for each frame in the sequence and averaged.

5. Evaluation

5.1. Training

For models that were previously trained on PIE and

JAAD we used the hyper-parameters specified in the corre-

sponding papers. For the remaining models we performed

hyper-parameter search by varying model architecture (e.g.

backbone, number of hidden units), feature type (optical

flow vs rgb), learning rate and number of epochs and se-

lected the best model to report the results. To offset signifi-

cant dataset bias we applied class weights inversely propor-

tional to the percentage of samples of each class.

5.2. Discussion of the results

Table 2 summarizes the evaluation results for all models

and their variants. We split models into 4 groups: static,

recurrent, 3D convolution and two-stream. For the follow-

ing analysis we selected the top-performing models from

each category: Static (with ResNet-50 backbone), Multi-

RNN and I3D (trained on optical flow features). Due to low

performance of the TwoStream model it was not used in the

analysis.

Performance of different architectures. Even though ac-

tion prediction is a spatio-temporal problem it is still pos-

sible to make predictions based on a single image as illus-

trated by the fact that the simplest Static model outperforms

many temporal models on JAAD dataset and few on PIE.

This could be partially attributed to the fact that for JAAD

only pedestrians with clear intention to cross were selected

whereas PIE is much more diverse and contains many sam-

ples of pedestrians with and without intention to cross. As a

result, samples in PIE are more diverse in terms of appear-

ance, trajectories, poses and surroundings which are more

difficult to capture with Static model. Given that JAAD is

also smaller than PIE, it might have sufficient data for learn-

ing temporal patterns.

Among recurrent models, ConvLSTM is by far the weak-

est model in the group and is also inferior to the Static

model. Other recurrent models incorporate visual informa-

tion with explicit features such as poses, trajectories, and

ego-vehicle speed. All these models show very similar per-

formance across all datasets suggesting that the choice of

the particular architecture (GRU vs LSTM) or how features

are combined (e.g. parallel, stacked or hierarchical) does

not have a significant effect.

3D convolutional networks similar to ConvLSTM rely

only on visual information. C3D and I3D process visual in-

formation more effectively and achieve results comparable

to recurrent models that use additional data. In the case of

I3D, we found that using optical flow instead of RGB im-

ages led to better results.

The TwoStream model generalized poorly to the task of

crossing action prediction despite following best practices
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PIE

JAADbeh

JAADall

crossing not crossing

crossing not crossing

crossing not crossing

all models
correct

all models incorrect all models correct

all models correct

all models correct

all models incorrect
all models

correct

all models
incorrect

all models
correct

8% 18% 2% 2% 24% 46%

45% 17% 2% 22% 13% 1%

11% 6% 2% 5% 19% 57%

Figure 2: Proportions of crossing and non-crossing sam-

ples in PIE and JAAD that are correctly classified by

all/some/none of top models from each category: Static,

MultiRNN and I3D.

[58]. Perhaps, the reason is that it requires larger and more

diverse training data.

Model agreement. Figure 2 shows which crossing and non-

crossing pedestrian samples were correctly classified by all,

some or none of the models (referred to as easy, medium

and difficult samples respectively). We looked at the distri-

bution of the various data properties of samples, however,

no strong correlations were found with model agreement.

For instance, the distributions of various TTEs, occlusions

and bounding box sizes in easy, medium and difficult sets

were very similar.

Likewise, there were no strong correlations between

model agreement and semantic properties of the scene. For

instance, it is reasonable to expect that analyzing pedestrian

behavior at unsignalized intersections or behavior of jay-

walking pedestrians may be more difficult than at signal-

ized intersections where traffic signals and signs define the

behavior of the users. In fact, in JAAD, jaywalking pedes-

trians (away from intersections) were somewhat harder to

classify, whereas in PIE the presence of signal or zebra at

the intersection did not correlate with the difficulty of the

sample.

Other factors, such as how far the pedestrians were lo-

cated with respect to the curb, which way they were facing

and whether they observed the traffic, were also similarly

distributed across easy, medium and difficult sets.

Performance gap between JAADbeh and JAADall. As

mentioned in Section 3, JAADall extends the set of sam-

ples with behavioral annotations (JAADbeh) by adding ex-

tra pedestrians detected on the sidewalks thus increasing the

number of non-crossing samples by more than 15 times.

