
Spike-Thrift: Towards Energy-Efficient Deep Spiking Neural Networks by

Limiting Spiking Activity via Attention-Guided Compression

Souvik Kundu Gourav Datta Massoud Pedram Peter A. Beerel
University of Southern California, Los Angeles, CA 90089

{souvikku, gdatta, pedram, pabeerel}@usc.edu

Abstract

The increasing demand for on-chip edge intelligence

has motivated the exploration of algorithmic techniques

and specialized hardware to reduce the computation en-

ergy of current machine learning models. In particular,

deep spiking neural networks (SNNs) have gained inter-

est because their event-driven hardware implementations

can consume very low energy. However, minimizing aver-

age spiking activity and thus energy consumption while pre-

serving accuracy in deep SNNs remains a significant chal-

lenge and opportunity. This paper proposes a novel two-

step SNN compression technique to reduce their spiking ac-

tivity while maintaining accuracy that involves compress-

ing specifically-designed artificial neural networks (ANNs)

that are then converted into the target SNNs. Our ap-

proach uses an ultra-high ANN compression technique that

is guided by the attention-maps of an uncompressed meta-

model. We then evaluate the firing threshold of each ANN

layer and start with the trained ANN weights to perform a

sparse-learning-based supervised SNN training to minimize

the number of time steps required while retaining compres-

sion. To evaluate the merits of the proposed approach, we

performed experiments with variants of VGG and ResNet,

on both CIFAR-10 and CIFAR-100, and VGG16 on Tiny-

ImageNet. SNN models generated through the proposed

technique yield state-of-the-art compression ratios of up to

33.4× with no significant drop in accuracy compared to

baseline unpruned counterparts. As opposed to the exist-

ing SNN pruning methods we achieve up to 8.3× better

compression with no drop in accuracy. Moreover, com-

pressed SNN models generated by our methods can have

up to 12.2× better compute energy-efficiency compared to

ANNs that have a similar number of parameters.

1. Introduction

Inspired by the operation of biological neurons, spik-

ing neural networks (SNNs) [30] have gained popularity

for their promise in enabling low-power machine learn-

ing [19, 33]. In particular, the underlying SNN hard-

ware uses a binary spike-based sparse temporal processing

that can consume much lower-power than standard energy-

hungry multiply-accumulate strategy of artificial neural

networks (ANNs) [12]. However, compared to ANNs,

SNNs have performed poorly in complex computer vi-

sion tasks mainly due to lack of efficient gradient-descent-

based training because the SNN neurons operate using non-

differentiable, discontinuous binary spikes. Recently, a

plethora of research have tried to mitigate this issue through

various forms of spike-driven supervised [32, 27, 24, 2],

conversion-based indirect supervised [10, 37, 11], and un-

supervised learning [41, 35]. In particular, training a

specifically-designed ANN which is then converted to an

SNN [37] has yielded state of the art results. However, these

conversion-based SNNs require ∼10× more time steps dur-

ing inference compared to the models generated via spike-

based SNN training [26]. Here, a time step is the unit of

time required to process a single input spike through all lay-

ers of the network. This increase in time steps represents an

increase in the latency of the model and also correlates with

an increase in spiking activity and thus energy consumption.

With the advent of efficient deep SNN training strate-

gies, model parameters and computation energy have also

increased rapidly. Model compression including pruning

[13, 47, 9] and quantization [34, 7] has mitigated this is-

sue in ANNs. Unfortunately, their application to SNNs

has remained a challenge. For example, it is observed that

the spike coding of SNNs makes their accuracy very sen-

sitive to model compression [8]. Moreover, for approaches

based on ANN-to-SNN conversion, the ANN models are

recommended to not have batch-normalization (BN) layers

[37]. This distinction is important because BN plays a key

role in training loss convergence [3] and its absence makes

achieving significant compression without a large perfor-

mance drop more difficult. Among the handful of works on

SNN compression through pruning [38, 35], most are lim-

ited to shallow networks on small datasets like MNIST. A

recent effort [8] has combined spatio-temporal backpropa-

gation (STBP) and alternating direction method of multi-

pliers (ADMM) to prune SNNs during spike-based train-

ing. However, SNN training procedures are memory in-

tensive and have long training times [36]. Moreover, to

achieve high performance with ADMM, hand-tuning of the

3953

Figure 1. Histogram of the gradients for CONV layer 7 of VGG16

with target density of 0.4 at an early stage of training (after 10

epochs) to classify CIFAR-10.

per-layer target parameter density is required, which itself

is a tedious iterative procedure that often requires expert in-

sight into the model [28]. Recently, sparse-learning (SL)

[9, 21] has emerged as a promising compression solution

for ANNs as it does not require per-layer target parame-

ter density and can achieve high compression in a single

training iteration with better accuracy than many other ap-

proaches [13, 47, 16]. However, this non-iterative strategy

suffers from non-convergence in BN-less deep ANN com-

pression that can be attributed to the explosion of gradients

illustrated in Fig. 1.

In this paper, we propose a non-iterative attention-guided

compression (AGC) technique for deep SNNs. In particu-

lar, our novel sparse-learning strategy uses attention-maps

of an unpruned pre-trained meta model (Fig. 2) to mitigate

non-convergence of the BN-less ANN and guide the com-

pression. This approach is different from the idea of distilla-

tion [45, 17], because the meta-model in our approach can

be of lower complexity than the model to be compressed

and thus we do not use the KL-divergence loss between

models. In our approach we first compress an ANN model

specifically-designed for SNN conversion, then apply the

ANN-to-SNN conversion technique [37]. To reduce the

number of time steps required for inference, we extend the

hybrid SNN training strategy by supporting SL-based SNN

training. The proposed method only requires a global target

parameter density, as opposed to ADMM where we need to

provide this for each layer of the model as hyperparameter.

