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Abstract

One of the major limitations of deep learning models

is that they face catastrophic forgetting in an incremental

learning scenario. There have been several approaches

proposed to tackle the problem of incremental learning.

Most of these methods are based on knowledge distillation

and do not adequately utilize the information provided by

older task models, such as uncertainty estimation in pre-

dictions. The predictive uncertainty provides the distribu-

tional information can be applied to mitigate catastrophic

forgetting in a deep learning framework. In the proposed

work, we consider a Bayesian formulation to obtain the

data and model uncertainties. We also incorporate self-

attention framework to address the incremental learning

problem. We define distillation losses in terms of aleatoric

uncertainty and self-attention. In the proposed work, we

investigate different ablation analyses on these losses. Fur-

thermore, we are able to obtain better results in terms of

accuracy on standard benchmarks.

1. Introduction

Deep neural networks have shown impressive results on

a variety of computer vision tasks. However, these models

have been observed to be not well suited for generalization

in terms of tasks. This has been particularly observed, for

instance, in seminal work by Kirkpatrick et al. [16] that

the deep learning models can face catastrophic forgetting.

Learning a model on a task ‘A’ results in an optimal model

being obtained for task ‘A’. However, using this same model

to solve for task ‘B’ results in the model converging to new

optima that are significantly worse for solving task ‘A’. This

is in contrast to humans, where we are able to learn new

tasks without forgetting. In order to obtain deep learning

networks that can continually learn without forgetting, we

need to solve this problem. There have been a number of

methods proposed towards solving this problem, such as

those based on regularization [16, 45] or those based on
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memory replay [41, 1]. However, the methods proposed are

not focused on the uncertainty associated with the distilla-

tion. One approach that allows us to understand the work-

ing of the method is by considering the uncertainty distri-

bution. Deep learning models usually consider the point

estimate for predicting instead of adopting a probabilistic

distribution-based approach. In the probabilistic approach,

a fully Bayesian treatment is intractable in general. How-

ever, work by Gal and Ghahramani [8] and other related

subsequent works [14, 15] suggest that it is possible to ob-

tain the uncertainty of a model in its parameters or the data

distribution during prediction. We adopt this as it is partic-

ularly relevant in the case of incremental learning. By in-

corporating uncertainty, we can ensure that the model will

initially be uncertain about the new task, and as it is trained,

its uncertainty reduces. Moreover, we consider the uncer-

tainty based distillation loss between tasks that ensure the

method distills the uncertainty along with the prediction.

Another approach that allows for interpretability is con-

sidering the attention and visual explanation based mod-

els. Attention-based methods have been very popular in

machine translation [40], visual question answer [43], and

generative adversarial networks (GANs) [46]. In our work,

we consider self-attention based methods [46] for incre-

mental learning. We particularly consider the distillation

loss between tasks that ensure the method attends to similar

discriminative regions. Moreover, obtaining the attention-

based distillation can result in improved incremental learn-

ing techniques being developed.

Our work is based on a baseline that is a variant of learn-

ing without forgetting (LwF) [25]. Particularly we propose

a variant that incorporates a distillation loss between the

previous task and the new task. However, all the samples

used for training the previous task would not be available

while training for a new task. Therefore, we consider a

method that retains a small amount of data from the pre-

vious task and uses distillation loss to retain the knowledge

while learning a new task [34].

In the data-based incremental learning setting, previous

works have proposed different distillation based models to

preserve the old task information while training to solve for
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the current task. The main problem with these methods is

that they distill the knowledge of previous data from the

previous model’s softmax output for a given input of cur-

rent task data. Since the predictions of deep learning mod-

els are overconfident for any prediction, it means that any

single class has probability near one, while other classes

have almost zero probability: even when the prediction is

wrong [27]. To solve this problem, it has been suggested

that high temperatures can be used [12] for calculating the

distillation. However, this does not truly reflect the un-

certainty in prediction. In incremental learning, the model

distills knowledge from the next task, for which it is not

trained. Thus it should not be overconfident for one class;

instead, the prediction should be distributed among all the

classes. There will be uncertainty present in the prediction.

It means this distillation can not truly reflect the older class

information properly. So the softmax based distillation loss

is not sufficient to preserve the previous task knowledge in

the current model. Thus, in the proposed method, we use

uncertainty-based distillation to reflect information about

the older task data.