Having more training data clearly boosts the performance of

all models by 10 − 20% in all metrics on JAADall but also

cr
o

ss
in

g
n

o
t 

cr
o

ss
in

g
Figure 3: Examples of crossing and non-crossing pedestri-

ans from the intersection of the hard sets from JAADbeh and

JAADall misclassified by all models.

has undesirable effects on hard samples in JAADall com-

pared to JAADbeh. For instance, in the set of non-crossing

samples shared by the two datasets, there are 3% misclassi-

fied by all models in JAADbeh and 3.8% in JAADall.

Given that misclassification of the crossing samples is

potentially more dangerous, it is concerning that the propor-

tion of hard crossing samples increased significantly from

3% in JAADbeh to 10% in JAADall. At the same time,

the number of easy crossing samples correctly classified

by all models decreased from 69% in JAADbeh to 40% in

JAADall.

A similar conclusion can be made from analyzing the

intersection of the hard sets of samples in JAADbeh and

JAADall. The overlap comprises about 30% of the union

of the two sets and consists of crossing and non-crossing

samples which remain difficult for all models trained on

the larger JAADall dataset. Models trained on JAADall are

significantly better at classifying non-crossing pedestrians

compared to models trained on JAADbeh (easy set com-

prises 70% of non-crossing pedestrians in JAADall and only

1% in JAADbeh). However, the bulk of the improvement

is from correctly classifying the additional non-crossing

pedestrians in JAADall that are fairly uniform in their prop-

erties (far away from the road and moving alongside the

traffic) which helps to distinguish them. At the same time,

there is still a significant portion of pedestrians near the

road without intention to cross that are incorrectly classified

comprising 40% of the overlapping hard sets from JAADbeh

and JAADall.
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Figure 4: Effects of a) TTE, b) occlusion and c) bound-

ing box height on accuracy of models in PIE, JAADbeh and

JAADall datasets. In c) the distribution of the bounding

boxes in the datasets is shown in blue with the correspond-

ing right axis.

Figure 3 shows examples of hard crossing and non-

crossing samples. Crossing samples that are difficult for

all models typically have low contrast, occlusion and some

are crowded, whereas non-crossing samples predominantly

consist of pedestrians who walk alongside or in front of the

ego-vehicle.

Together these findings suggest that the addition of irrel-

evant pedestrians increases the overall volume of the train-

ing data and boosts the results but does not improve the

performance of the models on the most important samples.

Overall, the bulk of performance improvement on JAADall

is due to a large number of correctly classified non-crossing

pedestrians on the sidewalks at the expense of reduced clas-

sification rates of pedestrians close to the road. Although

we cannot verify whether the same holds true for the PIE

dataset, it might be a factor to consider for future data col-

lection and annotation efforts.

Effect of time-to-event. Even though samples with differ-

ent TTEs are uniformly distributed in both datasets there is

a correlation between TTE and accuracy as shown in Fig-

ure 4a. It is especially evident in the PIE dataset where

the accuracy of all models gradually decreases by up to

20% as the TTE increases from 30 to 60 frames. A sim-

ilar trend is also visible in JAADbeh but is not as promi-

nent or consistent across models. A possible explanation is

that in JAADbeh the ego-vehicle moves slower than in PIE,

as a result, many samples appear reasonably large even at

higher TTEs (see pedestrian bounding box height distribu-

tion in JAADbeh shown in Figure 4c). In JAADall this trend

is absent due to a large number of non-crossing pedestrian

samples on the sidewalks who are easily distinguished from

the pedestrians who interact with the ego-vehicle.

Effect of occlusion. The vast majority of the observations

in all three datasets are unoccluded (82% in PIE, 85% in

JAADbeh and 75% in JAADall). In only 1 − 2% of sam-

ples more than half of the observation frames are fully or

partially occluded. As expected, the accuracy of the mod-

els fluctuates rather unpredictably on the occluded samples

where training and test data are scarce (Figure 4b).

Behavioral research shows that some parts of the pedes-

trians or scene may be more informative than others for pre-

dicting the likelihood of crossing [50, 12]. Likely, computa-

tional models are similarly affected by occlusion (e.g. some

hard crossing samples are occluded in Figure 3), however

deeper investigation is not possible since annotations do not

provide specific locations of occluded elements.

Effect of scale. Figure 4c shows the accuracy of the mod-

els overlaid on top of the distribution of the bounding boxes

heights in the datasets. In PIE, most of the train and test

data is concentrated in [80, 120] px range. Note that there

is a significant drop-off in performance on smaller bound-

ing boxes with height less than 80 px likely due to insuffi-

cient visual information available (especially for 3D convo-

lution models). At the same time, near-perfect performance

is achieved by some models on the large bounding boxes

> 500 px in the PIE dataset and > 400 px in JAADall re-

spectively. These are the pedestrian samples that are close

to the ego-vehicle and the ego-vehicle itself is typically sta-

tionary or moving very slowly creating less noise in the ob-

servation.

