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Abstract

Human object interaction (HOI) detection is an impor-

tant task in image understanding and reasoning. It is in

a form of HOI triplet 〈human, verb, object〉, requiring

bounding boxes for human and object, and action between

them for the task completion. In other words, this task re-

quires strong supervision for training that is however hard

to procure. A natural solution to overcome this is to pursue

weakly-supervised learning, where we only know the pres-

ence of certain HOI triplets in images but their exact lo-

cation is unknown. Most weakly-supervised learning meth-

ods do not make provision for leveraging data with strong

supervision, when they are available; and indeed a naive

combination of this two paradigms in HOI detection fails to

make contributions to each other. In this regard we propose

a mixed-supervised HOI detection pipeline: thanks to a spe-

cific design of momentum-independent learning that learns

seamlessly across these two types of supervision. Moreover,

in light of the annotation insufficiency in mixed supervision,

we introduce an HOI element swapping technique to synthe-

size diverse and hard negatives across images and improve

the robustness of the model. Our method is evaluated on

the challenging HICO-DET dataset. It performs close to

or even better than many fully-supervised methods by using

a mixed amount of strong and weak annotations; further-

more, it outperforms representative state of the art weakly-

and fully-supervised methods under the same supervision.

1. Introduction

The task of human-object interaction (HOI) detection is

defined as a detection of a triplet 〈human, verb, object〉,
identifying not only the bounding boxes of human and ob-

ject but also their interaction [14, 49, 19, 36, 4, 57, 8, 10].

It is derived from visual relationship detection (VRD) of

triplet 〈object1, predicate, object2〉 [31, 18, 16, 17, 37, 1,

55, 42, 56], but present different challenges: the predicates

in VRD can be verbs (e.g. “push”), spatial (e.g. “on top

of”), prepositions (e.g. “with”), comparative (e.g. “ taller

than”), while in HOI they are mainly verbs. On the other

Figure 1: Human-object interaction detection with different lev-

els of supervision. Top: annotation cost increases from image-

level (x) labels (left) in weakly-supervised learning to region-

level (r) bounding boxes (middle) and their correspondences

(right) in fully-supervised learning. Bottom: our proposed mixed-

supervised HOI detection pipeline (middle) enables joint learning

of weakly- and fully-supervised HOI detection (left and right).

hand, human-centric interactions are more diverse and com-

plicated, one person can easily interact with multiple ob-

jects in the meantime, e.g. “person wearing a jacket and rid-

ing a bicycle”. This makes HOI a much more fine-grained

task than VRD.

Intensive attention has been drawn to HOI alongside the

introduction of new benchmarks, i.e. V-COCO [18], HICO-

DET [5], featured with diverse and numerous human-object

interactions. For instance, in HICO-DET, there exist 600

HOI classes and 80 common object classes in total. De-

spite that recent advances have reported significant im-

provement [19, 36, 4, 57], the annotation cost is exponen-

tially increased in these datasets. Given N humans and

M objects in an image, the maximum number of HOI is

N × M , where we have to scan each of them and provide

instance-level annotations (e.g. bounding boxes) for the real

ones (see Fig. 1: top-right). To alleviate this manual labor,

we could provide only image-level HOI labels: a set of im-
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ages are known to contain triplets of a certain HOI class, but

the location and correspondence of objects are unknown in

images (see Fig. 1: top-left); note the location of objects are

assumed known sometimes (top-middle). Both cases can be

conceptualized as weakly-supervised HOI detection.

There are few works that learn interactions from weak

supervision. One representative is for VRD [54], which de-

signs a weakly-supervised predicate prediction module in-

spired from the two-branch parallel structure in [3]. This

can be easily adapted to HOI detection, as shown in

Fig. 1: bottom-left. Nevertheless, in real application, in-

stead of having only one type of labels, we can have a mix-

ture of them: fully-labeled (instance-level), weakly-labeled

(image-level), and even unlabeled.