In summary, we provide the following contributions:

• We propose the first attention-guided non-iterative

compression (AGC) technique for deep ANN models

specifically targeted for efficient SNN conversion. The

proposed meta model driven technique can yield up

to 33.4× compression ratio on the constrained ANN

models with no significant accuracy drop, which can

lead to dramatic improvements in energy efficiency.

• We extend the hybrid SNN training framework [36]

by introducing a compression-knowledge driven su-

pervised SNN sparse-learning strategy to yield com-

pressed models after SNN training. The proposed hy-

brid SL strategy can significantly reduce the average

spiking activity. This along with ultra-high compres-

sion of synaptic weights helps increase the inference

compute energy efficiency by up to 3.56× and 38.7×
compared to the uncompressed SNN and ANN counter

parts, respectively.

• We demonstrate the benefits of AGC based SNN train-

ing through extensive experiments with both VGG [39]

and ResNet [15] variants of deep SNN models on

CIFAR-10 and CIFAR-100 [20], and with VGG16 on

Tiny-ImageNet [14]. We benchmark the models’ per-

formances with both the standard metric of average

spike count per layer and a novel metric that captures

compute efficiency.1

The remainder of this paper is structured as follows. In Sec-

tion 2 we present necessary background work. Section 3 de-

scribes proposed SNN compression technique. We present

our detailed experimental evaluation in Section 4 and finally

conclude in Section 5.

2. Background

2.1. SNN Fundamentals

The main distinction between ANN and SNN function-

ality lies is their notion of time. In ANNs, inference is

performed based on a single feed-forward pass through the

network. An SNN, on the contrary, consists of a network

of neurons that communicate through a sequence of binary

spikes over a certain number of time steps T that is of-

ten referred to as the inference latency of the SNN. Every

synaptic neuron of an SNN layer has spiking dynamics that

are characterized with the Integrate-Fire (IF) [29] or Leaky-

Integrate-Fire (LIF) [25] model. The iterative version of the

LIF neuron dynamics can be modeled through the following

differential equation,

ut+1
i = (1−

dt

τ
)ut

i +
dt

τ
I (1)

where ut+1
i represents the membrane potential of ith neuron

at time step t + 1, τ is a time constant, and I is the input

from a pre-synaptic neuron. However, for evaluation of the

model in a discrete time [42], the iterative model of Eq. 1

for a linear layer can be modified as

ut+1
i = λut

i +
∑

j

wijO
t
j − vthO

t
i (2)

Ot
i =

{

1, if ut
i > vth

0, otherwise
(3)

where the decay factor (1 − dt
τ
) of Eq. 1 is replaced by

the term λ, where λ is set to 1 for IF and less than 1 for

LIF. Here, Ot
i and Ot

j represents the output spikes of cur-

rent neuron i and its pre-synaptic neuron j, respectively.

wij represents the weight between the two and vth is the

firing threshold of current layer. Inference is performed by

simply comparing the total number of spikes generated by

each output neuron over T time steps. Training SNNs, on

the other hand, is challenging because exact gradients for

binary spike trains are undefined, forcing the use of approx-

imate gradients, and the training complexity scales with the

number of time steps T , which can be large.

1We use VGG16 to show compute efficiency.

3954

Figure 2. Two major training stages of the proposed scheme: (a) ANN training using attention-guided compression (AGC), (b) Sparse-

learning based SNN training using surrogate gradient-based training.

2.2. ANN­to­SNN Conversion

The ANN-to-SNN conversion based training algorithm

is applicable for only IF neuron models. It was originally

introduced in [10] and recently extended in [37] to improve

accuracy on deep models. In this method, a constrained

ANN model (no bias, max-pool, or BN layer) with ReLU

activation is first trained. The ANN weights are copied to an

SNN model and the analog input training data of the ANN

is converted into rate-coded input spikes through a Poisson

event generation process over T time steps (detailed in Sec-

tion 4.1.1). The firing threshold vth of each layer is set to

the maximum value of the
∑

wijO
t
j (the 2nd term in Eq.

3) evaluated over the T time steps computed using a subset

of the training images. This threshold tuning operation en-

sures that the IF neuron activity precisely mimics the ReLU

function of the corresponding ANN. Even though this con-

version technique largely mitigates the training complex-

ity of deep SNNs and achieves state-of-the-art inference,

the resulting SNNs generally have larger inference latency

(T ≈ 2500) and this decreases their energy efficiency. For

our SNN models we adopt a time and memory efficient hy-

brid training strategy [36] where we use the SNN training

for only few epochs using a linear surrogate-gradient [2]

based SL, as will be detailed in Section 3.

2.3. Model Compression in SNNs

To improve the energy-efficiency of the SNN models,

[38] developed a pruning methodology that used the sparse

firing characteristics of IF neurons in different layers to ad-

just the corresponding number of synaptic weight updates

during SNN training. Other works relied on strategies like

dynamic pruning by introducing multi-strength SNN (M-

SNN) models [6] or considering the correlation between pre

and post-neuron spike activity [35]. However, the authors

of most of these works have evaluated their approaches on

shallow architectures for small datasets like MNIST and

DVS. Recently, [8] used ADMM to compress the models

while performing STBP based SNN training. However, as

mentioned earlier, ADMM requires added hyperparameters

of per-layer target parameter density which demand itera-

tive training [28] or complex procedures like reinforcement

learning to be added to the training loop, making the al-

ready tedious SNN training more difficult. Moreover, these

method fail to provide conventional ANN equivalent accu-

racy for the compressed models. Note that these SNN com-

pression strategies are applied during SNN training which

is memory intensive because of the need to perform back

propagation through time. Recently few works have also fo-

cused on model quantization [40, 29], another well-known

strategy to yield energy-efficient deep models. Although

our proposed approach focuses on pruning, it can easily be

extended to support pruning on quantized models, as these

are largely orthogonal techniques.