In JAADbeh, pedestrians of different scales are more uni-

formly distributed in the train and test data and fluctuation

in performance is likely caused by other factors. In JAADall

the addition of other non-crossing pedestrians visible in the

scene increases the proportion of samples in the range of

[20, 150] px [44] which improves accuracy within that range

for all models compared to JAADbeh. The accuracy in the

range between [150, 200] px is fluctuating similarly in both

datasets.

6. Proposed model

Based on the results of the benchmark summarized in

Table 2 where the top-performing models use RNN and

3D convolutions, we propose a new model for pedestrian

crossing prediction with attention (PCPA). Our model uses

a 3D convolutional branch for encoding visual informa-

tion and individual RNN branches to process in parallel
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Figure 5: Diagram of the proposed model. The inputs

to the model consist of bounding boxes, poses and ego-

vehicle speed and visual features represented by local con-

text around the detected pedestrian with observation length

m = 16. Non-visual features are independently encoded by

RNNs and each is fed into an attention block which acts as a

temporal attention. 3D convolutional features are flattened

and fed through a fully-connected (FC) layer to make their

dimension equal to the size of the RNN outputs. Modality

attention is applied to the outputs of all 4 branches and the

re-weighted outputs are fed into the final FC layer to make

crossing prediction.

explicit features such as pose, location, and ego-vehicle

speed. Even though I3D performed better than C3D on

all datasets, due to its larger size, I3D in combination with

RNN branches showed a tendency to overfit especially on

the JAAD dataset. Therefore for all experiments below, we

use C3D to compute 3D convolutional features.

Given the past successful applications of attention in

many vision tasks, we add attention mechanisms inspired

by [31, 2]. In one instance it is applied to hidden states

of the RNN branches (temporal attention) and again to the

outputs of the branches (modality attention). The diagram

of the model is shown in Figure 5 and the implementation

details follow below.

The model predicts crossing action A ∈ {0, 1}
given observation consisting of the following features:

1) local visual context around the pedestrian i Cobs =
{ct−m

i
, ct−m+1

i
, . . . , ct

i
}, where c is a cropped RGB image

of the scene around the pedestrian, 2) trajectory Lobs =
{lt−m

i
, lt−m+1

i
, . . . , lt

i
}, where l is a 2D bounding box

defined by top-left and bottom-right points, 3) pose of

the pedestrian Pobs = {pt−m

i
, pt−m+1

i
, . . . , pt

i
}, where p

is a 36D vector of 2D coordinates of 18 joints detected

by OpenPose, and 4) speed of the ego-vehicle Sobs =
{st−m

i
, st−m+1

i
, . . . , st

i
}. t is the time 30 − 60 frames

(∼ 0.5− 1s) before the event (crossing or non-crossing).

Each RNN encoder produces a vector c =
q({h1, . . . , hm}) of hidden states hi = f(xi, hi−1),
where f and q are nonlinear functions.

The attention weight vector α is of the same length m

as observation and is computed as the score that takes into

account the last hidden state of the observation with each

of the previous hidden states. In doing so, it functions as

temporal attention that changes the importance of frames in

the observation relative to the last seen frame. The weights

are expressed as follows:

α =
exp(s(hm, h̄i))

T∑

i′=1

exp(s(hm, h̄′

i
))

,

where hm is the last hidden state of the encoder and

s(hm, h̄i) = hT
t Wh̄i is the score function with W being

a trainable weight matrix.

The last hidden state hm is concatenated with the sum of

all attention weighted hidden states ct =
∑

i

αih̄i (a com-

pact representation of the observed context prior to the last

observed frame) and fed into the feedforward network to

produce the attention output vector a:

a = f(cm, hm) = tahn(Wc[cm;hm]).

We then apply the same attention mechanism to the

weighted outputs of the RNN streams and the output of 3D

convolutional branch (flattened and passed through the FC

layer with sigmoid activation to reduce the dimension to the

number of hidden states), i.e. the new vector c is defined as

c = q({C̄, h̄L, h̄P , h̄S}), where h̄ is the attention weighted

last hidden state of the RNN stream. The rest of the compu-

tation is the same. This mechanism functions as modality

attention.

The output of the modality attention block is then passed

to an FC layer for prediction of the crossing action A for the

given observation.