A generalized HOI detection framework for mixed su-

pervision thus becomes necessary. An intuitive solu-

tion would be merging the weakly-supervised and fully-

supervised HOI detection as a multi-task job, which is nev-

ertheless not straightforward: the different quality of anno-

tations between weakly-labeled and fully-labeled data, as

well as their imbalanced ratios should be considered. Fig. 4

illustrates an example: in the HICO-DET dataset, when

adding different amounts of fully-labeled data (in red), re-

sults are either only slightly better than or even worse than

learning with only weakly-labeled data (in grey). This sim-

ple combination, at best, does not exploit the full potential

that could be derived from fully-supervised data, at worst,

decreases the results obtained with weak supervision. This

is the first challenge that needs to be solved in the mixed-

supervised setting. Furthermore, HOI detection is a fine-

grained task requiring the classification of similar interac-

tions such as ”eating”, ”drinking”, ”blowing”. To be able

to accurately distinguish them, diverse and hard negatives

from similar interactions are essential for the network train-

ing. Nevertheless, due to the reason that many samples are

weakly-labeled, interactions within them can not be clearly

discriminated on the region-level; plus, some interaction

classes are not even sufficiently collected. This poses an-

other challenge for HOI detection.

Contributions. We for the first time propose a generalized

framework for mixed-supervised HOI detection (MX-HOI):

• We integrate two state-of-the-art pipelines [19] and

[54] for fully- and weakly-supervised HOI detection

into a mixed-supervised pipeline.

• To tackle the multi-task optimization in the mixed

pipeline, we introduce a momentum-independent

learning strategy to tackle the adversarial effect be-

tween full and weak supervision, by separating their

gradient history in momentum learning.

• To tackle the annotation insufficiency in the mixed

supervision, we introduce an HOI element swapping

strategy to specifically harvest hard negatives across

images for the weakly-labeled data.

By conducting our generalized HOI detection framework

on the most challenging HICO-DET dataset, we show our

method enables HOI detection with a mixed amount of

supervision, e.g. with 30% fully labeled data and 70%

weakly-labeled data, we are able to retain 93.3% accuracy

of the setting of 100% fully-labeled data. Furthermore, 1)

our model improves both the state of the art weakly- and

fully-supervised HOI detection methods [54, 19] under the

same supervision; 2) unlabeled data can also be leveraged

into our pipeline following a ”pseudo label” solution [23],

where we can use the network trained on labeled data to

infer labels of HOI pairs on unlabeled data.

2. Related Work

Visual relationships were originally used to help improve

object localization [16, 22, 38], action recognition and pose

estimation [9, 37] or semantic segmentation [15]. Relation-

ships that are often modelled between objects include verbs,

actions, spatial and prepositions [38, 52, 18, 16, 17, 37, 1,

20, 7]. [31] was the first work to formulate the detection

of visual relationships as a separate task. They propose to

leverage language priors from semantic word embedding to

finetune the likelihood of a predicted relationship. Subse-

quently, many researchers improved and generalized this

model [53, 27, 7]. Triplet metric learning is also adopted

to optimize the visual feature connections among seman-

tically related objects in [24, 42]. Attention [20, 55] and

spatial locations [56] are some other additive cues to visual

relationship detection.

Human-Object Interaction is a concept related to visual

relationship. The interactions between humans and ob-

jects are mainly focused on verbs, and are much more fine

grained (e.g. holding, hitting, throwing, touching) than rela-

tionships between generic objects. The study of HOI dates

back to [8, 10, 17, 35, 49], when most works were tested

on small datasets. This issue was addressed by Chao et

al. [5] where they introduced a large dataset (HICO-DET)

covering 80 common object categories and 600 HOI cat-

egories in total. Many recent works report their perfor-

mance on this dataset and significant improvement has been

achieved [36, 4, 19, 29, 12, 25, 46, 47, 26, 45]. For instance,

Qi et al. [36] proposed a graph parsing neural network

for HOI and was later extended by [21, 48, 57]; Gupta et

al. [19] showed that a simple factorised model with appear-

ance and layout encoding constructed from pretrained ob-

ject detectors outperforms more sophisticated approaches;

additional cues such as language features [12], parts based

features [25, 46] are also exploited. Our MX-HOI is built

on the recent advance of [19].