Another problem with incremental learning is that not all

the information provided by the previous model is useful for

preserving the older task data. The attention-based method

can further improve the performance of incremental learn-

ing. In [5] authors propose a GradCAM [36] based attention

distillation for class incremental learning. GradCAM based

attention also depends upon the predicted class label of the

previous model. In contrast to the predicted label based at-

tention, we propose self-attention based distillation for the

incremental learning. The idea of the self-attention module

is to adapt the non-local model information using the resid-

ual connections.

In the next section, we discuss the related work. The pro-

posed method is presented in detail in section 3. In section

4, we present thorough empirical analysis and results for the

various evaluations on standard CIFAR-100 and ImageNet

datasets. We finally conclude our paper with directions for

future work. The major contributions of the proposed work

are as follows:

• We propose an uncertainty and attention based distil-

lation in incremental learning problem.

• We show that by transferring the uncertainty, student

model captures more information about the teacher

model.

• Attention framework further reduce the catastrophic

forgetting.

• We thoroughly analyze the proposed approach through

ablation analysis and visualization.

2. Related Work

Many methods have been proposed to solve catastrophic

forgetting in the field of incremental or lifelong learning.

One of the basic and intuitive methods among them is

LwF [25]. For each task, this method uses the same set

of feature extractors and task-specific layers for classifica-

tion. In general, the incremental learning methods can be

broadly divided into three categories: i) task-specific meth-

ods ii) regularization based methods and iii) methods based

on memory replay. The task-specific methods deal with

adding a separate model or layer for each new task [28, 25].

Regularization based methods use a regularization term to

avoid changing those parameters that are sensitive to old

tasks. Elastic weight consolidation (EWC) [16] is a reg-

ularization based model that quantifies the importance of

weights for previous tasks, and selectively alters the learn-

ing rates of weights. Following EWC, the synaptic consoli-

dation strength is measured by [45] in an online fashion and

used it as regularization. In Incremental Moment Matching

(IMM) [22], a trained network on each task is preserved,

and the networks are later merged into one at the end of all

the tasks. The above approaches focus on adjusting the net-

work weights. In [31], the authors use the dropout based

model selection for incremental learning.

The third category is data-based methods that use the

manifold distance between the model trained on old tasks

and model trained on the current task. This distance is

minimized by suitable loss functions. The most commonly

used manifold and loss is the distillation loss [12]. These

methods need feature for obtaining the loss function; thus,

a small amount of data of previous task is kept. Therefore,

the amount of knowledge kept by knowledge distillation de-

pends on the degree of similarity between the data distribu-

tion used to learn the previous tasks in the previous stages.

Other data-generation based methods [23, 33, 38, 39, 42]

use generative adversarial network [9] and by replying the

total data, new model is trained. Gradient Episodic Mem-

ory (GEM) [26, 34] stores a subset of training data. The

End-to-End incremental learning (E2E) framework [3] uses

a task-specific distillation loss. In [13], a distillation and

retrospection (D+R) used to preserve the previous task in-

formation. Recently in [21] the external data along with

global distillation (GD) loss is used to improve the incre-

mental learning performance. Another method iCaRL [34]

also considers the distillation loss for incremental learning.

Other data-based incremental methods are proposed in [24].

Similarly, [35] uses the two teacher models for model-based

incremental learning. In [13] authors also use the distilla-

tion loss in task incremental learning setting. These meth-

ods consider the distillation loss without incorporating the

uncertainty value.

Recently some attention based methods have been used

in incremental learning [5, 37]. A GradCAM based atten-
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Figure 1. Overview of the uncertainty distillation and self-attention in incremental learning. The upper part of the figure represents the

model that is trained on the previous tasks and is set to be frozen. GM is pretrained classifier trained on the previous tasks, GP , and Gc

are the classifiers of the current model for training the old tasks classes and new task classes, respectively.

tion used in [5] , while authors in [37] use a attention mod-

ule to avoid catastrophic forgetting. In [17], a Bayesian

framework is discussed for the incremental learning prob-

lem. But these methods do not consider uncertainty for

preserving the knowledge of previous tasks. Moreover, we

differ by considering self-attention based methods for ob-

taining the attention [40, 46]. This allows us to learn the

attention regions that are relevant for the task, unlike the

work that uses GradCAM [36] that requires the true class

label for obtaining a visualization.

