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Abstract

Weakly Supervised Object Localization (WSOL) meth-

ods generate both classification and localization results by

learning from only image category labels. Previous meth-

ods usually utilize class activation map (CAM) to obtain

target object regions. However, most of them only focus on

improving foreground object parts in CAM, but ignore the

important effect of its background contents. In this paper,

we propose a confidence segmentation (ConfSeg) module

that builds confidence score for each pixel in CAM with-

out introducing additional hyper-parameters. The gener-

ated sample-specific confidence mask is able to indicate the

extent of determination for each pixel in CAM, and further

supervises additional CAM extended from internal feature

maps. Besides, we introduce Co-supervised Augmentation

(CoAug) module to capture feature-level representation for

foreground and background parts in CAM separately. Then

a metric loss is applied at batch sample level to augment

distinguish ability of our model, which helps a lot to local-

ize more related object parts. Our final model, CSoA, com-

bines the two modules and achieves superior performance,

e.g. 37.69% and 48.81% Top-1 localization error on CUB-

200 and ILSVRC datasets, respectively, which outperforms

all previous methods and becomes the new state-of-the-art.

1. Introduction

Weakly-Supervised Object Localization (WSOL) aims

to learn object locations in a given image from only image-

level labels. It avoids expensive bounding box annotations

and thus dramatically reduces the cost of human labors in

∗This work was done while they were at University of Rochester.
†Both authors contributed equally to this work.

image annotations. To tackle the problem, utilizing class

activation map (CAM) is often adopted as a good choice

recently. CAM is a type of 3D feature map with each chan-

nel corresponding to one category label. The pixels in it

can indicate the discriminative regions of objects belong-

ing to each category. Therefore, by extracting the features

via the label index, the model can roughly locate the posi-

tion of target objects. The main reason for the wide use of

CAM is that the generation of CAM needs only little mod-

ifications based on classical CNN backbones but the per-

formance is robust. For instance, Zhou et al. [26] propose

to replace fully connected layer with global average pool-

ing layer (GAP) to generate CAM for a given image, which

achieves a competitive localization result.

Though using CAM for localization is efficient and

straightforward, it can only detect some parts of the ob-

jects instead of covering the full object extents. The main

reason is that traditional classification networks tend to dis-

tinguish images by focusing on the most representative re-

gions, which can minimize the classification loss but re-

sults in losing other related but non-essential parts. To ad-

dress the problem, lots of approaches [10, 24, 25, 4, 22, 23]

have been proposed, and they can be categorized roughly

into the following two classes. The first class of meth-

ods [10, 4] manipulates input data samples or internal fea-

ture maps directly to enforce the network to search related

object parts. It improves localization but sacrifices classifi-

cation performance because the target objects may become

unrecognized after their parts are erased. The second type

of methods [24, 22, 23] generate multiple CAMs and com-

bine them for the final localization. Their CAMs are use-

ful as they contain information from different convolutional

layers or different levels of semantics.

However, all the above methods only focus on expanding

foreground object regions and ignore background parts in

CAM. In our observation, determining background not only
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Figure 1. Binary localization maps from two CAMs and the final localization result. SL is from CAM at the top layer while SF from

another one. The combination of two maps and the final bounding box demonstrates the advantage of our network to produce more

complete and complementary results. Red and green bounding boxes denotes predicted localization result can ground-truth label.

helps remove unrelated pixels but also plays as additional

supervisions when multiple CAMs are being used. Indeed,

to the best of our knowledge, [25] is the only work that con-

siders segmenting background contents of CAM based on

internal feature maps. However, it has to set fixed segmen-

tation thresholds for all samples in a one-size-fit-all man-

ner, which is not optimal. Besides, the background segmen-

tation in [25] is only used to regulate a single CAM dur-

ing training and discarded in the inference time. Therefore,

such approach is not an ideal way to generate and utilize

background regions to improve localization performance.

Though the CAM can be self-refined by internal feature

maps as discussed above, no additional regularization for

generated CAM is provided in previous methods. Super-

vised by only category-level labels, CAM becomes unsta-

ble for localization. For instance, [21] indicates for samples

belonging to the same category, the model will focus on

different object parts due to the various characteristics the

target object displays. However, such phenomenon is not

expected in our localization task since we prefer the com-

plete prediction of objects for each sample.