Weakly-supervised learning in visual recognition is

mostly focused on object detection [3, 40, 44, 39, 43,

51]. One seminal work in weakly-supervised object detec-

tion (WSOD) is [3], where they designed a popular two-
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Figure 2: Illustration of our mixed-supervised HOI detection pipeline (MX-HOI). Human and object bounding boxes are obtained via an

object detector. Human-object pairs are randomly created within an image and also across another image via the proposed HOI element

swapping. HOI detection is realized via a two-branch structure in parallel for interaction classification and selection. Each branch consists

of FC layer (wc/ws) for score prediction and softmax layer (σc/σs) for score normalization over rows or columns of the score matrix,

respectively. The score matrices in the two branches are of size N (human-object pairs) and C (HOI classes) and are multiplied to produce

the final matrix P . Training data with full and weak supervision (fs, ws) are optimized with region-level and image-level ground truth,

respectively. We introduce a momentum-independent strategy to enable the mixed-supervised learning with two momentum zfs and zws.

Human-object pairs from two images are optimized in one batch.

branch parallel structure followed by [44, 43, 51]. Weakly-

supervised relationship detection is more complex than

WSOD as we need to detect individual objects for specific

relations. Pretrained object detectors are normally assumed

in this scenario [34, 54, 33]. Peyre et al. [34] proposed a

weakly-supervised discriminative clustering model to learn

relations with only image-level labels; later on, they devel-

oped another model for transfer by analogy to obtain vi-

sual phrases of never seen relations [33]. Zhang et al. [54]

adopted the WSOD module in [3] to do weakly-supervised

relationship detection and achieved very good results. In

this work, we also adopt the WSOD module following [54]

and adapt it to be part of our MX-HOI pipeline.

Mixed-supervised learning normally refers to learning

from a mixture of strongly labeled data and weakly-labeled

data. For instance, Cinbis et al. [6] considered mixed su-

pervision in object detection where some images are an-

notated with bounding boxes while some are only with

image-level labels. Papandreou et al. [32] studied the prob-

lem for semantic image segmentation from a combination

of few strongly labeled (pixel-level annotations) and many

weakly labeled (image-level labels or bounding boxes) im-

ages. Mixed-supervised learning can also be realized as

leveraging an existing dataset of fully-labeled training im-

ages of non-target classes during the weakly-supervised

learning of a new object category, which is connected to

transfer learning, see e.g. [11, 41, 39, 50].

3. Mixed-supervised HOI detection

3.1. Preliminary

We build our MX-HOI framework on two state of the

art HOI works with full supervision [19] and weak super-

vision [54], respectively. [19] introduces a no-frills model

for HOI detection where they use appearance features from

pretrained object detectors, spatial features through box lay-

out, and encode human pose keypoints, as shown in Fig. 2:

feature extraction. This is a no-frills detection without rely-

ing on attention or graph-based message passing [55, 36]. It

uses a factorized multi-layer perceptrons (MLPs) and intro-

duces several new training techniques to improve the MLPs:

eliminating a train-inference mismatch, rejecting easy nega-

tives using indicator terms, and training with large negative

to positive ratios.

[54] adopts the weakly-supervised object detection

pipeline [3] for weakly-supervised predicate prediction

(WSPP): it is accomplished via the element-wise multipli-

cation of the predicate selection and classification branch

(see Fig. 2). The predicate score is softmax normalized over

all candidate human-object box pairs with respect to a pred-

icate class for the selection branch, and over all possible

predicate classes with respect to one human-object pair for

the classification branch, respectively. The predicate score

in [54] is obtained from a position-role sensitive score maps

with a pairwise ROI pooling. To integrate it into the no-
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frills model above, we use the conventional ROI pooling.

Predicate scores are predicted from the FC layers of the two

branches, which is similar to the original structure in [3].

3.2. Overview

We introduce a mixed-supervised HOI detection frame-

work (MX-HOI) as shown in Fig. 2: the input for MX-HOI

is region proposals output from a pretrained object detec-

tor. We follow the same procedure as in [19] to extract both

appearance and layout features for the human and object

bounding boxes in a pair. Given human-object pairs, their

region features are fed into the adapted two-branch predi-

cate prediction structure from [54] (Sec. 3.1). The output of

the two branches (matrices) are multiplied element-wise to

produce one N × C matrix P over N human-object pairs

(in a batch) and C interaction classes. Each element pij
indicates the probability of the ith human-object pair hav-

ing jth interaction type. For fully-labeled data, the predi-

cate prediction is optimized on the region-level on matrix

P , where a corresponding ground truth matrix is associated

with each element being 1 or 0 indicating the true or false

for the human-object interaction. For weakly-labeled data,

the predicate optimization is on the image-level: P is ac-

cumulated over rows (
∑

i pij) to produce a C-dimensional

vector where each element signifies the probability of the

image containing certain HOI class. Similarly, an image-

level ground truth vector with elements 1 or 0 is associated.