Recently, work by [47] utilizes knowledge distillation to

maintain discrimination within old classes to avoid catas-

trophic forgetting. The adversarial continual learning [7]

method learns a disjoint representation for task-invariant

and task-specific features. PODNet [6] approaches incre-

mental learning as representation learning, with a distil-

lation loss that constrains the evolution of the representa-

tion. iTaML [32] proposes a task agnostic meta-learning ap-

proach that seeks to maintain an equilibrium between all the

encountered tasks. ScaIL [2] discusses an efficient scaling

of past classifiers’ weights to make them more comparable

to those of new classes in incremental learning scenarios.

3. Method

We propose a class incremental learning framework

based on the uncertainty distillation and multi-stage self-

attention, where class data come in sequentially in a batch

of classes. The model is illustrated in Fig. 1.

3.1. Problem Formulation

Let us assume dataset D consists of pairs of images x
and its label y, i.e D ∈ (x, y). In the proposed framework,

we assume there are a total of T tasks i.e. the classification

dataset is divided into T parts D1, D2, ...,DT . where each

Dt = {xt
j , y

t
j}

nt

j=1. Our goal is to learn a classifier CT that

can correctly classify all the images of all the tasks. Let’s

assume Dold
t contain a fixed number of representative sam-

ples from the old dataset, i.e. Dold
t ⊂ D1 ∪D2 ∪ ...∪Dt−1.

In the task increment learning problem, at timestamp t, we

can access the dataset of the current task and the (t− 1)th

representative data, i.e. Dtrain
t = Dt ∪Dold

t .

The classifiers of the model can be divided into three

types: i) previous step’s classifier (Gm), parameters θm,

trained on the previous task(s) data, ii) the current model

classifier (Gp), parameters θp, trained on the current task

data of previous classes, and iii) current model classifier

(Gc), parameters θc, trained on new classes at tth stage.

At next (t+ 1)th stage the models parameters θm will be

θp ∪ θc. There are three-stage attention networks in the fea-

ture extractor, which has the parameters θf . The model is

trained using the knowledge distillation from the previous

model as well as the cross-entropy loss for the current task

data.

3.2. Knowledge Distillation

Knowledge distillation [12] is obtained by minimizing

the loss function between the distribution of class probabili-

ties predicted by the teacher and student model. In the deep
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learning models, the correct class’s predicted probability is

very high, while other class probabilities are nearly equal to

zero. If the ground truth label is provided to the student net-

work, then the teacher model also predicts the same output.

Thus the teacher model does not provide any useful infor-

mation to students. This problem has been tackled using a

softmax temperature by Hinton et al. [12].

pc,n =
exp (qc,n/τ)

∑C

j=1 exp (qj,n/τ)
(1)

qc,n is the logit value for cth ∈ C class for input xn ∈
D from the model Mt. τ is the temperature value. Then

distillation loss is defined as follows:

LD(θs,D, C) =
1

|D|

N
∑

n=1

C
∑

c=1

−pc,n · log (ŷc,n) (2)

ŷc,n is the predicted cth class logit for student

network(Ms(:, θs)) for input xn. N is the total number of

samples and C is the total number of classes.

3.3. Distillation in Incremental Learning

In the incremental learning setting, suppose the model

Mprev is trained on the total |Cprev| classes and at tth

task, there are new |Ct| classes introduced. The objec-

tive is to train the current model Mt for all classes i.e

Ccur = Ct ∪ Cprev . The current model Mt is defined by

the feature extractor (Mf
t , θf ), old class classifier (Gp, θp)

and new class classifier (Gc, θc).

For the old task model, distillation loss at tth stage is

given as:

LD(θf , θp; Cprev) =
1

|Dtrain
t |

∑

x∈Dtrain
t

∑

y∈Cprev

[−pc log p(y|x)]

(3)

pc is the softmax output of the previous model, and

p(y|x) is the output of the model Gp. Since the previous

task model trained on the total |Cprev|, so distillation is cal-

culated for the old task class logit value. For the current

task data, the current model Mt is trained using the cross-

entropy loss as given by the equation;

LC(θf , θc; Ct) =
1

|Dtrain
t |

∑

x∈Dtrain
t

∑

yc∈Ct

[−yc log(ŷc)]

(4)

where yc is the ground truth label and ŷc is the prediction of

Gc for the input x.