To solve the above mentioned issues, we propose to

prune the constrained ANN models (designed for SNN con-

version) using attention-guided compression. This strategy,

detailed in Section 3.1, requires only a global target param-

eter density and performs sparse weight updates (sparse-

learning) to avoid requiring iterative training. The specific

sparse-learning we adopt [9] is computationally more effi-

cient than other similar strategies [1] and uses a more com-

prehensive approach of regrowing the weights based on the

magnitude of their momentum and outperforms similar ap-

proaches [1, 31]. Our hypothesis is that the proposed ap-

proach can target ANNs designed for SNN conversion and

accelerate the current tedious training techniques for SNN

compression to yield superior performance.

3. Proposed Compression of SNNs

This section describes our two-step hybrid sparse-

learning strategy for SNNs. First, Section 3.1 details our

ANN training method using attention-guided compression

(AGC) that targets conversion-friendly ANNs. Section 3.2

then presents our sparse-learning based supervised SNN

training to finally generate the compressed SNN model. The

approach is a form of sparse-learning because during the

entire procedure we update only a fraction of the weights to

be non-zero and always satisfy the cardinality constraints of

non-zero weights for the compressed network.

3955

3.1. ANN Training with AGC

Let us assume a convolutional layer l activation tensor

Al ∈ R
Hl

i×W l
i×Cl

i with Cl
i feature planes/channels and spa-

tial dimension of H l
i×W l

i . An activation-based mapping F
converts this 3D tensor to a flattened spatial attention map,

i.e.,

F : RHl
i×Wi×Ci → R

Hi×Wi (4)

One of the most widely used attention map function is, F p

=
∑Cl

i

c=1 |Ac|
p, where p ≥ 1 is a parameter choice that de-

termines the relative degree of emphasis the most discrim-

inative parts of the feature map should be given. Recently,

several works propose to distill knowledge from a computa-

tion heavy teacher to a less complex student by penalizing

the student according to the difference of their associated

attention maps [45]. This difference is added to the student

model’s loss function and helps train the student model to

closely follow the teacher model’s inference behavior.

Inspired by the above mentioned framework, we intro-

duce a meta-model Ψm to guide the model compression

of a BN-less ANN Ψc. In particular, we add to Ψc’s loss

function an activation-based attention-transfer loss term to

minimize the differences between the meta and compressed

models’ activation maps. In our case, the Ψm is either a

low-complexity unpruned model or the unpruned variant of

the Ψc, in contrast to the computation-heavy teacher models

used in distillation. Moreover, as the purpose of Ψm is to

avoid the gradient explosion during the initial part of train-

ing, we remove the attention-guided (AG) loss component

(1st term in Eq. 5) after a certain number of epochs ǫ. This

allows Ψc to not be upper-bounded by the performance of

Ψm.2 More precisely, our proposed loss function for AGC

is

L =
α

2

∑

j∈I

∥

∥

∥

∥

∥

QΨc

j

‖QΨc

j ‖2
−

QΨm

j

‖QΨm

j ‖2

∥

∥

∥

∥

∥

2

+ LΨc

CE(y, ỹ), (5)

where α is the scale factor for AG loss that is set to zero af-

ter ǫ epochs and the 2nd term is the standard cross-entropy

(CE) loss where ỹ and y are Ψc output and the one-hot la-

bel, respectively. The terms QΨc

j and QΨm

j represent the jth

pair of vectorized versions of attention-maps F of specific

layers of Ψc and Ψm, respectively. We take the difference

of the l2-normalized attention-maps, evaluate l2-norm of the

result, and accumulate over all layer pairs in j ∈ I. In gen-

eral, we choose pairs of layers where the spatial dimensions

of the models Ψm and Ψc are similar. In particular, details

of the pairs for the VGG and ResNet models are presented

in the Supplementary Material. However, pairs of layers

2We note that some distillation approaches also penalize the network
using a weighted KL-divergence between the probabilistic outputs of the
two networks particularly for a more complex teacher model. However, we
empirically verified that adding KL-divergence to the loss worsens perfor-

mance of Ψc. Also, this added term reduces the importance of the L
Ψc
CE

which is critical in sparse-learning.

Figure 3. Plot of test accuracy versus epochs for ResNet12 on

CIFAR-10 for model compressed using AGC with VGG9 chosen

as Ψm.

having different shapes can also be computed by matching

shapes through interpolation [45]. The very fact that the Ψm

can be a light model as opposed to Ψc, reduces the compu-

tation complexity of pre-training compared to distillation.

We should also emphasize that we start the ANN training

with initialized weights and a random prune-mask that satis-

fies the non-zero parameter budget associated with the user-

given target parameter density d. Based on the loss of Eq. 5

we evaluate the layer’s importance, computing the normal-

ized momentum contributed by its non-zero weights dur-

ing a epoch. This evaluation helps us decide which layers

should have more non-zero weights under the given param-

eter budget and update the pruning mask accordingly. More

precisely, we re-grow the weights with the highest momen-

tum magnitude after pruning a fixed percentage of least-

significant weights from each layer based on their magni-

tude, as suggested in [9]. Details of AGC are shown in

Algorithm 1. Fig. 3 shows the successful compression of

ResNet12 to a target density d = 0.1 using the proposed

AGC framework and contrasts that with the significant ac-

curacy drop observed when compressed using SL [9].

