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Abstract

Unsupervised Domain adaptation methods solve the

adaptation problem for an unlabeled target set, assuming

that the source dataset is available with all labels. How-

ever, the availability of actual source samples is not always

possible in practical cases. It could be due to memory con-

straints, privacy concerns, and challenges in sharing data.

This practical scenario creates a bottleneck in the domain

adaptation problem. This paper addresses this challenging

scenario by proposing a domain adaptation technique that

does not need any source data. Instead of the source data,

we are only provided with a classifier that is trained on the

source data. Our proposed approach is based on a gen-

erative framework, where the trained classifier is used for

generating samples from the source classes. We learn the

joint distribution of data by using the energy-based model-

ing of the trained classifier. At the same time, a new classi-

fier is also adapted for the target domain. We perform var-

ious ablation analysis under different experimental setups

and demonstrate that the proposed approach achieves bet-

ter results than the baseline models in this extremely novel

scenario.

1. Introduction

Deep learning models have been widely accepted in most

of the computer vision tasks. These models, however, suf-

fer from the problem of generalization due to dataset biases.

As a result, a model trained on one dataset often performs

poorly on other datasets [60]. Domain adaptation methods

try to resolve these issues by minimizing the discrepancy

between the two domains. One possible way to minimize

the discrepancy is by obtaining domain invariant features.

These features are such that the classifier trained on one

domain performs equally well on the other domains. Do-

main invariant features are obtained by introducing some

auxiliary tasks to minimize the distribution discrepancy of

domains. To train the auxiliary task, all existing domain

adaptation approaches require access to the source datasets.

The source and target datasets should both be available dur-

ing the adaptation process. Nevertheless, this is not always

possible in several practical scenarios. The reasons could be

memory storage requirements, challenges in sharing data,

privacy concerns, and other dataset handling issues. For

example, the popular dataset, like Image-Net, consists of

nearly 14 million images requiring hundreds of gigabytes

for storage. Another concern is related to the privacy of

the dataset. In some cases, the sensitive dataset can not be

shared to adapt the model for a new dataset. These limi-

tations of the traditional domain adaptation models create a

bottleneck to use it for the practical scenarios. Thus, assum-

ing the availability of the source dataset is a severe issue in

existing domain adaptation models.

In this paper, we propose a domain adaptation model

that does not require access to source datasets at all points

of time. Specifically, we assume that we have access to

a classifier that is trained on the source dataset. Only the

accessibility of the classifiers instead of the whole dataset

makes the model utility in the practical scenarios. We utilize

the pre-trained classifier via modeling it as an energy-based

function to learn the joint distribution [15]. We also use a

generative adversarial network (GANs) to learn the under-

lying data distribution of the source dataset in conjunction

with this pre-trained classifier. Once the generative model is

trained using the pre-trained classifier, we proceed to gener-

ate labeled data-points that can apply in the adaptation task.

We thus eliminate the need for access to the source dataset

during adaptation. These generated samples can be treated

as a proxy samples to train the domain adaptation model.

We learn a generative function from a discriminative func-

tion by modeling it as an energy-based function. The energy

of it is defined with LogSumExp() values [15]. Another

discriminative property of the classifier can be used with

cross-entropy loss to train the generative function. Thus,

the proposed method fully utilizes the information of the

pre-trained classifier for the adaptation.

Figure 1 visualized the proposed domain adaptation

framework. In Figure 1(a) shows the distributional mis-

match between source and target domain while in (b) the

dummy source samples are generated using the pre-trained

classifier, and the last adaptation stage is shown in (c),
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Figure 1: Illustration of proposed domain adaptation methods: (a) Without adaptation, the classifier trained on the source

data can not correctly classify the target samples. (b) Proxy samples are generated using the trained classifier. (c) Adaptation

of classifier using the proxy samples(generated). In the adaptation algorithms, only the proxy samples and target samples are

used, source samples are never used in the adaptation process (best viewed in color).

where the classifier is adapted for the target domain using

the dummy labeled samples.

The main contributions of the proposed framework are

as follows:

• We provide a generative framework to tackle the

source data free domain adaptation problem.

• The trained classifier is treated as an energy-based

model to learn the data distribution along with a gen-

erative adversarial network.

• We show that the generated domain impression ob-

tained using the pre-trained classifier can be applied

to other existing domain adaptation methods.