To overcome the above limitations, we propose a new

framework named CSoA for the WSOL task with two novel

modules. We first introduce the confidence segmentation

(ConfSeg) module, an internal module that connects and re-

fines two different CAMs inside our network. One of the

two CAMs is generated from the top convolutional layer

and thus captures high-level semantic information. An-

other CAM is extended from internal feature maps of the

backbone network and contains fine-level object boundary

clues. These two CAMs have totally different characteris-

tics and receptive fields but both contribute to the final local-

ization and classification performance. With these two dif-

ferent CAMs, the ConfSeg module segments a dynamic per-

sample confidence mask from the first CAM and applies it

as additional supervisions to regulate the second one, which

finally encourages them to be incorporated together with

both high-level and fine-level information. Fig. 1 shows the

final binary localization maps extracted from the two CAMs

and their combination. Especially, the generated maps con-

centrate on foreground object parts with similar center area

but become complementary for surrounded regions. With-

out introducing additional hyper-parameters, the ConfSeg

module greatly improves the final localization performance

compared with the current state-of-the-art results.

Apart from the ConfSeg module, we propose a metric-

based approach denoted as Co-supervised Augmentation

(CoAug) regularizer to further regulate CAM and augment

its integrity. For CoAug, two expectations for CAM are

considered. The first one is that an ideal CAM should sep-

arate the image into two regions with non-intersected con-

tents, specifically foreground objects and background. The

second one is aligned according to foreground regions fo-

cused by CAM of different samples. For images belonging

to the same category, their foreground parts are supposed to

share similar identifications. While for different categories,

the samples should be distinct with each other. With the

above two assumptions, we construct the CoAug module

that enforces batch-level samples to inter-supervise collabo-

ratively by embedded vectors that are also applied in [7, 8].

By this way, the CoAug module enhances the recognition

ability of CAM by not only gathering the information of

each category from various samples, but also discriminate

them. The details of the module will be discussed in Sec-

tion 3 and its advantage will be demonstrated in Section 4.

In summary, our main contributions are three folds: (1)

We propose a novel confidence segmentation module to

generate a confidence mask that gets two different CAMs

interacted and refined without additional hyper parame-

ters. (2) We propose Co-supervised Augmentation module

to refine CAM by regulating feature-level representations,

which guides our model to localize more related object re-

gions. (3) With only image-level supervision for training,

our method greatly outperforms other state-of-the-art meth-

ods on two standard benchmarks, ILSVRC validation set

and CUB-200-2011 test set, for weakly supervised local-

ization performance.

2. Related Work

Weakly Supervised Object Localization usually relies on

CAM to localize objects. Zhou et al. [26] propose Global

Average Pooling (GAP) layer for deep neural networks to

generate CAM for localization. Based on it, Zhang et
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al. [24] prove that the process for obtaining CAM can be

end-to-end and further propose ACoL network that adopts

cut-and-search strategy on the feature maps. Moreover,

Zhang et al. [25] propose SPG network that extends pixel-

level mask from internal feature maps and complement

CAM in the final. Recently, Choe et al. [4] design a general

dropout algorithm for internal feature maps to refine CAM

from bottom level. Besides, the clustering of ground-truth

labels is proposed in [22] to obtain multiple semantic level

CAM.

Similar to the WSOL problem, the methods for Object

Co-Segmentation task attempts to segment target objects

based on image-level labels. However, as introduced by

Rother et al [13], co-segmentation task aims to segment

common objects from a set of images belonging to a spe-

cific category instead of multiple ones. The main idea for

tackling the problem is to leverage intra-image discovery

and inter-sample correlation [7, 2, 11, 12, 19]. For exam-

ple, Li et al. [12] embed image features by Siamese Encoder

and then apply feature matching to extract common objects

from image pairs. Hsu et al. [7] introduce co-attention loss

based on intra- and inter-sample comparison to guide the

object discovery process. Besides, they utilize unsupervised

methods to pick object proposals in order to refine generated

segmentation maps. Although our CoAug module shares

similar idea with co-segmentation methods, it aims to lo-

calize objects from images under the multi-category con-

dition and further alleviates discriminative regions biased

problem [7].

There are some other methods related to model inter-

pretability but can also be applied to localization tasks.

GradCAM [15] combines gradient values and internal fea-

ture maps to produce CAM without adding additional pool-

ing layers. Chattopadhyay et al. [1] further improve [15] by

using a weighted combination of the positive partial deriva-

tives of the feature maps in the last convolutional layer.

These methods are usually engaged to propose new CAM

that can interpret internal functions of various neural net-

works. However, in this work, we focus on improving lo-

calization performance of CAM, which is a totally differ-

ent purpose. Although we utilize original CAM [26] in our

method, the proposed modules can also be applied to dif-

ferent kinds of CAM as long as they share similar charac-

teristics with the original one, i.e. highlighting target object

parts as localization clues.