3.2. SNN Training via Sparse­learning

After the successful compression of the ANN model, we

compute the threshold of each layer via the threshold gen-

eration algorithm proposed in [37]. We then perform SNN

training for a few epochs (≈ 20) to reduce the inference

time step. The standard supervised SNN training uses a sur-

rogate gradient [2, 43, 46] to make backpropagation-based

optimization feasible given the discontinuous nature of the

neuron spikes. The surrogate gradient is typically a pseudo-

derivative in the form of a linear or exponential function of

the membrane potential. However, the existing SNN train-

ing scheme must be adjusted in the context of our proposed

compression framework. In particular, in our SNN training

the neuron membrane dynamics are modeled as

ut+1
i = ut

i +
∑

j

mij ∗ wijO
t
j − vthO

t
i (6)

Ot
i =

{

1, if zti > 0,

0, otherwise
(7)

where zti = (
ut
i

vth
− 1) denotes the normalized membrane

potential and mij ∈ {0, 1} denotes the fixed prune-mask

3956

Algorithm 1: Detailed Algorithm for Attention-

Guided compression.

1 Input: runEpochs, momentum µµµl, prune rate p, initial W,

initial M, target density d, Ψm, ǫ.

Data: i = 0..runEpochs, pruning rate p = pi=0

2

3 for l← 0 to L do

4 Wl ← init(Wl) &

Ml ← createMaskForWeight(Wl, d)

5 applyMaskToWeights(Wl,Ml)

6 end

7 for i← 0 to runEpochs do

8 α = α ∗Bool(i < ǫ)
9 for j← 0 to numBatches do

10 L = α ∗ LAG + LCE

11
∂L

∂W
= computeGradients(W,L)

12 updateMomentumAndWeights(∂L

∂W
,µµµ)

13 for l← 0 to L do

14 applyMaskToWeights(Wl,Ml)
15 end

16 end

17 tM← getTotalMomentum(µµµ)
18 pT← getTotalPrunedWeights(W, pi)
19 pi ← linearDecay(pi)
20 for l← 0 to L do

21 µµµl ←

getMomentumContribution(Wl,Ml, tM, pT)

22 Prune(Wl,Ml, pi, pT)

23 Regrow(Wl,Ml,µµµl · tM, pT)

24 applyMaskToWeights(Wl,Ml)

25 end

26 end

between a neuron i and its pre-synaptic neuron j achieved

at the end of ANN training, where a 0 and 1 indicate ab-

sence and presence of synaptic weights, respectively. Note

that Eq. 7 does not model the leak part so that it can sup-

port IF training. Thus, during the forward propagation, the

weighted sum of the pre-synaptic neuron spikes are accu-

mulated in the membrane potential of the current layer neu-

rons. At each synaptic neuron the IF model of the activation

function compares the membrane potential and the thresh-

old of that layer to generate an output spike. This is repeated

for all layers until the last layer. For the last layer we accu-

mulate the inputs over all time steps and pass them through

a softmax layer to compute the multi-class probability.

During backpropagation with a learning rate η the linear

layer weights can then be updated as

wij = wij − ηδwij (8)

δwij = mij ∗
∑

t

∂L

∂Ot
i

∂Ot
i

∂zti

∂zti
∂ut

i

∂ut
i

∂wt
ij

(9)

where Ot
i is the thresholding function. The term

∂Ot
i

∂zt
i

re-

Figure 4. Input rate-coded spike equivalent images for different

number of time steps T .

quires a pseudo-derivative and we follow [2] to define this

as

∂Ot
i

∂zti
= γ ∗max{0, 1− |zti |} (10)

where γ is known as a damping factor of the backpropa-

gation error. Because we update only weights with corre-

sponding mask value of 1, we term this as ‘sparse-learning’

and the whole approach as a form of hybrid SL.

4. Experiments

This section first describes how we evaluate the effec-

tiveness of the proposed compression scheme and then

presents the compression results on CIFAR-10, CIFAR-100

and Tiny-ImageNet with VGG and ResNet model variants.

Finally, to demonstrate the energy-efficiency of the gener-

ated models, the section presents a detailed evaluation of

the FLOPs and compute energy for the compressed SNNs

(SNNC).

4.1. Experimental Setup

4.1.1 Input Data

To train our ANNs, we used the standard data-augmented

input set for each model. However, for the ANN-to-SNN

conversion and SNN training we used a rate-coded variant

obtained through a Poisson generator function that produces

a spike train with rate that is proportional to the input pixel

value. In particular, it generates a random number at every

time step for each pixel in the input image that is compared

with the normalized pixel value. An output spike is gen-

erated if the random number is less than the pixel. As T
increases, the rate-coded input spike train becomes a closer

approximation to the analog input (Fig. 4).