• We provide detailed ablation analysis for the proposed

model to demonstrating its efficacy. We also provide

comparisons with the existing baselines that use full

source sample information. Our method is comparable

to these baselines without using the source samples.

2. Literature Survey

Domain adaptation has been widely studied in the litera-

ture. All the domain adaptation frameworks try to minimize

the discrepancy of source and target domain [68, 52, 12, 36].

Reconstruction has been explored as in DRCN [13])and it’s

variants are designed to deal with two tasks, viz., classifica-

tion and generation simultaneously [17, 53].

Adversarial Domain Adaptation: Adversarial methods

for generating images (GANs) [14] were proposed a few

months earlier to adversarial methods for domain adaptation

using a gradient reversal layer (GRL) by Ganin and Lem-

pitsky [12]. Adversarial domain adaptation was extended

by other frameworks such as ADDA [61], TADA [64] and

CADA [25]. These methods also suffer from the mode

collapse problems. To address the mode collapse prob-

lem, multi-discriminator (MADA) [47], CD3A [24] and

other types of discriminator based methods have been pro-

posed [26, 47, 64]. Recently there are other adversarial loss

based domain adaptation methods [8, 59, 33] that have been

proposed to solve the domain adaptation problem more ef-

ficiently. In the drop-to-adapt method [29] leverages adver-

sarial dropout to learn strongly discriminative features by

enforcing the cluster assumption. The augmented feature-

based method [63] proposes to minimize the discrepancy

between two domains. A conditional GAN based model has

been explored in [18] for better semantic information. A

collaborative and adversarial network (CAN) [76] has been

proposed through domain-collaborative and domain adver-

sarial training of neural networks to learn domain informa-

tive features. Feature adaptation alone is not sufficient for

adaptation sometimes. So classifier adaptation based meth-

ods are also introduced. Transferable adversarial training

(TAT) [35] generates transferable examples to fill in the gap

between the source and target domains and adversarially

trains the deep classifiers. In [65], Bayesian uncertainty be-

tween source and target classifier is matched to adapt the

classifier.

Privacy Concerned Domain Adaptation: There have

been works presented to preserve the privacy of data in the

learning process [1]. Work presented in [30, 20] deals with

the privacy concerns of data in domain adaptation. These

models transform the data into privacy-preserving domains

using some metric like optimum transport [11]. The Feder-

ated Transfer Learning [69, 48] promises to combine mul-

tiple source data in the private mode. All the works so far,

however, require access to the source data for adaptation.

Source data free adaptation method for off-the-self classi-

fier [44] improves the performance of the off-the-shelf tool

in the target domain by accessing some of the labeled data

for the target domain. Other source data free adaptation
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methods [9] are also applicable where source data is absent,

but again they assume access to some of the target labels.

By utilizing the classifier’s information, the model can also

generate samples [15].

Adversarial Attacks: The adversarial learning framework

is also well explored in the adversarial attacks and perturba-

tions [23, 40]. These methods have been further extended

for obtaining the class and data impressions [41, 42]. The

knowledge of the classifier is also used for new unseen class

samples [2]. A recent work [22] suggests a domain adapta-

tion model where source data and target data never occurred

together and where class boundaries are learned in the pro-

curement stage, while adaptation occurs in the deployment

stage. However, though some works aim to reduce the need

for source data, no work considers the case where source

data samples are not used for training, and target labels are

also not available.

Generative Models: The generative approaches have

successfully applied in many zero-shot recognition algo-

rithms [66, 74]. In [21], authors generate novel exam-

ples from seen-unseen classes using the variational encoder-

decoder. Other VAE based generative frameworks have

been used in [58, 39]. Similarly, in [55], adversarial learn-

ing has been applied in generalized zero-shot learning. Gen-

erative adversarial network [14, 49] are very popular due to

its capabilities of generating natural images and learn the

data distribution efficiently. Conditional GAN [38] also ap-

plied in many application such as cross-modal [75, 67], im-

age in painting [46, 72, 71] and colorization [43]. Very re-

cently, work for generative data from the trained classifier

is proposed in DeepInversion [70], where the statistics of

the batch normalization layer are used to obtain the training

data, which could enforce the constraint on the trained clas-

sifier. Similarly, the work proposed in [54] generated the

images from a robust classifier. The robust classifiers are

trained using the robust optimization objective [37]. Other

works related to data-free distillation are resented in [7],

where a student network is trained without using the data.