3.4. Limitation of Distillation loss

It has been shown that the deep learning models are over-

confident for the wrong prediction [27]; thus, the predic-

tion probabilities do not truly reflect the knowledge. In

LwM [5], a GradCAM [36] based loss (a visual explanation

method) is used for the distillation; it considers the class ac-

tivation map for distillation. In contrast to the class activa-

tion map, the self-attention models learn the attention using

the network itself, and an uncertainty estimation predicts the

uncertainty associated with it, used to train the model. So

the overconfident class activation map for given input does

not affect the distillation loss.

3.5. Uncertainty based Distillation

In the deep learning models, the class prediction based

model is highly probable for one class, and so they can-

not transfer the full distributional information to the stu-

dent model. In the Bayesian neural networks, they can pre-

dict the uncertainty value along with their prediction, which

can be applicable for transferring more detailed knowledge.

Thus, in an incremental learning setting, uncertainty dis-

tillation combined with predictions can help the model to

preserve useful information from the previous tasks.

3.5.1 Bayesian Model and Uncertainty Estimation

Bayesian modeling is beneficial for predicting uncertainty.

In the deep learning models, obtaining the probabilistic in-

ference is an intractable problem. However, [8, 14] pro-

posed a dropout based method to approximate the posterior.

We follow a similar method to obtain the Bayesian frame-

work for our incremental learning model. In the proposed

method, we work with two types of uncertainties, data un-

certainty, also known as aleatoric uncertainty and model un-

certainty or epistemic uncertainty. We obtain these uncer-

tainties in a manner similar to [14, 20, 30, 19]. We train

the classifier to predicts output class probabilities along

with aleatoric uncertainty (data uncertainty). The predictive

uncertainty includes epistemic uncertainty and data uncer-

tainty. The epistemic uncertainty results from uncertainty

in model parameters. It is obtained by sampling the model

using MC-dropout [8, 14]. The estimation of the aleatoric

uncertainty in the Bayesian neural network also makes the

model more robust. Thus it is better for the incremental

learning setting. For obtaining the variance value, we de-

fine a variance network Gcv for the current task model and

Gpv for the older task model. The variance network takes

the feature for input to predict the variance value. We di-

vide the model Mt into feature extractor Gf and classifier

networks Gc and Gp. Suppose xi is the ithinput images at

current task t, the predicted class logits and variance value

are obtain as follows:

ŷci = Gc(Gf (x
t
i, θf ), θc) ŷpi = Gp(Gf (x

t
i, θf ), θp)

(σc
i )

2 = Gcv(Gf (x
t
i, θf ), θcv) (5)

(σp
i )

2 = Gpv(Gf (x
t
i, θf ), θpv) (6)
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The aleatoric loss is obtained as:

ŷci,s = ŷci + σc
i ∗ ǫ

c
s, ǫcs ∼ N (0, I) (7)

ŷpi,s = ŷpi + σp
i ∗ ǫps , ǫps ∼ N (0, I) (8)

Lca = −
1

|Dtrain
t |

∑

xi∈Dtrain
t

log
1

Ta

Ta
∑

s=1

LC

(

ŷci,s, yi
)

(9)

Lpa = −
1

|Dtrain
t |

∑

xi∈Dtrain
t

log
1

Ta

Ta
∑

s=1

LD

(

ŷpi,s, pc
)

(10)

where σc
i and σp

i are the standard deviation obtained

from Eq. 5 and Eq. 6. Ta is the number of Monte Carlo

(MC) samples. The models are trained by jointly minimiz-

ing both the classification loss and aleatoric loss. The total

aleatoric loss is given as:

Lale = Lca + Lpa (11)

3.5.2 Distillation using aleatoric uncertainty

The objective of incremental learning is to preserve the pre-

vious task information while training for the current tasks.

Thus preserving uncertainty information provided by the

Bayesian neural network on the previous task can also over-

come the limitation of prediction-based distillation loss. In

this work, we propose an aleatoric uncertainty distillation

loss to transfer the previous task’s information to the cur-

rent model. The aleatoric uncertainty tells us how much

the model is uncertain about the prediction due to the data.