4.1.2 Model and ANN Training

For the ANN training with VGG and ResNet, we adopted

several constraints that facilitate efficient SNN conversion

[37]. In particular, our ANN models are designed without

bias terms or BN layers. Also, our pooling operations use

average pooling because for binary spike based activation

layers max pooling incurs significant information loss. We

used dropout to regularize both the ANN and SNN mod-

els for the uncompressed baseline training. However, as

the compressed models have significantly less chance of

over-fitting, we removed the convolutional dropout layers

3957

Figure 5. A ResNet basic block layer for target density (a) d = 1.0

(uncompressed) and (b) d = 0.1.

during the entire hybrid SL procedure.3 For the ResNet12

model we replaced the initial convolution layer with a pre-

processing block consisting of a series of three convolu-

tion layers of size 3 × 3 with a stride of 1. After the pre-

processing block of ResNet12 four basic block layers are

used each of which has two 3× 3 CONV layers (Fig. 5).

We performed the ANN training for 240 epochs with an

initial learning rate (LR) of 0.01 that decayed by a factor

of 0.1 after 150, 180, and 210 epochs. We hand tuned and

set both α and ǫ epoch to be 100. We used a starting prune

rate p of 0.5 that decays linearly every epoch. Unless stated

otherwise, for the meta-model we used an unpruned VGG9

ANN designed and trained with the same constraints.

4.1.3 Conversion and SNN Training

For the first hidden layer, we compute the maximum input

to a neuron over all its neurons across all T time steps for

a set of input images and set this value as the layer thresh-

old [37]. We sequentially compute the thresholds of the

subsequent layers similarly taking the maximum across all

neurons and time steps.4 We considered only 512 input im-

ages to limit conversion time and used a threshold scaling

factor of 0.74 for SNN training and inference, following the

recommendation in [36].

Initialized with these layer thresholds and the trained

ANN weights, we performed our sparse-learning based

SNN training for only 20 and 12 epochs for CIFAR and

Tiny-ImageNet, respectively. We set γ = 0.3 [2] and used

a starting LR of 10−4 which decays by a factor of 0.5 ev-

ery 7 (5) epochs for CIFAR (Tiny-ImageNet). Due to re-

source and memory constraints we performed the 12 epochs

of SNN training on Tiny-ImageNet with a subset of 20,000

images (1/5th of the total training set) and evaluated on

5,000 (1/2 of the total test set) test images to report our final

test accuracy. Note that the dropout units are implemented

with element-wise multiplication with randomly generated

masks that are kept constant for the entire SNN training.

3In particular we removed dropout for d ≤ 0.3 as we assumed any
density lower than this as sufficient compression and empirically verified
that addition of dropout adds no accuracy benefit.

4For the ResNet variant, the threshold evaluation is done only for the
pre-processing block convolution layers [36].

Compre- a. b. Accuracy (%) with c. Accuracy (%)
Architecture ssion ANN (%) ANN-to-SNN conversion after sparse

ratio accuracy T = 2500 Reduced T SNN training

Dataset : CIFAR-10

VGG11 1× 91.57 91.17 89.16 89.84
10× 91.10 90.64 86.16 90.45

VGG16 1× 92.55 92.01 84.79 91.13
2.5× 92.97 92.92 90.08 91.29
20× 91.85 91.39 79.08 90.74

33.4× 91.79 91.22 72.53 90.15

ResNet12 1× 91.37 90.87 88.98 90.41
10× 92.04 91.71 83.46 90.79

Dataset : CIFAR-100

VGG11 1× 66.30 64.18 62.49 64.37
4× 67.40 65.10 62.57 64.98

VGG16 1× 67.62 65.91 54.30 64.69
10× 67.45 65.84 51.63 64.63

ResNet12 1× 61.61 59.85 56.97 62.60
10× 63.52 61.43 52.66 63.02

Dataset : Tiny-ImageNet

VGG16 1× 56.56 56.8 51.14 51.92
2.5× 57.00 56.06 51.9 52.7

Table 1. Model performances with AGC based training on CIFAR-

10, CIFAR-100, and Tiny-ImageNet after a) ANN training, b)

ANN-to-SNN conversion and c) SNN training.

4.2. Results with AGC

Table 1 shows the performance of our proposed com-

pression scheme for all three datasets.5 To evaluate models

at reduced time steps we chose T as 100 (175), 120 (200)

and 150 for VGG (ResNet) variant to classify on CIFAR-

10, CIFAR-100 and Tiny-ImageNet, respectively. The re-

sults show that our sparse-learning based SNN training sig-

nificantly improves the model performance for classifica-

tion at reduced time steps. In particular, for VGG16 with

a compression ratio of 33.4×, our hybrid SL can improve

the accuracy by ∼18% compared to what is achievable with

original conversion-based models with the same reduced

T . The SNN trained compressed models perform similar

to their uncompressed counterparts with a compression ra-

tio of up to 33.4×, 10×, and 2.5× for CIFAR-10, CIFAR-

100, and Tiny-ImageNet, respectively. In particular, for

lower compression ratios we obtain improved classification

performance which may be due to better regularization of

AGC. For example, the VGG11 model on CIFAR-100 with

4× compression ratio has an increased classification per-

formance of 0.61% compared to the uncompressed baseline

which only uses dropout for regularization. To the best of

our knowledge, we are the first to report successful com-

pression results on Tiny-ImageNet.

Table 2 provides a comparison of the performances of

models generated through our hybrid SL with state-of-the-

art deep SNNs. On CIFAR-10, our approach outperforms

the compressed models [8] with an increased classification

performance of 2.77% and 8.35× better compression ra-

tio. On CIFAR-100, our approach simultaneously yields

2× higher compression and 7.15% higher accuracy.

5Our trained SNN models and test codes are available at this anony-
mous link

3958

Figure 6. Plot of test accuracy versus epochs with different target densities for (a) ResNet12 on CIFAR-10, (b) VGG11 on CIFAR-100, and

(c) VGG16 on Tiny-ImageNet. The SNN training is done with reduced time steps.