This is a multi-task optimization defined jointly with full

and weak supervision. The learning is not straightforward:

the optimization in the two learning manners is different as

one focuses on the image-level and the other on the region-

level (x and r in Fig. 1); the error surface toggles between

the gradients from weak supervision and full supervision

across different batches in the network. We therefore pro-

pose a momentum-independent learning strategy (Sec. 3.3).

Besides, for the weakly-labeled data in mixed-supervised

learning, we introduce an HOI element swapping strategy

(Sec. 3.4) to further augment the hard negatives. Loss func-

tion is given in the end (Sec. 3.5).

3.3. Momentum­independent Learning

In the context of mixed-supervised learning, network

weights are updated by either weak or full supervision,

depending on the samples within the mini-batch. Most

recent gradient descent based optimizers use momentum-

based weights update. Let wt and ∇f(wt) be respectively

the weight and the gradient at iteration t, and α be the step

size, the momentum-based update rule is given by:

wt = wt−1 − zt; zt = βzt−1 + α∇f(wt−1) (1)

where β is the momentum parameter (usually β ≥ 0.9) and

zt is the momentum, which is dependent on all the previous

gradient values.

Using momentum-based gradient descent can however

be a problem in the mixed-supervised learning. In the fully-

supervised case, the ground truth is directly given on the

instance level such that the gradient of the loss function

will accordingly backpropagate to the specific regions of

the human and object in a pair. In the weakly supervised

case, the ground truth is instead only given on the image-

level, and predictions on all possible human-object pairs

are aggregated together to the image-level for loss com-

putation; at the backpropagation time, the gradient is dis-

tributed among all the human-object pairs. As a result, the

gradients for full and weak supervision are computed on

different error surfaces and are not compatible. Using one

momentum to record both will make the network weight

optimization toggles between the two sources of gradients

across mini-batches. This indeed leads to an adversarial ef-

fect of the mixed-supervised learning (see the ablation study

in Sec. 4.2).

To mitigate this, we propose to bootstrap the mixed-

supervised learning with two independent momentum zws
t

and z
fs
t to record the gradient history of weak and full su-

pervision separately. zws
t will be used and updated only

with weakly-labeled samples in the mini-batch, while z
fs
t

will be instead used for the fully-labeled samples. wt how-

ever is remained to be shared in the network such that the

weakly- and fully-supervised pipeline are jointly optimized:

wt = wt−1 − zws
t ; zws

t = βzws
t−1

+ α∇f(wt−1)

wt = wt−1 − z
fs
t ; z

fs
t = βz

fs
t−1

+ α∇f(wt−1)
(2)

3.4. HOI element swapping

HOI detection is a fine-grained task. To accurately clas-

sify similar interactions, diverse and hard negatives are

needed. In the fully-supervised case, where region-level

ground truth are available, this can be achieved via choos-

ing the false positive class of large confidence score or false

positive region of large intersection-over-union (IoU) with

ground truth. While in the weakly-supervised case, where

only image-level ground truths are available, conventional

manners of finding negatives no longer apply. We instead

introduce an HOI element swapping way to collect diverse

and hard negatives across images.

Suppose that two images im1 and im2 contain one hu-

man h and one object o inside each, respectively. The stan-

dard way to create the candidate human-object pairs is to

group (h1, o1) and (h2, o2) within each image (see Fig. 3).

To further augment negatives, a simple way is to lower the

threshold from the RPN to produce more proposals; but

this is inefficient as many proposals with low confidence

scores are not good detection of humans or objects, and

we do not have ground truth bounding boxes to distinguish

them in the weakly-supervised setting. Hence, we propose

to keep a fair detection of humans and objects within each
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(h1,o1) (h1,o2) (h2,o1) (h2,o2)

im1
im2
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Figure 3: Illustration of HOI element swapping. Top: Ob-

ject classes from the two images are different. Bottom:

same object class in the two images. Swapped pairs (hi,

oj) are negatives due to wrong object class (top) or wrong

spatial layout (bottom).

image and augment the human-object pairs across images

by swapping their HOI elements: given (h1, o1) from im1

and (h2, o2) from im2, we mix the human proposal from

the im1 with the object proposal from im2 and vice versa:

(h1, o2) and (h2, o1); this gives us two more mixed human-

object pairs. One image may contain more than one human

or object. Considering there are H1 humans and O1 ob-

jects in im1, H2 humans and O2 objects in im2, selecting

all humans and objects from the two images will produce

(H1 +H2) × (O1 + O2) pairs in total for the two images.

which is far too much. In practice, we remove those easy

negatives with low confidence scores such that the number

of human-object pairs is kept the same to that of the original

number in two images, i.e. H1 ×O1 +H2 ×O2.