3. Method

In this section, we first review the seminal Class Activa-

tion Map (CAM) [26], then introduce our Confidence Seg-

mentation (ConfSeg) module along with the Co-supervised

Augmentation (CoAug) regularizer. An overview of our

proposed method for the training phase is shown in Fig. 2.

We first describe the weakly supervised object localiza-

tion problem and the basic network proposed in [24] for

generating CAM. Given a set of N images, {In}
N
n=1 with

C categories, each image contains objects for only one cat-

egory. Our goal is to classify each image and locate the cor-

responding objects with bounding boxes. In [24], a Fully

Convolutional Network (FCN) is proposed with a back-

bone F consisting of L layers, and a classifier WL. For

an input image, the backbone network produces the fea-

ture map Ml ∈ RKl×Hl×Wl after layer l with Kl chan-

nels. We denote ML ∈ RKL×HL×WL as the last feature

map from F . To generate CAM, the classifier WL usually

contains several convolutional layers to convert the number

of channels from KL to C, i.e. the number of categories.

Following that, a Global Average Pooling (GAP) layer is

applied at each channel of ML to generate the class logit

yL = {ycL}
C
c=1, which is then feed into the classification

loss calculation. This process can be written as:

SL = WL(ML) , ycL =

∑
i,j(S

c
L)i,j

HL ×WL
, ∀ c ∈ {1, . . . , C} ,

(1)

where (Sc
L)i,j refers to a certain pixel on the c-th channel of

the feature map SL. After training, the feature map Sc
L cor-

responding to the predicted category is extracted. Then the

largest connected region with positive values is segmented

and finally processed to the bounding box prediction.

3.1. Confidence Segmentation Module

Though the basic framework is straightforward and ef-

ficient, it can only capture the most discriminative part of

target objects. To address the problem, we propose the

confidence segmentation (ConfSeg) module to generate a

sample-specific confidence mask for CAM. The mask con-

tains confidence score for each pixel and can segment re-

gions with high confidence scores, including both fore-

ground and background parts from CAM. With a high preci-

sion, the mask can serve as additional supervisions to guide

other object detectors, encouraging them to explore more

object-related regions.

To create another object detector that gets supervised,

we extend one more CAM from internal feature maps in-

side the backbone network F , which can be denoted as SF .

Concretely, we first create a new classifier WF that has the

same structure with WL and also goes through GAP layer to

generate logits yF. Different from [22] that builds several

CAMs in multiple semantic levels, WL and WF share same

categories for classification and have the same spatial size.

As illustrated in [18], CNNs trained for object recognition

have low-level vision features in early convolutional lay-

ers while more semantic features in top layers. Therefore,

though WF can be appended after any convolutional layer,

it needs to localize objects precisely as well as achieving
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Figure 2. The overall structure of our CSoA network. For each input image, two different CAMs, SL and SF , are generated from

different classifiers and processed to logits for classification. Besides, the c-th slice of SL is then extracted and transformed to confidence

segmentation mask by the ConfSeg module. The mask serves as additional supervisions by controlling the distance between S
c

L and S
c

F .

For samples in the same batch, they are first combined with foreground and background parts of S
c

L separately. Finally all weighted

samples are represented as 1-D vectors and play a metric-based learning process.

reasonable recognition performance. We will discuss the

exact position for it in Section 4.

With two different CAMs generated, the ConfSeg mod-

ule connects them together. We first extract one slice from

the feature map SL, denoted as Sc
L according to the ground

truth index, or the predicted one in the inference time. Then

we calculate the mean value of Sc
L, which is denoted as µ1.

If the value of a pixel in Sc
L is close to µ1, that means the

corresponding position is ambiguous to be determined. In

contrast, if a pixel has much larger or smaller value com-

pared with µ1, it is very likely to be located on the target

objects or background parts. Therefore, we can generate a

confidence mask with each element calculated as the dis-

tance between each pixel and µ1. The process can be de-

noted as:

Maski,j =
∣∣(Sc

L)i,j − µ1

∣∣ , where µ1 =

∑
i,j(S

c
L)i,j

HL ×WL
.