Implementation. We use GRUs with 256 hidden units

for encoding the non-visual features and C3D network with

weights pre-trained on Sports-1M dataset [22] for encod-

ing the visual features (local context as defined in Section

3). L2 regularization of 0.001 is added to the final FC pre-

diction layer and a dropout of 0.5 is added after the atten-

tion block. The number of observation frames m is set to

16. The ego-vehicle speed feature is used only in the PIE

dataset and omitted in JAAD.

Training. We train the model with Adam optimizer [24],

binary crossentropy loss and batch size set to 8. We train for

60 epochs on PIE dataset with learning rate set to 5 · 10−5

and for 80 epochs on JAAD dataset with learning rate 5 ·
10−7.

6.1. Results

The results of the final model with temporal and modal-

ity attention are presented in Table 3. Results are most im-

proved on the PIE dataset, where accuracy is increased by

4% and F1 score by 6%. On JAADall our model performs

on par with state-of-the-art across some metrics. Since the

inclusion of attention mechanisms increases the number of
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Model Model Variants
PIE JAADbeh JAADall

Acc AUC F1 Acc AUC F1 Acc AUC F1

MultiRNN GRU 0.83 0.8 0.71 0.61 0.5 0.74 0.79 0.79 0.58

C3D RGB 0.77 0.67 0.52 0.61 0.51 0.75 0.84 0.81 0.65

I3D Optical flow 0.81 0.83 0.72 0.62 0.51 0.75 0.84 0.8 0.63

PCPA

No attention 0.83 0.83 0.73 0.52 0.48 0.63 0.78 0.8 0.58

temp. attention 0.85 0.84 0.75 0.56 0.49 0.68 0.81 0.83 0.62

mod. Attention 0.86 0.86 0.77 0.57 0.48 0.71 0.84 0.79 0.62

Temp. + mod. attention 0.87 0.86 0.77 0.58 0.5 0.71 0.85 0.86 0.68

Table 3: Results for the proposed model PCPA trained with

different types of attention mechanisms. Results for other

models are shown for comparison above the dashed line.

3D Features Acc AUC F1

local box 0.86 0.86 0.77

local context 0.87 0.86 0.77

scene context 0.88 0.85 0.78

Table 4: Results for the final PCPA model trained on the

PIE dataset with different visual features.

parameters it is beneficial to have a larger and more varied

training set. The performance is not as strong on JAADbeh,

which has the smallest amount of training data sampled with

significant overlap.

Figure 6 shows samples from both datasets showcasing

success and failure cases of the model. Some of the cor-

rectly classified samples are from the hard set described in

Section 5.2, e.g. pedestrians facing away from the vehi-

cle and samples with significant occlusion. The pedestrian

having a conversation (bottom row) is misclassified by the

model suggesting the necessity of modeling the interactions

between agents in the scene.

Effect of attention mechanisms. Table 3 also shows

the results for PCPA model trained with different types of

attention. It can be seen that even when applied individually

temporal and modality attention mechanisms improve the

results across all metrics and additional boost is achieved

when both mechanisms are combined. It should be noted

that attention mechanisms increase the complexity of the

model and number of parameters and thus require larger and

more varied data for training to avoid overfitting.

Effect of visual context. Besides attention, we also ex-

perimented with various visual features defined in Section

3. The effect of training on different types of visual context

was negligible in the JAAD dataset, likely due to the size

and low variability of the data. The results of the experi-

ments on PIE are shown in Table 4. Both contexts around

the pedestrian and the entire scene provide superior results

compared to using the appearance information only within

the bounding box.

7. Conclusions

We proposed a novel evaluation protocol for benchmark-

ing pedestrian action prediction algorithms. Using the new

criteria we implemented and evaluated a number of base-

line and state-of-the-art models. Using two publicly avail-
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Figure 6: Examples of crossing and non-crossing pedestri-

ans from JAAD and PIE. Samples correctly classified by the

proposed model are shown with green outline and misclas-

sified cases are highlighted with red.

able datasets, PIE and JAAD, we analyzed the performance

of the static, recurrent, 3D convolutional and two-stream

architectures with respect to various properties of the data

such as time-to-event, occlusion, and scale. We found that

it is difficult to attribute the difficulty of the samples to spe-

cific data properties. In addition, we did not observe the

consistency in the model agreement.

Based on the benchmark results, we proposed a novel

hybrid model combining recurrent and 3D convolutional

approaches with temporal and modality attention mecha-

nisms. The proposed model achieves state-of-the-art on

both PIE and JAAD datasets.
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