In the incremental learning setting, the previously trained

model’s data uncertainty should be similar for the current

task models. This is because the data uncertainty indicates

properties such as low illumination or blur that would be a

factor of uncertainty for all methods. In incremental learn-

ing, at task t, the current model Mt is initialized with the

previous task model Mt−1. The objective is to train the Mt

model from the current task dataset i.e. Dtrain
t . We use the

cross-entropy loss to train Mt from the current task data.

For any input image, x of current task data x ∈ Dtrain
t is

forwarded to the current model and previous model to pre-

dict the aleatoric variance value. For transferring the uncer-

tainty, we define the aleatoric distillation loss LA using the

following equation:

LA =
∑

i

||(σp
i,t−1)

2 − (σp
i,t)

2||2 (12)

3.6. Attention based Distillation

The basic intuition is for attention-based distillation is

that not all information needs to be preserved for the next

task. In the traditional incremental learning, the method

that has proposed the distillation loss apply it to preserve

the full image information. It reduces a model’s capabil-

ity for learning a new task as it is learning unnecessary

information. In [5], the authors use a GradCAM activa-

tion to distill the model information. These activations are

obtained by the network’s prediction, which is overconfi-

dent for even for the wrong prediction due to mismatch of

train-test distribution [11], and thus do not capture the full

prediction distribution. In contrast to the above global and

activation based distillation, we are training the model to

learn the attention map itself. Inspired by the self-attention

methods [40, 46], we introduce an attention network to pre-

dict the attention map. These attention models are trained

by the residual information to classification loss. Let the at-

tention model Att(:, θatt) be parametrized by θatt, then the

attention obtained similar to [46] is given by:

yatti,t = Att(xf
i,t, θatt,t) (13)

(xf
i,t) is the feature representation at task t for input xi.

3.6.1 Attention Distillation loss

In the incremental learning setting, if the current model Mt

and previous model Mt−1 have equivalent knowledge of

base classes, they should have a similar response to these re-

gions. Therefore the attention map obtained by the previous

model and the current model should be similar. It transfers

the old class data information to the current model. Since

the previous model is trained on the old task data, the sim-

ilarity between the previous model and the current model’s

attention map for new task data provides us with a signature

of the old task data. So the current model objective is to pre-

serve these signatures while learning the new task. We use

the mean square loss for the attention distillation. L2 loss

or mean squared loss is obtained by squaring the difference

between attention from the previous model and the current

model. The loss function is defined as follows:

Lt
att(y

att
i,t−1, y

att
i,t ) =

∑

i

||yatti,t−1 − yatti,t ||
2 (14)

3.6.2 Multi Stage Attention Distillation

In the convolution neural network, each stage learns a dif-

ferent feature for an input image. We use the attention mod-

ule in each stage to predict the attention or essential part

of images. These stage-wise features reveal the semantic

structure of these images. In the proposed framework, we

use these stage activations of the network to generate the at-

tention map. For the incremental learning setting, we distill

this attention map from the older model to the current model

to better learns to preserve the older task information. In the

proposed framework, we consider 3 stage self-attention net
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Method
5 class 10 class 20 class

ACC FGT ACC FGT ACC FGT

Baseline 57.4 21.0 56.8 19.7 56.0 18.0

LwF-MC[25] 58.4 19.3 59.5 16.9 60.0 14.5

D+R[13] 59.1 19.6 60.8 17.1 61.8 14.3

E2E[3] 60.2 16.5 62.6 12.8 65.3 8.9

iCaRL[34]* 61.2 - 64.1 - 67.2 -

GD[21] 62.1 15.4 65.0 12.1 67.1 8.5

MD [47] 62.6 - 64.4 - 66.6 -

Ours-AU 61.8 15.2 65.4 11.4 67.6 8.2

Oracle 78.6 3.3 77.6 3.1 75.7 2.8

Table 1. Results on CIFAR-100. Baseline refers when distillation

loss in not used and Oracle refers when we store full data samples.

iCaRL uses ResNet-32 backbone.

in the incremental class setting. We provide the visualiza-

tion of the 3rd stage attention map in Fig. 3. The multi-stage

attention distillation loss is given as:

Lm =

3
∑

s=1

Lt
att(y

att(s)
i,t−1 , y

att(s)
i,t ) (15)

Here y
att(s)
i,t−1 corresponds to the attention map of ith input at

step t from the (t− 1)th model at stage s.