(2)

After determining the confidence score for each pixel on

Sc
L, the regions with high confidence are segmented from

the mask by Eq. 3. Instead of setting a fixed threshold for

segmenting all image samples, we use a sample-dynamic

threshold, denoted as µ2, for each image by taking the mean

value of the mask. Therefore, the threshold for each sample

is adaptively computed based on the corresponding confi-

dence mask. If the score for one pixel is higher than µ2,

we conclude that the pixel is very likely to have the correct

value and vice versa. The equation can be formulated as:

M̂aski,j =

{
1 Maski,j > µ2

0 otherwise
, (3)

where µ2 =

∑
i,j Maski,j

HL ×WL
. (4)

With Sc
L and the generated binary confidence mask

M̂ask, we create a new supervision for Sc
F by controlling

the distance between each pixel in Sc
L and Sc

F . For the

positions that their corresponding values are 1 in M̂ask,

we encourage Sc
F to be similar with Sc

L, which means Sc
F

should follow the decisions made by Sc
L if they are confi-

dent enough. For other positions, we allow Sc
F to be dif-

ferent from Sc
L so that it can refine the object boundaries

when the decisions are made with low confidence. With

such an adversarial strategy, we do not need to worry if ad-

ditional explorations by Sc
F for object related regions may

reach background parts because the confidence mask sets

solid restriction for the background part in CAM. We for-

mulate the process as the following loss:

Linner =
∑

i,j

|(Sc
F )i,j − (Sc

L)i,j | ⊙ M̂aski,j . (5)

Finally, the total loss function with the ConfSeg module is:

LC = Lcls + αLinner , (6)
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where α is a factor ranging within [0, 1] that increases along

the training epoch to avoid unstable prediction from SL at

the initial training process. Lcls denotes the cross entropy

loss for both yL and yF with same ground-truth categories.

The relation to Zhang et al. [25]. By further formu-

lating our proposed ConfSeg module, we show that it is a

generalized version of Zhang et al. [25]. The latter sets pre-

fixed thresholds of foreground and background for all im-

age samples before the training process. Our method can

also represent their thresholds through simple transforma-

tion, which can be denoted as:

ξ1 = µ1 + µ2 ,

ξ2 = µ1 − µ2 ,
(7)

where ξ1 and ξ2 are thresholds for foreground and back-

ground, respectively. Therefore, the ConfSeg module can

achieve the same function as [25] but is versatile with

sample-level adaption for the segmentation of CAM with-

out introducing additional parameters.

3.2. Co­supervised Augmentation Module

For the fully supervised localization task, the ground-

truth box annotations are always utilized to guide the gen-

eration of object proposals. However, in the setting of

WSOL task, only image-level supervisions are available,

which leads to severe bias of recognition models that tends

to localize the most discriminative region rather than en-

tire objects. To address the problem, we further introduce a

plug-in metric-based module to regulate CAM with feature-

level supervisions, since the comparison between different

samples is capable of preserving more visual features.

Our approach is inspired by metric learning methods [8]

that embed images into representation vectors and leverage

distance as metrics to estimate their correlations. Therefore,

in CoAug module, we consider two kinds of relationships:

1) foreground and background part that should both rep-

resent distinct features; 2) foreground objects of different

samples in the batch level.

Before discussing the details about metric-based pro-

cesses, we first segment out predicted foreground and back-

ground regions of input images according to generated

CAM. For the reason that CAM is able to highlight fore-

ground object region of target category, we multiply the

slide of CAM according to ground-truth index with raw in-

put images to represent corresponding object and then em-

bed the object into feature vector Fm. Similarly, we can

also obtain background vector Bm denoted as:

Fm = WE(S
cm
l ⊙ Im) ,

Bm = WE((1− Scm
l )⊙ Im) ,

(8)

where WE indicates the embedding network, ⊙ represents

pixel-wise multiplication, Scm
l refers to the localization

map from the cm channel of Sl, and cm is the c-th category

of the m-th image. Please note that Im can be either the in-

termediate feature map generated by a CNN or directly the

raw m-th image.

Then the Relation.1 can be measured as the distance be-

tween Fm and Bm as :

Dcam
m = ‖Fm −Bm‖2 . (9)

in which we expect Dcam
m to be large. Additionally, we uti-

lize the background part of the confidence mask introduced

in the previous section to augment the ability of CAM to

avoid mis-classifying foreground part as Eq. 10:

Dback
m = ‖Bm −MaskmB ‖2 ,

where MaskmB = WE((1− SCm

l )⊙ M̂ask ⊙ Im) .
(10)

Specifically, we obtain MaskmB by first multiplying M̂ask
with Im to extract confident parts in the image, and then

incorporating it with 1 − Scm
l to represent the background

content.

Apart from comparing foreground and background re-

gions of a single image, we also consider the relationship

among multiple samples, denoted as Relation.2 above. We

calculate the distance between foreground vectors of differ-

ent input samples as:

Dm,n = ‖Fm − Fn‖2 . (11)

When Fm and Fn belong to the same category, they are

supposed to share similar representations and Dm,n should

be small. In this case we change Dm,n to Dsame
m,n . For other

cases, where the categories of Fm and Fn are different, we

convert Dm,n to Ddiff
m,n and expect it to be large.