By doing this, we can obtain more diverse combinations

of HOI pairs, where many swapped HOI pairs coming from

two images might look like positive HOI pairs playing the

role of hard negatives. For instance, in Fig. 3: bottom, the

object class from two images is the same in particular, yet

the swapped human-object pairs (h1, o2) and (h2, o1) are

still negatives due to the wrong spatial layout.

The augmented human-object pairs as shown in Fig. 3

can be hard negatives for both images. To efficiently op-

timize the learning on two images, we propose to aggre-

gate all the human-object pairs from two images to form

one image-level HOI label vector, where the correspond-

ing ground truth is the HOI labels from both images. Apart

from efficiency, another benefit of doing this, compared to

optimizing the image separately, is that the positive human-

object pairs from one image could also serve as negatives

for the other image if they are of different HOI labels or as

positives if they are of the same HOI label.

3.5. Loss function

Loss function is defined within each mini-batch depend-

ing on the supervision S of the input samples, which can be

full supervision (S = FS) or weak supervision (S = WS):

Lmini-batch =

C
∑

j=1

(

1(S = FS)
1

N

N
∑

i=1

BCE(yij , pij)

+ 1(S = WS)BCE(yj , pj)

)

(3)

BCE is the binary cross-entropy; pij is the probability of

jth HOI class for the ith human-object pair, where there

are N pairs and C classes in total; pj is the probability of

the jth HOI class for the given images in the mini-batch.

The former is defined for the fully-labeled data with region-

level ground truth, while the latter is defined for the weakly-

labeled data with image-level ground truth only. In practice,

we feed the features of human-object pairs from two im-

ages in each mini-batch. Referring to Sec. 3.2, the ground

truth for fully-labeled data is given in a form of a matrix,

where each element yij indicates whether the ith human-

object pair with jth HOI class is true or false. yij = 1 if the

human and object boxes in the ith pair have an IoU greater

than 0.5 with a ground truth box-pair of the jth HOI class.

The ground truth for the weakly-labeled data is given in a

form of C-dimensional vector where its element yj = 1 if

the jth HOI class occurs in any of the two images.

4. Experiments

4.1. Experimental setup

Datasets. Ever since its introduction in [4], the HICO-

DET has become the defacto standard dataset for human

object interaction detection. The dataset has a total of

47,776 images: 38,118 (80%) are used for training and

9,658 (20%) for testing. Each image is provided with the

〈human, object, predicate〉 triplets which include human

and object bounding boxes and HOI classes. It covers 80

object categories and 117 interactions, which result into 600

HOI classes in total. These classes are subdivided into 138

rare ones, whose training samples are less than 10 images;

462 non-rare ones, whose training samples are more than

10 images. On average, 1.67 HOI triplets are annotated in

each image. HICO-DET is a much bigger dataset compared

to the previous V-COCO dataset [18]. In line with recent

works on HOI detection [19, 2], we evaluate our method

on the large-scale HICO-DET to offer comprehensive study

and in-depth analysis on it.
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Data splitting.The training images are randomly split with

different ratios of weakly- and fully-labeled data (denoted

as WS and FS). The default WS/FS ratio is set to 70/30

and 30/70 where 70% (30%) data from the training set

are weakly-labeled and the rest are fully-labeled. We also

evaluate different WS/FS ratios ranging between 100/0 and

0/100 in the experiments. Some more settings regarding un-

labeled data and class-split are also presented in the end.

Implementation details and evaluation protocol. Follow-

ing [4], the human and object detection results are taken

from the top scoring output of a Faster-RCNN pretrained on

MS-COCO [28]. Each human is paired with all the objects

within an image. Faster-RCNN produces numerous candi-

date bounding boxes. For each object, we filter the 30-top

performing boxes depending on the detection scores. For

fully-labeled data, ground truth HOI triplets are provided

with human/object bounding boxes and their interaction.