3.7. Total Loss

We train the model using the cross entropy loss (Eq. 4),

distillation loss (Eq. 3), aleatoric uncertainty (Eq. 11), un-

certainty distillation (Eq. 12) and attention distillation loss

(Eq. 15). The total loss is given as follows:

Lt
total = λ(Lm + LA + Lale) + LC + LD (16)

Here λ is the weighting parameter for the uncertainty and

attention based distillation.

4. Experiments and Analysis

We evaluate our proposed method by comparing it with

state-of-the-art methods for dataset CIFAR-100 and Ima-

genet dataset. The ablation analysis with uncertainty and

attention-based distillation is also shown in subsequent sec-

tions. Also, we have provided attention visualization for

various methods, as shown in Fig. 3. For our evaluation

purpose, we use CIFAR-100 and Imagenet dataset, as men-

tioned in section 4.1.

4.1. Dataset

CIFAR-100: In the CIFAR-100 [18] dataset, there are

100 classes containing 60,000 RGB images of size 32 x 32.

Each class contains 500 training images and 100 test im-

ages. We follow the benchmark protocol given in [34] for

our experiments. The classes are shuffled similar to [34, 3].

We train all 100 classes of CIFAR-100 in incremental

batches of 5, 10, and 20 classes, so respectively, there are

20,10 and 5 tasks present.

ImageNet: For the Imagenet dataset [4], we follow a simi-

lar approach provide in [21] by sample 500 images per 100

randomly chosen classes for each trial, and then split the

classes. These images also have a dimension of 32 x 32.

We use the same split of [21] in our paper. In ImageNet, we

also used incremental batches of 5, 10, and 20 classes, so

respectively, there are 20, 10, and 5 tasks present.

4.2. Implementation Details

We follow similar protocols, as discussed in [22]. We use

Wide-ResNet [44] architecture as our base model. We also

obtain a comparable performance with ResNet [10]. The

model is implemented in the PyTorch [29] framework. The

aleatoric variance layer is a linear layer followed by the soft

plus layer. The attention modules are consist of convolution

layers. All the models are initialized with random weights.

During training, we use a batch size of 128 in all the exper-

iments. We standardize input images by subtracting them

with the mean of the training set and dividing them by the

standard deviation. In all methods, we use the total buffer

size of the representative image number of 2000 [34, 21].

These representative images are randomly selected. Other

details are provided in the project page1.

4.3. Comparison with stateoftheart methods

We provide comparison with other state-of-the-art meth-

ods such as Learning without forgetting (LwF) [25], dis-

tillation and retrospection (D+R) [13], End-to-End incre-

mental learning (E2E) [3], Global Distillation (GD) [21],

iCaRL [34] and maintaining discrimination (MD) [47]. The

upper bound results correspond when we consider all the

task data. Baseline results, when we are not using any dis-

tillation and uncertainty estimation. The CIFAR-100 results

are provided in Table 1 with increment tasks size 5, 10, and

20. The state-of-the-art method’s values in the table have

been evaluated from [21]. In Fig. 2, we have plotted the

accuracy and forgetting of these increment tasks. Similarly,

ImageNet dataset’s results are also provided in Table 2 with

increment tasks size are 5, 10, and 20. In both of the tables,

the baseline refers to the model where distillation loss is not

used; oracle refers to when we store full data samples. ACC

refers to average accuracy (higher is better), and FGT refers

to the amount of catastrophic forgetting, by averaging the

performance decay (lower is better). We followed a similar

approach of [21] to obtain the ACC and FGT. Our Attention

Uncertainty (AU) methods improves 4% from the baseline

method [25] in 5 class increment steps, around 6% improve-

ment as in 10 class increment steps, and around 7% im-

provement in terms of accuracy in 20 class increment steps.

1https://github.com/DelTA-Lab-IITK/

Incremental-learning-AU
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(a)Accuracy plot for 5 class increment (b)Forgetting for 5 class increment

(c)Accuracy plot for 10 class (d)Forgetting for 10 class increment

(e)Accuracy plot for20 class (f)Forgetting for 20 class increment

Figure 2. This figure shows accuracy and forgetting plot for 5 class , 10 class and 20 class increments for CIFAR-100 dataset

Also, we have 1.6% improvement in accuracy in compar-

ison with the state of the art method [3] in 5 steps, 2.8 %

in 10 steps, and 1.5% in 20 steps. Note that this additional

improvement in accuracy is accompanied by the ability to

interpret the model through the obtained by uncertainty es-

timates and the attention map.