With the definition of the four distances for regulation,

we define the following loss function to have images super-

vising each other:

Lsame
D =

∑

{m,n|cls(m) 6=cls(n)}

γ · (Dback
m +Dback

n )

δ ·Ddiff
m,n + 1

2 (D
cam
m +Dcam

n )
,

Ldiff
D =

∑

{m,n|cls(m)=cls(n)}

γ · (Dback
m +Dback

n ) +Dsame
m,n

1
2 (D

cam
m +Dcam

n )
,

LD = Lsame
D + Ldiff

D ,

(12)

where γ and δ in the equation are two factors that controls

the global scale of LD, while cls(·) refers to category.

For the training time, we combine LC and LD together.

During the inference time, we remove both ConfSeg and

CoAug module and only keep the two generated CAMs.

We first segment the target object parts following the in-

struction in [26]. In details, we extract max values Smax
F
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and Smax
L from SF and SL respectively. Then we create

binary localization maps by Eq. 13 denoted as:

ŜF/L =

{
1 Si,j

F/L > θ · Smax
F/L ,

0 otherwise ,
(13)

where θ is a pre-defined parameter for segmentation. Fi-

nally, we combine the two localization maps with the pixel

value as 1 if either pixel value on ŜF or ŜL is 1. Other-

wise, the pixel value is set to 0 since neither of two CAMs

consider it belonging to foreground object parts.

4. Experiment

4.1. Implementation Details

Following the configuration of previous methods [25,

22], our proposed modules are integrated with the

commonly used CNNs including VGGnet [16] and

GoogLeNet [17]. We construct the same structure for both

classifiers WF and WL. The structure consists of two con-

volutional layers with kernel size 3 × 3, stride 1, pad 1
with 1024 units, and a convolutional layer of size 1 × 1,

stride 1 with 1000 units (200 units for CUB-200-2011).

For GoogLeNet, we remove the covolutional layers after

Mixed 6e to increase the resolution of the final output. The

two classifiers are appended after the layer Mixed 6b and

Mixed 6e respectively. For VGGNet, we remove the final

linear layer and append two classifiers after the fourth and

final convolutional block. We will discuss the performance

of our model in Section 4 with different positions applied

for appending WF .

For the CoAug module, we apply Alexnet [9] as the

feature extractor for both estimated foreground and back-

ground regions of input samples. The module utilizes SL

as the only CAM for segmentation. The batch size is

set to 48 with at most 12 categories for each batch. All

the networks are fine-tuned with the pre-trained weights of

ILSVRC2016 [5]. We train the model with an initial learn-

ing rate of 0.001 and decay of 0.95 each epoch. The op-

timizer is SGD with 0.9 momentum and 5 × 10−4 weight

decay. For classification result, we follow the instructions

in [26], which further averages the scores from the softmax

layer with 10 crops.

4.2. Experiment Setup

Dataset and Evaluation To draw a fair comparison,

we test our model on ILSVRC2016 [5] validation set and

CUB-200-2011 [20] test set, which are two most widely-

used benchmarks for WSOL. The ILSVRC dataset has a

training set containing more than 1.2 million images of

1,000 categories and a validation set of 50,000 images. In

CUB-200-2011, there are totally 11,788 bird images of 200

classes, among which 5,994 images are for training and

Table 1. Effect of our individual modules on CUB-200-2011

Methods
Loc. Error Class. Error

Top-1 Top-5 Top-1 Top-5

VGGnet-DANet [22] 47.48 38.04 24.12 7.73

VGGnet-base 53.42 45.85 24.73 8.96

VGGnet-ConfSeg 39.02 27.17 23.14 6.94

VGGnet-CoAug 40.78 29.36 23.06 6.77

VGGnet-CSoA 37.69 26.49 21.41 5.94

Table 2. Effect of positions to insert additional classifier on CUB-

200-2011. The number after our model indicates the order of con-

volutional block in VGGnet

Methods
Loc. Error Class. Error

Top-1 Top-5 Top-1 Top-5

CSoA-3-5 52.76 41.78 26.98 8.58

CSoA-4-5 37.69 26.49 21.41 5.94

CSoA-5-5 55.61 44.72 28.60 9.23

Table 3. Localization error with different thresholds for segmenta-

tion

Thresholds Top-1 Error Top-5 Error

0.2 39.13 27.58

0.3 37.69 26.49

0.4 38.82 27.11

5,794 for testing. We leverage the localization metric sug-

gested by [14]. Specifically, the bounding box of an im-

age is correctly predicted if: 1) the model predicts the right

image label; 2) more than 50% Intersection-over-Union

(IoU) is observed in the overlapped area between predicted

bounding boxes and ground truth boxes. For more details,

please refer to [14]. We also note that a very recent work

by Choe et al. [3] proposes a new set of evaluation metrics

providing new perspectives to the evaluation. However, we

still use the traditional evaluation metrics, i.e. localization

and classification errors, in this work for their feasibility to

benchmark with a wide spectrum of existing methods.