Similarly authors of [42] propose the distillation in zero shot

learning framework.

Recently, there are source data free adaptation has been

presented. In [32], a generative model is used to h generated

target-style data using clustering-based regularization loss.

SHOT [34] uses information maximization and self super-

vised pseudo-labeling to implicitly align representations of

target and source without accesing the source data.

3. Background: Generative model from Dis-

criminative model

The objective of the discriminative model it to obtain the

class conditional distribution p(y|x), it focuses on the clas-

sification boundaries. Here x is given input and y is la-

bel. The generative models learn the joint distributions of

p(x, y) from the data generation process. we rewrite the log

likelihood of joint distribution distribution using the Bayes

theorem as [15]

log pθ(x, y) = log pθ(x) + log pθ(y|x) (1)

Here θ is the parameter of the model. The class-conditional

distribution pθ(y|x) are obtained by cross-entropy loss from

the trained-classifier. The log pθ(x) can be expressed in

form of energy based models [28]. We define the log pθ(x)
as energy based functions as discussed in [15]. The deriva-

tive of the log-likelihood with respect to θ can be expressed

as [15]

∂ log pθ(x)

∂θ
= Epθ(x′)

[

∂Eθ (x
′)

∂θ

]

− ∂Eθ(x)

∂θ
(2)

Energy functions map an input x to a scalar. We define

the energy function by LogSumExp(·) of the logits of the

trained classifier similar to [15]

Eθ(x) = − log
∑

x∈Pθ(x),y

exp (Pc(x)[y]) (3)

Pc(x)[y] indicates yth index of output of classifier Pc(x).

4. Source Data Free Adaptation

In this section, we discuss the source data free adapta-

tion technique using a trained classifier. This problem is

divided into two parts: the first part is to obtain the samples

from the classifier, we call it the Generation module. The

second part is to adapt the classifier for the target domain,

called Adaptation module. These two modules are shown in

Figure 2.

For the generation module, we work with the conditional

GAN framework [38] as a generative function to obtain the

samples. The cross-entropy loss is used to obtain the do-

main impression and samples with class boundaries from

the classifier. Note that by only the cross-entropy loss with

GAN, we can enforce that generated samples follow only

the conditional distribution p(y|x). To learn the proxy sam-

ples of source data distribution, we model the joint distribu-

tion p(x, y) defined in Eq. 1. For the adaptation module, we

use the adversarial learning framework to make the feature

invariant to the target domain with the generated data using

a discriminator.

4.1. Problem Formulation

The source data free domain adaptation problem can be

formulated as follows. We consider a classifier Pc, which is

trained on the source dataset Ds for the classification task.

The assumption or constraint is that the source dataset is
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Figure 2: Source Data free Domain Adaptation: Generator (G), GAN discriminator(Dg), Feature extractor (F ), Classifier

(C) and Domain discriminator (Dd) are trainable while the pre-trained Classifier (Pc) is set to frozen. z is the latent noise

vector. GRL is gradient reversal layer [12].

not available for adaptation. We are only provided the un-

labeled target dataset Dt at training time. We further as-

sume that the Ds comes from a source distribution S and Dt

comes from a target distribution T . We assume that there

are Nt unlabeled target data points.

4.2. Proposed Model

In the proposed method, we divide the model into two

parts; one is a Generation module, and the second one is an

Adaptation module.

Data Generation Module: The proxy samples are obtained

using a GAN framework with utilizing the source classifier.

The objective is to learn the joint distribution p(x, y) of the

source data. The basic idea behind this approach is to obtain

the samples that can be perfectly classified by the classifier.

We use a parametric data generative neural network that is

trained to maximize the log-likelihood defined in Eq. 1. In

this equation, the first term can be maximized using the

derivative defined in Eq. 2. The second term is optimized

using the cross-entropy loss. A generative adversarial net-

work, in conjunction with a trained classifier, is also applied

to generate better samples. The vanilla GAN [49, 14] is an

unconditional GAN and thus is not suitable here; because it

is not guaranteed in the Vanilla GAN that only produce the

specific desired class examples. So in the proposed gener-

ation framework, we use a conditional generative adversar-

ial network [38], where the condition can be given as one-

hot encoding and the latent noise vector to the generator to

produce diverse samples. For obtaining the class-specific

samples, we train this conditional generator with the cross-

entropy loss of the classifier. In this case, we do not update

the parameters of the pre-trained classifier; we only update

the generator to produce the samples that can be classified

as a given class vector. This formulation produces samples

that may not be considered as natural samples, and it also

produces adversarial noise examples. Thus these samples

can not be used for further adaptation tasks. To obtain natu-

ral samples, we use an adversarial discriminator; it is trained

with the help of target domain samples. The generator’s

parameters are updated with the adversarial loss from the

discriminator and cross-entropy loss of the classifier.