Authors Training Architecture Compress- Accuracy Time
type ion ratio (%) steps

Dataset : CIFAR-10

Cao et al. ANN-SNN 3 CONV, 1× 77.43 400
(2015) [4] conversion 2 linear

Sengupta et ANN-SNN VGG16 1× 91.55 2500
al. (2019)[37] conversion

Wu et al. Surrogate 5 CONV, 1× 90.53 12
(2019) [44] gradient 2 linear

Rathi et al. Hybrid VGG16 1× 91.13 100
(2020) [36] training 1× 92.02 200

Deng et al. STBP 11 layer 1× 89.53 8
(2020) [8] training CNN

Deng et al. STBP 11 layer 4× 87.38 8
(2020) [8] training CNN

This work Hybrid SL VGG16 2.5× 91.29 100
33.4× 90.15 100

Dataset : CIFAR-100

Deng et al. STBP 11 layer 2× 57.83 8
(2020) [8] training CNN

This work Hybrid SL VGG11 4× 64.98 120

Table 2. Performance comparison of the proposed hybrid SL with

state-of-the-art deep SNNs on CIFAR-10 and CIFAR-100.

4.3. Analysis of Energy Consumption

4.3.1 Spiking Activity

To model energy consumption, we assume a generated SNN

spike consumes a fixed amount of energy [5]. Based on this

assumption, earlier works [36, 37] have adopted the average

spiking activity (also known as average spike count) of an

SNN layer l, denoted ζl, as a measure of compute-energy of

the model. In particular, ζl is computed as the ratio of the

total spike count in T steps over all the neurons of the layer

l to the total number of neurons in that layer. Thus lower

the spiking activity the better is the energy efficiency.

Fig. 7 shows the per-image average number of spikes for

each layer with uncompressed and compressed (d = 0.03)

VGG16 while classifying on CIFAR-10 over 100 time steps.

As we can see, the spiking activity for all the layers reduces

significantly with compression. For example, the average

spike count of the 11th convolutional layer of the uncom-

pressed model is 11.7. For the compressed variant the value

is only 0.44. In particular, the spiking activity of the un-

compressed model can increase from 1.3× to 25.4× across

different layers of the SNN.

Table 3. Convolutional layer FLOPs for ANN and SNN models

Model FLOPs of a CONV layer l
Variable Value

ANN FLl
ANN (kl)2 × Hl

o × W l
o × Cl

o × Cl
i

SNN FLl
SNN (kl)2 × Hl

o × W l
o × Cl

o × Cl
i × ζl

SNNC FLl
SNNC

(
∑Hl

o−1

x=0

∑Wl
o−1

y=0

∑Cl
o−1

p=0

∑Cl
i−1

n=0

∑kl
−1

i=0

∑kl
−1

j=0

ζl
n,x+i,y+j × ml

p,n,i,j)

Figure 7. Average spiking activity generated at each layer of

VGG16 while classifying over the test set of CIFAR-10 for model

having parameter density (d) of 1.0 and 0.03.

4.3.2 Measure of FLOPs and Computation Energy

Consider a convolutional layer l with weight tensor Wl ∈

R
kl

×kl
×Cl

i×Cl
o takes an input activation tensor Al ∈

R
Hl

i×W l
i×Cl

i , where H l
i ,W

l
i , kl, Cl

i and Cl
o are input height,

width, filter height (or width), channel size, and number of

filters, respectively. This section quantifies the energy asso-

ciated with producing the corresponding output activation

map Ol ∈ R
Hl

o×W l
o×Cl

o for a standard ANN, an uncom-

pressed SNN, and finally a compressed SNN.

The number of FLOPS needed for layer l of a standard

ANN, denoted FLl
ANN , is easy to calculate and shown

in row 1 of Table 3 [22, 23]. The formula can be easily

adjusted for an uncompressed SNN in which each neuron

spike in layer l triggers a weight accumulation across each

of its connected post-synaptic neurons in layer l+1, denoted

as FLl
SNN in Table 3.

For a compressed SNN model, however, the calculation

is complicated by the fact that the presence of spikes at a

3959

Figure 8. Comparison of ANN to SNN in terms of FLOPs and normalized compute energy for VGG16 with different parameter density to

classify (a) CIFAR-10, (b) CIFAR-100, and (c) Tiny-ImageNet.

pre-synaptic neuron triggers accumulations in a subset of

post-synaptic neurons due to sparsity. In particular, we as-

sume that masked weights are not accumulated via inex-

pensive zero-gating logic and the resulting calculation for

FLl
SNNC

is shown in row 3 of Table 3, assuming a stride

value of 1. Here, ζln,x+i,y+j represents total spike count

accumulated over T time steps at the (x+ i, y + j)th in-

put activation map element in the nth channel and ml
p,n,i,j

represents the mask for weight of location (i, j) in the nth

channel of the pth filter. ml
p,n,i,j = 0, if wl

p,n,i,j = 0 and 1,

otherwise.

For ANNs, FLOPs are dominated by the total multiply

accumulate (MAC) operation of the CONV and linear lay-

ers. On the other hand, for SNNs, the FLOPs are limited to

accumulates (ACs) as the spikes are binary and thus simply

indicate which weights need to be accumulated at the post-

synaptic neurons. Thus the inference compute energy at the

CONV layers for the models can be quantified as

EANN = (

L
∑

l=1

FLl
ANN) · EMAC (11)

ESNN = (

L
∑

l=1

FLl
SNN) · EAC (12)

ESNNC
= (

L
∑

l=1

FLl
SNNC

) · EAC (13)

where EANN represents the energy for an ANN layer, and

the energy for the uncompressed and compressed SNN

layer is represented as ESNN and ESNNC
, respectively.