4.3. Ablation Studies

We make some ablation studies on CUB-200-2011 using

VGGnet to evaluate the effects of our individual modules.

Besides, we discuss the functions of some hyper-parameters

related to the network structure and the inference process.

Effect of ConfSeg and CoAug: For the fair comparison,

we first construct a baseline network according to [24]

which consists of VGGnet as the backbone and a classifier

with the same structure as WF . As shown in Table 1, the

performance of the network with only ConfSeg module re-

duces the top-1/top-5 loc. err by over 14%/18% compared

with our baseline model, and 8%/10% compared with [22]

respectively. It demonstrates that two interacted CAMs can
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Table 4. Performance comparison on the CUB-200-2011 test set.

The method with star apply a novel non-local approach on the

backbone to boost the performance.

Methods
Loc. Error Class. Error

Top-1 Top-5 Top-1 Top-5

GoogLeNet-GAP [26] 58.94 49.34 35.0 13.2

GoogLeNet-SPG [25] 53.36 42.28 - -

GoogLeNet-ADL [4] 46.96 - 25.4 -

GoogLeNet-DANet [22] 50.55 39.94 28.8 9.4

GoogLeNet-Ours 46.06 34.36 23.9 6.4

VGGnet-GAP [26] 55.85 47.84 23.4 7.5

VGGnet-ACoL [24] 54.08 43.49 28.1 -

VGGnet-SPG [25] 51.07 42.15 24.5 7.9

VGGnet-ADL [4] 47.64 - 34.7 -

VGGnet-DANet [22] 47.78 38.04 24.6 7.7

NL-CCAM* [23] 47.60 34.97 26.6 -

VGGnet-Ours 37.69 26.49 21.4 5.9

significantly decrease the localization error since the value

of each pixel on the final localization map is double con-

firmed by both classifiers.

For our model with CoAug module only, the localiza-

tion result is also much better than the baseline and [22].

Please note that the CoAug module do not have any modi-

fication inside the model structure. It only regulates gener-

ated CAMs from batch-level, serving as a clustering method

among samples with various categories. Therefore, the

CoAug module is general enough to be applied to any kind

of network as long as the network can generate CAMs-like

feature maps.

Finally, our model that combines the ConfSeg and

CoAug module can outperform all previous ones on both lo-

calization and classification tasks. Especially, the cls. err is

reduced by about 2% on both top-1 and top-5 results, which

is valuable since lots of methods [26, 4, 22] cannot keep the

classification performance when trying to improve the lo-

calization ability. We mainly attribute it to the double clas-

sifiers that refine the bottom layers of our network. Besides,

the CoAug module also regulates the network, enforcing it

to recognize different parts of the target objects rather than

only the most discriminative region.

Position for WF : For applying ConfSeg module, we ex-

tend one more classifier WF from the backbone network

to obtain additional CAM for interaction. Table 2 shows

the results for inserting WF after different convolutional

blocks. We can obtain the best result when inserting WF

after the fourth block in VGGNet, i.e. the block right before

the final block. In such a configuration, WF can do the clas-

sification task with features in high semantic level and also

produce CAM with different receptive fields. It encourages

the effective interaction between two CAMs, which makes

their decisions more complementary on ambiguous regions.