Method
5 class 10 class 20 class

ACC FGT ACC FGT ACC FGT

Baseline 44.2 23.6 44.1 21.5 44.7 18.4

LwF-MC 45.6 21.5 47.3 18.5 48.6 15.3

D+R 46.5 22.0 48.7 18.8 50.7 15.1

E2E 47.7 17.9 50.8 13.4 53.9 8.8

GD 50.0 16.8 53.7 12.8 56.5 8.4

Ours-AU 51.2 15.4 54.3 11.9 56.9 8.1

Oracle 68.0 3.3 66.9 3.1 65.1 2.7
Table 2. Results on ImageNet-100. Baseline refers when distil-

lation loss in not used and Oracle refers when we store full data

samples

4.4. Class Incremental Accuracy

For showing the class increment effect in incremental

class learning, we have plotted each incremental step av-

erage accuracy as well as forgetting in Fig. 2 for CIFAR-

100 dataset. The Fig. 2(a) shows for 5 class increments, (b)

for 10 class increments, and (c) for the 20 class increments.

Similarly, for the same CIFAR-100 dataset, we have plotted

the forgetting value for the different models on (d) 5 class

increments, (e) for 10 class increments, and (f) for the 20

class increment task in the Fig. 2. From the figure, it is clear

the proposed uncertainty, and attention distillation based

method outperforms as compare to other state-of-the-art

methods Learning without forgetting (LwF) [25], Progres-

sive distillation and retrospection (D+R) [13], iCaRL [34],

End-to-End incremental learning (E2E) [3] and Global dis-

tillation (GD) [22].

742



Figure 3. Visualization of attention map in CIFAR-100 in differ-

ent task learning stage of 10 class increment setting. Each row

represents the task stage,

Methods ACC FGT

AU 63.81 12.22

AD 64.37 12.03

AU +UD 64.54 11.84

AU + AD 64.52 11.92

AU +UD + AD 65.42 11.43
Table 3. Ablation analysis for different loss functions on CIFAR-

100 dataset for 10 class incremental setup.

λ Model ACC FGT

0.1
AU + AD 64.32 11.97

AU +UD + AD 64.63 11.76

0.5
AU + AD 64.54 11.84

AU +UD + AD 65.42 11.43

1
AU + AD 64.13 12.11

AU +UD + AD 64.25 12.08

Table 4. Ablation analysis for different weights of loss functions

on CIFAR-100 dataset for 10 class incremental setup.

4.5. Effect of Attention and Uncertainty Distillation

To analyze the effect of uncertainty and attention in in-

cremental learning, we provide the ablation analysis of dif-

ferent loss functions in Table 3 for the CIFAR-100 dataset

for 10 class increment setup. Here, for all, we use the

λ = 0.5 for uncertainty and attention distillation loss. In

Table, AU: Aleatoric Uncertainty, AD: Attention Distilla-

tion and UD: Uncertainty Distillation. In this experiment,

we can see that the uncertainty distillation and attention dis-

tillation improve the model performance.

4.6. Effect of weights of Attention and Uncertainty
Distillation loss

To further analyze the effect of attention and uncertainty

on the incremental learning setup, we experiment with dif-

ferent weight values for the loss, and the results are reported

in Table 4. In the table, λ refers to the weight value of un-

certainty and attention distillation. This experiment is per-

formed for the CIFAR-100 dataset and 10 incremental class

setup. We experiment with weight value for 0.1, 0.5, and

1. We can see that when the distillation loss weighted by

0.5 gives better performance in terms of better accuracy and

less forgetting. This is expected because as we increment

the distillation loss’s contribution, it does not perform well

on the current task; similarly, if the weight value is less, it

does not keep the previous task information very well.

4.7. Attention Visualization

In Fig. 3, we provide the attention map visualization for

a given input of different class CIFAR-100 dataset in 10

class increment setting. In each column, we have shown

different instances of an example, while along the column,

we have shown the attention visualization in different step

sizes. For example, in the first row, the attention map is

generated when the model generated an attention map for

a model trained on the first 10 classes. Similarly, the sec-

ond row shows the attention after the model is trained on

till 20 classes in increment setting. Note that visualization

is shown here from the last stage of the attention module.

From the figure, we observe that the attention map is lo-

cated in the object region for each task. The model distills

the attention information to the next task; this helps to avoid

the catastrophic forgetting in incremental learning.