For weakly-labeled data, only image-level HOI labels are

provided meaning that the real correspondence from a hu-

man detection to an object is not given in the image. For un-

supervised data, no HOI labels are provided. The network

is trained with a mini-batch containing the set of region

proposal pairs in two images, which are randomly selected

from either the fully-labelled set or the weakly-labeled set.

This is done once before the training for efficiency. Two im-

ages from the weakly-labeled set are applied with element

swapping. The learning rate is 1e-3 and 1e-4 for weakly-

and fully-labeled data, respectively. We train 40,000 itera-

tions in total.

Evaluation of HOI detection employs the widely used

mean average precision (mAP) metric where a prediction

is considered correct only if its HOI class label is correct,

and its human and object bounding boxes have an Intersec-

tion over Union (IoU) larger than 0.5 with their respective

ground truth bounding boxes.

4.2. Ablation study

In this section, we first justfiy the importance of our pro-

posed new elements MIL and HES in order to enable a

meaningful mix-supervised HOI detection. Next, we give

the result of MX-HOI generalizing over different WS/FS

ratios from 0/100 to 100/0.

Using weak and strong annotations. To start with our ab-

lation study, we first train our HOI detector with weak an-

notations only; next, we train the detector with both weak

and strong annotations. We illustrate the mAP on the test

set in Fig. 4: by default 70% (30%) data are chosen as

weakly-labeled and the rest are as fully-labeled. The re-

sults show that without using our proposed MIL (w/o MIL),

adding FS data can perform even worse than using WS

data only: for example using 70% of the training data, all

weakly-labeled (WS/FS = 70/0), it (weak only, grey) yields

a mAP of 14.68; when adding fully-labeled data (WS/FS

12

13

14

15

16

17

18

30/70 70/30

m
A

P

Weak/Full supervision ratios (WS/FS)

weak only w/o MIL w/ ST-W w/ ST-F with MIL (ours)

Figure 4: Using weak, strong and mixed annotations for

HOI detection. MIL: momentum-independent learning. ST-

W: sequence training with weakly-labeled data first; ST-F:

sequence training with fully-labeled data first;

Method WS/FS Rare Non-Rare WS/FS Rare Non-Rare

weak only 70/0 11.84 15.72 30/0 8.68 14.11

w/o MIL 70/30 8.88 14.45 30/70 9.17 15.74

w/ ST-F 70/30 10.41 16.69 30/70 10.52 17.00

w/ ST-W 70/30 10.17 16.71 30/70 11.03 16.43

with MIL (ours) 70/30 12.36 17.91 30/70 12.79 18.80

Table 1: Ablation of momentum-independent learning

(MIL) in MX-HOI on HICO-DET dataset. mAP is reported.

= 70/30), the detector performs an even worse mAP 13.17

(red). This illustrates well the adversarial effect between the

weakly- and fully-labeled data. In order to tackle the prob-

lem, we first tried a sequence training (ST) strategy [40, 30],

where all fully-labeled data (resp. all weakly-labeled data)

are presented in the network with some epochs before the

weakly-labeled data (resp. fully-labeled data) are added

in. We denote the strategy as w/ ST-F when the fully-

labeled data are trained first, or w/ ST-W when the weakly-

labeled data are trained first. The results are improved

in this manner but not too much (see Fig 4). Next, we

introduce our momentum-independent learning strategy to

specifically enable the mixed-supervised HOI detection.

Momentum-independent learning (MIL). To tackle the

inconsistency of gradients in the network backpropagation,

we introduce two independent momentum to record the gra-

dient history of full and weak supervision separately as they

are computed on different error surfaces and are function-

ally different in the network. This is conceptualized as

momentum-independent learning and is a key element of

our MX-HOI pipeline. Having a look at Fig. 4, ours (w/

MIL) significantly increases the mAP to e.g. 16.63 for

WS/FS = 70/30 and 17.47 for WS/FS = 30/70. This demon-

strates the importance of our proposed MIL to enable a

meaningful mixed-supervised HOI detection. Some more

detailed comparisons between our MIL and other variants

on the rare and non-rare classes are shown in Table 1.

HOI element swapping (HES). Referring to Sec. 3.4, HOI
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Figure 5: Examples of correct detections (top) and incorrect detections (bottom) with MX-HOI. The classes shown here are

Carry-Sheep, Set-Umbrella, Repair-Parking-meter, Make-Vase and Hold-Hairdryer.