Thresholds for Binary Mask: During the inference, we

Table 5. Performance comparison on the ILSVRC test set

Methods
Loc. Error Class. Error

Top-1 Top-5 Top-1 Top-5

VGGnet-BP [16] 61.12 51.46 - -

VGGnet-GAP [26] 57.20 45.14 33.4 12.2

VGGnet-Grad [15] 56.51 46.41 30.4 10.9

VGGnet-ACoL [24] 54.17 40.57 32.5 12.0

VGGnet-ADL [4] 55.08 - 39.3 -

VGGnet-CCAM [23] 51.78 40.64 33.4 -

NL-CCAM* [23] 49.83 39.31 27.7 -

GoogLeNet-BP [16] 61.31 50.55 - -

GoogLeNet-GAP [26] 56.40 43.00 35.0 13.2

GoogLeNet-ACoL [24] 53.28 42.58 29.0 11.8

GoogLeNet-SPG [25] 51.40 40.00 - -

GoogLeNet-ADL [4] 51.29 - 27.2 -

GoogLeNet-DANet [22] 52.47 41.72 27.5 8.6

GoogLeNet-CSoA 48.81 37.46 28.1 9.8

need one threshold θ to extract foreground regions from

two CAMs and then combine them together. To inspect

their influence for the localization result, we test different

thresholds for our model in Table 3. We can see our model

achieves the best result with θ = 0.2. However, θ is still

a pre-defined parameter for extracting the final target ob-

ject. How to remove it or how to make it learnable may be

a future work for us to explore.

4.4. Comparison with the state­of­the­arts

We compare our CSoA with state-of-the-art methods on

CUB-200-2011 test set and ILSVRC validation set.

As shown in Table 4, on CUB-200-2011 test set, with

VGGnet as the backbone network, our method outperforms

all others by more than 10% on both Top-1 and Top-5 loc.

err. It demonstrates the powerful localization ability of our

proposed modules with the simple backbone structure. Be-

sides, the classification results of our model are much better

than other WSOL methods, which indicates that our pro-

posed method has little negative impact on the recognition

performance. This property is important for some real ap-

plications, e.g. surveillance cameras that prefer to classify

objects correctly and also estimate their positions.

We also evaluate our model with GoogLeNet. Though

not as good as VGGnet, our model also becomes the state-

of-the-art compared with others. We infer that the smaller

gap between GoogLeNet-CSoA and others is because of

combination of various operations together for input fea-

tures in each layer, e.g. pooling, 3×3 and 1×1 convolution

kernels. It reduces the difference in receptive field between

layers, which makes it challenging for multiple classifiers to

explore in various levels. The results with Resnet [6] back-

bone that is only reported in [4] with 37.71% Top-1 loc.

err has the similar problem since the residual link connects
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Figure 3. Compare localization examples between SPG and CSoA. All visual results from SPG are generated by strictly following author-

released code.

Image Branch1 Branch2 Comb. BBox Image Branch1 Branch2 Comb. BBox

(a) ILSVRC

Image Branch1 Branch2 Comb. BBox Image Branch1 Branch2 Comb. BBox

(b) CUB-200-2011

Figure 4. Output visual examples of CSoA. For each dataset, the first three rows show successful results while the last row provides two

examples that fail to connect detected parts together.

Table 6. GT-Known localization results for ILSVRC validation set

Methods Top-1 loc. err

AlexNet-GAP [26] 45.01

AlexNet-HaS [10] 41.26

GoogLeNet-GAP [26] 41.34

GoogLeNet-HaS [10] 39.43

VGGnet-ACoL [24] 37.04

SPG [25] 35.31

ADL [4] 34.59

GoogLeNet-CSoA 33.80

different blocks to reduce the receptive differences.

Table 5 shows both classification and localization results

on ILSVRC validation set with GoogLeNet. For the lo-

calization, our result outperforms all others with the same

backbone by over 2% on Top-1 loc. err. Besides, our model

also achieve better performance compared to the methods

with VGGnet. Especially, the NL-CCAM proposed in [23]

uses a novel non-local backbone to improve the localization

performance, which can be also integrated with our method.

To further demonstrate the localization ability of our

model and make a full comparison with other methods, we

use ground-truth classification labels for ILSVRC valida-

tion set and only evaluate localization performance serving

as an “upper-bound” [25]. Denoted as GT-Known loc. err

in Table 6, our result is still better than others, which indi-

cates an advantage in terms of the pure localization.

Figure 3 visualizes the comparison result between our

localization results with SPG [25] since it also considers

both foreground and background parts. In most situations,

our method can generate more precise bounding boxes than

SPG, which demonstrates that the sample-specific segmen-

tation method can achieve better results than using the same

pre-fixed threstholds for all images. We will provide more

convincing visual examples in the appendix.

In addition, in Fig. 4, we visualize the localization maps

from CAM at both classifiers, the combined CAM and the

final bounding box result of our proposed method on both

ILSVRC and CUB-200-2011. The areas inside dashed lines

for each CAM indicate the segmented regions for the final

result. We can observe that in most cases, the combination

of two CAMs has a more stable localization result than any

single CAM. It collects the final pixels that are determined

by both CAMs and removes ambiguous pixels.