5. Conclusion

In this paper, we consider the task of incremental learn-

ing, where we aim to have models that are able to preserve

their performance across tasks. Several methods have been

proposed for this task; these have mostly considered point

estimates during prediction; for instance, those obtained us-

ing softmax. We show that these methods are susceptible

to be incorrectly certain about performance, and by incor-

porating uncertainty, we are able to obtain a method that

incrementally learns on tasks while also accurately provid-

ing the uncertainty of the model. Further, by incorporating

self-attention, we can also visualize the regions on which

the method attends across tasks. Further, our results show

consistent improvements over the state of the art methods

on standard datasets.
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Ortiz, Andrei Stoian, and David Filliat. Generative models

from the perspective of continual learning. In 2019 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2019.

[24] Yu Li, Zhongxiao Li, Lizhong Ding, Yijie Pan, Chao Huang,

Yuhui Hu, Wei Chen, and Xin Gao. Supportnet: solv-

ing catastrophic forgetting in class incremental learning with

support data. ICLR, 2018.

[25] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE transactions on pattern analysis and machine intelli-

gence, 40(12):2935–2947, 2017.

[26] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. In Advances in

Neural Information Processing Systems, pages 6467–6476,

2017.

[27] Andrey Malinin and Mark Gales. Predictive uncertainty es-

timation via prior networks. In Advances in Neural Informa-

tion Processing Systems, pages 7047–7058, 2018.

[28] Nicolas Y Masse, Gregory D Grant, and David J Freedman.

Alleviating catastrophic forgetting using context-dependent

gating and synaptic stabilization. Proceedings of the Na-

tional Academy of Sciences, 115(44):E10467–E10475, 2018.

744



[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

[30] Badri N. Patro, Mayank Lunayach, Shivansh Patel, and

Vinay P. Namboodiri. U-cam: Visual explanation using un-

certainty based class activation maps. In Proceedings of

the IEEE/CVF International Conference on Computer Vision

(ICCV), October 2019.

[31] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan,

Fahad Shahbaz Khan, and Ling Shao. Random path selection

for continual learning. In Advances in Neural Information

Processing Systems, pages 12669–12679, 2019.

[32] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fa-

had Shahbaz Khan, and Mubarak Shah. itaml: An incremen-

tal task-agnostic meta-learning approach. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13588–13597, 2020.

[33] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and

Tinne Tuytelaars. Encoder based lifelong learning. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 1320–1328, 2017.

[34] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classifier

and representation learning. In Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, pages

2001–2010, 2017.

[35] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress & compress: A scalable

framework for continual learning. In International Confer-

ence on Machine Learning, pages 4535–4544, 2018.

[36] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.

Grad-cam: Visual explanations from deep networks via

gradient-based localization. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 618–626,

2017.

[37] Joan Serra, Didac Suris, Marius Miron, and Alexandros

Karatzoglou. Overcoming catastrophic forgetting with hard

attention to the task. In International Conference on Machine

Learning, pages 4555–4564, 2018.

[38] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon

Kim. Continual learning with deep generative replay. In

Advances in Neural Information Processing Systems, pages

2990–2999, 2017.

[39] Gido M van de Ven and Andreas S Tolias. Generative replay

with feedback connections as a general strategy for continual

learning. arXiv preprint arXiv:1809.10635, 2018.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 30, pages 5998–6008. 2017.

[41] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer,

Bogdan Raducanu, et al. Memory replay gans: Learning to

generate new categories without forgetting. In Advances In

Neural Information Processing Systems, pages 5962–5972,

2018.

[42] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, Zhengyou Zhang, and Yun Fu.

Incremental classifier learning with generative adversarial

networks. arXiv preprint arXiv:1802.00853, 2018.

[43] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and

Alex Smola. Stacked attention networks for image question

answering. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 21–29, 2016.

[44] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. NIN, 8:35–67.

[45] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In Proceedings

of the 34th International Conference on Machine Learning-

Volume 70, pages 3987–3995. JMLR. org, 2017.

[46] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-

tus Odena. Self-attention generative adversarial networks.

In International Conference on Machine Learning, pages

7354–7363, 2019.

[47] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-

Tao Xia. Maintaining discrimination and fairness in class

incremental learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

13208–13217, 2020.

745