Method WS/FS Full Rare Non-Rare

ours (w/o HES) 100/0 15.14 10.65 16.48

ours 100/0 16.14 12.06 17.50

ours (w/o HES) 70/30 15.82 10.39 17.41

ours 70/30 16.63 12.36 17.91

ours (w/o HES) 30/70 16.73 12.00 18.14

ours 30/70 17.47 12.79 18.80

Table 2: Ablation of HOI element swapping (HES) in MX-

HOI on HICO-DET dataset. mAP is reported.

element swapping is introduced for hard negative harvest on

weakly-labeled data. To verify its effectiveness, we ablate it

in Table 2 by comparing with MX-HOI without HES. We

vary WS/FS from 100/0 to 30/70 and show that on differ-

ent mixed levels, HES always helps the HOI detection. For

instance, when WS/FS = 70/30, MX-HOI yields +0.81%

improvement over MX-HOI (w/o HES).

Additionally, we also apply HES on fully-labeled data,

i.e. WS/FS = 0/100, and obtain the mAP 17.04, 13.35, 18.11

on full, rare and non-rare classes, respectively, which actu-

ally harms the performance on non-rare classes while helps

a bit on rare classes comparing to 17.82, 12.91, and 19.17

in Table 3. Rare classes do not have adequate training sam-

ples, HES can help provide hard negatives; while for non-

rare classes, hard negatives can be directly mined via the

given bounding box ground truth. Overall, we did not find

HES to be effective for fully-labeled data in general.

WS/FS variations. We offer the results of MX-HOI with

different WS/FS: 100/0, 80/20, 70/30, 50/50, 30/70, 20/80

and 0/100 in Table 3. One can see that the performance in-

creases with an increase of FS for both rare and non-rare

classes, as more fully-labeled data are added into the train-

ing. The overall full mAP increases from 16.14 to 17.82.

In Table 3, we also show the result of fixing either WS, or

FS to 30% while varying the other: the performance in-

Supervision (WS/FS) Full Rare Non-Rare

100/0 16.14 12.06 17.50

80/20 16.49 12.28 17.81

70/30 16.63 12.36 17.91

50/50 17.08 12.58 18.17

30/70 17.47 12.79 18.80

20/80 17.60 12.85 18.95

0/100 17.82 12.91 19.17

30/30 16.05 11.64 17.37

30/50 16.84 11.81 18.47

30/70 17.47 12.79 18.80

50/30 16.34 12.04 17.69

70/30 16.63 12.36 17.91

Table 3: Different ratios of WS/FS in MX-HOI on HICO-

DET dataset (top). Fixing WS (resp. FS) ratio and varying

the other (bottom). mAP is reported.

creases along with the training (sub-)set size; but the im-

provement margin is bigger when fixing WS and increasing

FS compared to fixing FS and increasing WS. All these re-

sults make perfect sense for MX-HOI: adding more labeled

data, regardless WS or FS, increases its performance; FS

data in general provides more help than WS data. Exam-

ples of MX-HOI with WS/FS=70/30 are given in Fig. 5.

4.3. Comparison to state of the art

In Table 4, we first compare our method to its lower

and upper bounds denoted respectively by WS-No-Frills

and No-Frills in the following. WS-No-Frills is an adaption

of a representative weakly-supervised relationship detection

module [54] onto the SOTA HOI detection pipeline [19],

which produces mAP 15.14, 10.65, and 16.48 on full, rare

and non-rare classes. Our MX-HOI under the same setting

WS/FS=100/0 improves the result to 16.14, 12.06, 17.50

due to the adoption of HOI element swapping. In fully-

supervised setting (WS/FS = 0/100), our MX-HOI also im-

proves the No-Frills [19] by +0.6%, this is attributed to our
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Methods WS/FS Full Rare Non-rare

WS-No-Frills
100/0

15.14 10.65 16.48

MX-HOI 16.14 12.06 17.50

MX-HOI 70/30 16.63 12.36 17.91

MX-HOI 30/70 17.47 12.79 18.80

MX-HOI

0/100

17.82 12.91 19.17

No-Frills [19] 17.18 12.17 18.68

VSGNet [45] 19.80 16.05 20.91

PMFNet [46] 17.46 15.65 18.00

TIN [26] 17.22 13.51 18.32

GCN-HOI [48] 14.70 13.26 15.13

GPNN [36] 13.11 9.34 14.23

ICAN [13] 12.80 8.53 14.07

Table 4: Comparison with the state-of-the-art methods on

HICO-DET test set (mAP).

two-branch softmax [3] in No-Frills (This softmax is ap-

plied in subbranches before the final classification head).