Here, EMAC and EAC are the energy consumption for a

MAC and AC operation respectively. As we can see in Ta-

ble 4 EAC is ∼32× lower than EMAC [18].

Fig. 8 illustrates the energy consumption and FLOPs for

ANN and SNN models of VGG16 while classifying three

datasets, where the energy is normalized to that of an equiv-

alent uncompressed ANN. As we can see, the number of

FLOPs for an SNN is larger than that for an ANN with sim-

ilar number of parameters. However, because the ACs con-

sume significantly less energy than MACs, as shown in Ta-

ble 4, SNNs are significantly more energy efficient. In par-

ticular, for CIFAR-10 a compressed SNN consumes 12.2×
less compute energy than a comparable compressed ANN

with similar parameters and 38.7× less compute energy

than a comparable uncompressed ANN.6 For CIFAR-100

and Tiny-ImageNet with SNN compression, the energy-

efficiency can reach up to 10.8× and 5.2×, respectively,

as opposed to ANN models having similar parameters.

Table 4. Estimated energy costs for various operations in 45 nm

CMOS process at 0.9 V [18]

Serial No. Operation Energy (pJ)

1. 32-bit multiplication int 3.1
2. 32-bit addition int 0.1
3. 32-bit MAC 3.2 (#1 + #2)
4. 32-bit AC 0.1 (#2)

5. Conclusions

This paper proposes a hybrid sparse-learning approach

for generating compressed deep SNN models that have re-

duced spiking activity and thus high energy efficiency. In

particular, we first use a novel attention-guided ANN com-

pression, then convert the ANN to an SNN by sequentially

fixing the firing threshold of each layer, and finally training

the SNN using a sparse-learning based approach that starts

with the compressed ANN weights. The generated sparse

SNNs have compression ratios of up to 33.4× with negligi-

ble drop in accuracy. Moreover, the reduced time steps to

perform inference further reduces the average spiking activ-

ity of the models required for classification. Compared to

unpruned and iso-parameter ANNs, our generated SNNs are

up to 38.7× and 12.2× more energy efficient, respectively,

with no significant drop in accuracy.

References

[1] Guillaume Bellec, David Kappel, Wolfgang Maass, and

Robert Legenstein. Deep rewiring: Training very sparse deep

networks. arXiv preprint arXiv:1711.05136, 2017.

[2] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert

Legenstein, and Wolfgang Maass. Long short-term memory

and learning-to-learn in networks of spiking neurons. arXiv

preprint arXiv:1803.09574, 2018.

[3] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q

Weinberger. Understanding batch normalization. In Ad-

vances in Neural Information Processing Systems, pages

7694–7705, 2018.

6Here, we used layer spike counts averaged over 20 test input samples
to evaluate the SNN FLOPs.

3960

[4] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking

deep convolutional neural networks for energy-efficient ob-

ject recognition. International Journal of Computer Vision,

113(1):54–66, 2015.

[5] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking

deep convolutional neural networks for energy-efficient ob-

ject recognition. International Journal of Computer Vision,

113:54–66, 05 2015.

[6] R. Chen, H. Ma, S. Xie, P. Guo, P. Li, and D. Wang. Fast

and efficient deep sparse multi-strength spiking neural net-

works with dynamic pruning. In 2018 International Joint

Conference on Neural Networks (IJCNN), volume 1, pages

1–8, 2018.

[7] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks:

Training deep neural networks with weights and activations

constrained to +1 or -1. arXiv preprint arXiv:1602.02830,

2016.

[8] Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing

Hu, Yufei Ding, Peng Li, and Yuan Xie. Comprehensive

SNN compression using ADMM optimization and activity

regularization. arXiv preprint arXiv:1911.00822, 2019.

[9] Tim Dettmers and Luke Zettlemoyer. Sparse networks from

scratch: Faster training without losing performance. arXiv

preprint arXiv:1907.04840, 2019.

[10] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeif-

fer. Fast-classifying, high-accuracy spiking deep networks

through weight and threshold balancing. In 2015 Interna-

tional Joint Conference on Neural Networks (IJCNN), vol-

ume 1, pages 1–8, 2015.

[11] Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U

Pedroni, and Emre Neftci. Conversion of artificial recurrent

neural networks to spiking neural networks for low-power

neuromorphic hardware. In 2016 IEEE International Con-

ference on Rebooting Computing (ICRC), pages 1–8. IEEE,

2016.

[12] Clément Farabet, Rafael Paz, Jose Pérez-Carrasco, Carlos

Zamarreño, Alejandro Linares-Barranco, Yann LeCun, Eu-

genio Culurciello, Teresa Serrano-Gotarredona, and Bernabe

Linares-Barranco. Comparison between frame-constrained

fix-pixel-value and frame-free spiking-dynamic-pixel con-

vnets for visual processing. Frontiers in neuroscience, 6:32,

2012.

[13] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages

1135–1143, 2015.

[14] Lucas Hansen. Tiny ImageNet challenge submission. CS

231N, 2015.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[16] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. AMC: AutoML for model compression and ac-

celeration on mobile devices. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 784–

800, 2018.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[18] Mark Horowitz. 1.1 Computing’s energy problem (and what

we can do about it). In 2014 IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC),

pages 10–14. IEEE, 2014.