5. Conclusion

We propose CSoA, a novel method for WSOL task. The

method consists of two modules that refine the traditional

convolutional networks to improve their localization per-

formance without the sacrifice of recognition ability. Dur-

ing learning, the ConfSeg module encourage two classifiers

inside the network to generate more precise and complete

CAM. In addition, the CoAug module regulate CAM from

different samples based on metric approaches in batch level.

Our final model outperforms all previous approaches on two

public benchmarks. It becomes the new state-of-the-art and

provides fresh insights for tackling the WSOL problem.

Acknowledgments

This research was funded in part by the Center of Ex-

cellence in Data Science, an Empire State Development-

Designated Center of Excellence.

3605



References

[1] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader,

and Vineeth Balasubramanian. Grad-cam++: Generalized

gradient-based visual explanations for deep convolutional

networks. 10 2017.

[2] Hong Chen, Yifei Huang, and Hideki Nakayama. Semantic

aware attention based deep object co-segmentation. In Asian

Conference on Computer Vision, pages 435–450. Springer,

2018.

[3] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk

Chun, Zeynep Akata, and Hyunjung Shim. Evaluating

weakly supervised object localization methods right. In

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020.

[4] Junsuk Choe and Hyunjung Shim. Attention-based dropout

layer for weakly supervised object localization. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

[5] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248–255, June 2009.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. CoRR,

abs/1512.03385, 2015.

[7] Kuang-Jui Hsu, Yen-Yu Lin, and Yung-Yu Chuang. Co-

attention cnns for unsupervised object co-segmentation. In

IJCAI, pages 748–756, 2018.

[8] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese neural networks for one-shot image recognition. In

ICML deep learning workshop, volume 2. Lille, 2015.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 25, pages 1097–1105. Curran Associates,

Inc., 2012.

[10] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:

Forcing a network to be meticulous for weakly-supervised

object and action localization. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017.

[11] Lina Li, Zhi Liu, and Jian Zhang. Unsupervised image co-

segmentation via guidance of simple images. Neurocomput-

ing, 275:1650–1661, 2018.

[12] Weihao Li, Omid Hosseini Jafari, and Carsten Rother. Deep

object co-segmentation. In Asian Conference on Computer

Vision, pages 638–653. Springer, 2018.

[13] Carsten Rother, Tom Minka, Andrew Blake, and Vladimir

Kolmogorov. Cosegmentation of image pairs by histogram

matching-incorporating a global constraint into mrfs. In

2006 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR’06), volume 1, pages

993–1000. IEEE, 2006.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

Dec 2015.

[15] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek

Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-

tra. Grad-cam: Visual explanations from deep networks via

gradient-based localization. In The IEEE International Con-

ference on Computer Vision (ICCV), Oct 2017.

[16] K Simonyan, A Vedaldi, and A Zisserman. Deep inside con-

volutional networks: visualising image classification models

and saliency maps. pages 1–8. ICLR, 2014.

[17] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. CoRR, abs/1409.4842, 2014.

[18] Peng Tang, Xinggang Wang, Angtian Wang, Yongluan Yan,

Wenyu Liu, Junzhou Huang, and Alan Yuille. Weakly super-

vised region proposal network and object detection. In The

European Conference on Computer Vision (ECCV), Septem-

ber 2018.

[19] Zhiqiang Tao, Hongfu Liu, Huazhu Fu, and Yun Fu. Im-

age cosegmentation via saliency-guided constrained cluster-

ing with cosine similarity. In Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

[20] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011.

[21] Xiang Wang, Shaodi You, Xi Li, and Huimin Ma. Weakly-

supervised semantic segmentation by iteratively mining

common object features. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1354–1362, 2018.

[22] Haolan Xue, Chang Liu, Fang Wan, Jianbin Jiao, Xiangyang

Ji, and Qixiang Ye. Danet: Divergent activation for weakly

supervised object localization. In The IEEE International

Conference on Computer Vision (ICCV), October 2019.

[23] Seunghan Yang, Yoonhyung Kim, Youngeun Kim, and

Changick Kim. Combinational Class Activation Maps for

Weakly Supervised Object Localization. arXiv e-prints, page

arXiv:1910.05518, Oct. 2019.

[24] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and

Thomas S. Huang. Adversarial complementary learning for

weakly supervised object localization. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018.

[25] Xiaolin Zhang, Yunchao Wei, Guoliang Kang, Yi Yang,

and Thomas Huang. Self-produced guidance for weakly-

supervised object localization. In The European Conference

on Computer Vision (ECCV), September 2018.

[26] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrim-

inative localization. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

3606