Despite MX-HOI is introduced for mix-supervised HOI de-

tection, it also improves the SOTA bounds as side benefits.

In the mixed-supervised setting, MX-HOI retains 93.3 %

accuracy of the SOTA No-Frills by using a mixture of 30%

fully-labeled data and 70% weakly-labeled data. To com-

pare with it, we implement a naive multi-stage training

pipeline: it first trains the model on 30% fully-labeled data,

then infers the HOI class probabilities on the human-object

pairs in the rest 70% weakly-labeled images; the HOI triplet

with the largest probability is selected as pseudo ground

truth for each given HOI label on the image-level in weakly-

labeled data. These selected HOI triplets are mixed with

existing fully-labeled data to train the network again. The

network remains a fully-supervised pipeline in this manner.

This process would repeat several rounds until the conver-

gence of the model. We obtain mAP 15.23, 10.63, and

16.61 under the setting of WS/FS = 70/30, which is much

lower than our MX-HOI (16.63, 12.36 and 17.91).

We also compare MX-HOI with other recent arts [48,

13, 36, 45, 46, 26] using 100% supervision. One can see

that with WS/FS = 70/30, MX-HOI performs very close to

the SOTA.

4.4. More settings

Unlabeled data can also be added into the whole frame-

work: we first obtain all possible human-object pairs in an

unlabeled image (US) from the detection result. Given the

trained model of the mix-supervised pipeline, we can esti-

mate the marginal HOI class probability for every human-

object pair in the unlabeled image. If the probability is

larger than a threshold (e.g. 0.5), we take the predicted

HOI class as the pseudo ground truth for this human-object

pair and add it into the network training in the next cycle.

The loss function in (3) now includes another term for the

unlabeled data, which is formulated similarly to the fully-

WS/FS/US Full Rare Non-Rare

MX-HOI 30/40/0 16.08 12.05 17.29

MX-HOI 30/40/30 16.53 11.63 17.79

Table 5: Adding unlabeled data (US) into MX-HOI.

labeled data with pseudo ground truth. The loss weights

among the three terms remain 1. This process iterates for

several cycles until the convergence of the network.

Table 5 shows the result of WS/FS/US being 30/40/30,

where 30%, 40% and 30% percent data are respectively

weakly-, fully- and un-supervised (see Sec. 4.1). Results us-

ing unlabeled data improves performance when compared

to using only WS/FS with 30/40 ratio.

Class-split: Instead of randomly splitting the dataset im-

ages for weak and full supervision, we can randomly split

the whole HOI classes into 50% vs. 50%. Images from the

first 50% classes are trained with full supervision, the sec-

ond 50% with weak supervision. If we train two models

separately on the two sets, we got mAP 13.3 and 11.6 on

the test set of each own part of classes, respectively. If we

train one model over the two sets jointly using MX-HOI, the

mAP increases to 14.8 and 13.10. Despite the two sets are

of different classes, training them together with more data

benefit the performance of both in our pipeline.

5. Conclusion

We present a mixed-supervised HOI detection frame-

work (MX-HOI) which employs two state-of-the-art fully-

and weakly-supervised pipelines. Within this framework,

we first introduce a momentum-independent strategy to

tackle the adversarial effect of full and weak supervision

by separating their gradient history in momentum learning.

Second, we introduce an HOI element swapping strategy

to harvest hard negatives across images for weakly-labeled

data. Unlabeled data can also be leveraged using a “pseudo

label” solution where class labels on HOI pairs are provided

by the trained mixed-supervised pipeline. Extensive exper-

iments on the large-scale HICO-DET dataset show that,

with only 30% fully-labeled data and 70% weakly-labeled

data, our MX-HOI is able to retain 93.3% accuracy of

the setting of 100% fully-labeled data. Future work will

be focused on developing a stronger weakly-supervised

HOI detection pipeline to integrate it into our MX-HOI

framework.
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