[19] Giacomo Indiveri and Timothy Horiuchi. Frontiers in neu-

romorphic engineering. Frontiers in Neuroscience, 5:118,

2011.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[21] Souvik Kundu, Mahdi Nazemi, Peter A. Beerel, and

Massoud Pedram. A tunable robust pruning framework

through dynamic network rewiring of dnns. arXiv preprint

arXiv:2011.03083, 2020.

[22] Souvik Kundu, Mahdi Nazemi, Massoud Pedram, Keith M

Chugg, and Peter Beerel. Pre-defined sparsity for low-

complexity convolutional neural networks. IEEE Transac-

tions on Computers, 2020.

[23] Souvik Kundu, Saurav Prakash, Haleh Akrami, Peter A

Beerel, and Keith M Chugg. psconv: A pre-defined sparse

kernel based convolution for deep cnns. In 2019 57th An-

nual Allerton Conference on Communication, Control, and

Computing (Allerton), pages 100–107. IEEE, 2019.

[24] Chankyu Lee, Priyadarshini Panda, Gopalakrishnan Srini-

vasan, and Kaushik Roy. Training deep spiking convolu-

tional neural networks with STDP-based unsupervised pre-

training followed by supervised fine-tuning. Frontiers in

Neuroscience, 12:435, 2018.

[25] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda,

Gopalakrishnan Srinivasan, and Kaushik Roy. Enabling

spike-based backpropagation for training deep neural net-

work architectures. Frontiers in Neuroscience, 14:119, 2020.

[26] Chankyu Lee, Syed Shakib Sarwar, and Kaushik Roy.

Enabling spike-based backpropagation in state-of-the-art

deep neural network architectures. arXiv preprint

arXiv:1903.06379, 2019.

[27] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Train-

ing deep spiking neural networks using backpropagation.

Frontiers in Neuroscience, 10:508, 2016.

[28] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian

Tang, and Jieping Ye. AutoCompress: An automatic DNN

structured pruning framework for ultra-high compression

rates. In AAAI, pages 4876–4883, 2020.

[29] Sen Lu and Abhronil Sengupta. Exploring the connection

between binary and spiking neural networks. arXiv preprint

arXiv:2002.10064, 2020.

[30] Zachary F Mainen and Terrence J Sejnowski. Relia-

bility of spike timing in neocortical neurons. Science,

268(5216):1503–1506, 1995.

[31] Hesham Mostafa and Xin Wang. Parameter efficient train-

ing of deep convolutional neural networks by dynamic sparse

reparameterization. arXiv preprint arXiv:1902.05967, 2019.

[32] Peter O’Connor, Dan Neil, Shih-Chii Liu, Tobi Delbruck,

and Michael Pfeiffer. Real-time classification and sensor fu-

sion with a spiking deep belief network. Frontiers in neuro-

science, 7:178, 10 2013.

[33] Michael Pfeiffer and Thomas Pfeil. Deep learning with spik-

ing neurons: Opportunities and challenges. Frontiers in Neu-

roscience, 12:774, 2018.

[34] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

3961

nary convolutional neural networks. In European conference

on computer vision, pages 525–542. Springer, 2016.

[35] Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp

based pruning of connections and weight quantization in

spiking neural networks for energy efficient recognition.

arXiv preprint arXiv:1710.04734, 2017.

[36] Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini

Panda, and Kaushik Roy. Enabling deep spiking neural net-

works with hybrid conversion and spike timing dependent

backpropagation. arXiv preprint arXiv:2005.01807, 2020.

[37] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and

Kaushik Roy. Going deeper in spiking neural networks:

VGG and residual architectures. Frontiers in Neuroscience,

13:95, 2019.

[38] Yuhan Shi, Leon Nguyen, Sangheon Oh, Xin Liu, and Duygu

Kuzum. A soft-pruning method applied during training of

spiking neural networks for in-memory computing applica-

tions. Frontiers in Neuroscience, 13:405, 2019.

[39] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[40] Martino Sorbaro, Qian Liu, Massimo Bortone, and Sadique

Sheik. Optimizing the energy consumption of spiking neural

networks for neuromorphic applications. Frontiers in Neu-

roscience, 14:662, 2020.

[41] Gopalakrishnan Srinivasan and Kaushik Roy. ReStoCNet:

Residual stochastic binary convolutional spiking neural net-

work for memory-efficient neuromorphic computing. Fron-

tiers in Neuroscience, 13:189, 2019.

[42] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping

Shi. Spatio-temporal backpropagation for training high-

performance spiking neural networks. Frontiers in neuro-

science, 12:331, 2018.

[43] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping

Shi. Spatio-temporal backpropagation for training high-

performance spiking neural networks. Frontiers in Neuro-

science, 12:331, 2018.

[44] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Lup-

ing Shi. Direct training for spiking neural networks: Faster,

larger, better. In Proceedings of the AAAI Conference on Ar-

tificial Intelligence, volume 33, pages 1311–1318, 2019.

[45] Sergey Zagoruyko and Nikos Komodakis. Paying more at-

tention to attention: Improving the performance of convolu-

tional neural networks via attention transfer. arXiv preprint

arXiv:1612.03928, 2016.

[46] Friedemann Zenke and Surya Ganguli. Superspike: Super-

vised learning in multilayer spiking neural networks. Neural

computation, 30(6):1514–1541, 2018.

[47] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wu-

jie Wen, Makan Fardad, and Yanzhi Wang. A systematic

DNN weight pruning framework using alternating direction

method of multipliers. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 184–199, 2018.

3962