Domain Adaptation Module: The domain adaptation

module consists of a shared feature extractor for source and

target domain datasets, a classifier network, and a discrimi-

nator network similar to [12]. The discriminator’s objective

is to guide the feature extractor to produce domain invari-

ant features using a gradient reversal layer. In the proposed

framework, the domain discriminator is trained to discrim-

inate between the generated labeled samples and the unla-

beled target samples. Similarly, we fine-tune the trained

classifier for the labeled generated samples. In this mod-

ule, all networks, i.e., feature extractor, classifier, and dis-

criminator, have learnable parameters. We also have exper-

imented with the generation and adaptation processes sep-

arately. In this variant, we first train the generative model

using the likelihood and GAN objective functions. Then

generative models parameters are set to be frozen and ob-

tain samples. After that, these samples are used for adapta-

tion. Here we have to fix the number of samples required

for adaptation. The adaptation performance depends upon

the number of the samples, as shown in the ablation study

section in Table 4.

4.3. Loss functions

The proposed Source Data free Domain Adaptation

(SDDA) model is trained with these following losses.

Likelihood based loss (Llik): The objective is to learn a

joint distribution of the source data from a discriminative
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model. This process required a maximize the log-likelihood

of data obtained from the generative models as defined in

Eq. 1. Thus loss function is written as

Llik = − log pθ(x) (4)

The derivative of it is obtained from Eq. 2.

Adversarial Loss (Ladv): This loss is used to train the

GAN discriminator to discriminate between real data and

data generated through the generator. The generator and

GAN discriminator are adversaries. Here ai is a target data,

sampled from T , y is the generated class label and z is the

latent noise vector, sampled from the normal distributions

Pz . Loss for the generator is defined as:

Lg
adv =

∑

i

log(1−Dg(G(zi, yi))) (5)

Similarly loss for the GAN discriminator is defined as:

Ld
adv = (

∑

i

logDg(G(zi, yi)) +
∑

ai∼T

log(1−Dg(ai)))

(6)

Cross-Entropy Loss (Lcrs): This loss is obtained by pass-

ing the generated images to the pre-trained classifier. The

predicted output of the pre-trained classifier is compared

with the class vector that is input to the generator. This

loss does not update the parameters of pre-trained classifier.

It only updates the parameters of the generator to produce

class consistent images.

Ccrs =
1

Ng

∑

gi∈Dg

Lc(Pc(gi)), yi) (7)

Where gi = G(zi, yi) is a generated image sample. Lc

is the tradition cross entropy loss. Ng are the generated

samples. Pc is the pre-trained classifier.

Domain Discriminative Loss (Ldis): This loss is used to

obtain domain invariant features from the feature extractor.

It is a binary classification loss between the source and tar-

get samples. The discriminator is trained with the gradi-

ent of loss. In contrast, the feature extractor is trained by

the negative gradient of this loss (using gradient reversal

layer [12]) to obtain domain invariant.

Ldis =
1

N

∑

xi∈Dg∪Dt

Lc(Dd(F (xi)), di) (8)

N is the total number of generated and target samples. di
is the domain label, where di = 0 if xi ∈ Dg and di = 1
if xi ∈ Dt. Lc is the normal cross-entropy loss.

Classification Loss (Lcls): The adaptive classifier is trained

using the classification loss of generated samples. We up-

date this classifier’s parameters based on the loss gradient.

The gradient of this loss is also used to train feature extrac-

tor to generate class discriminative features.

Lcls =
1

Ng

∑

gi∈Dg

Lc(C(F (gi)), yi) (9)

Here C is the classifier network. Ng are the total number of

generated samples.

Total Loss: The total loss is given as below

L(G,F,Dd) = δLlik+α∗Lg
adv+β∗Lcrs+λ∗Ldis+µ∗Lcls

(10)

where δ, α, β, λ and µ are the tuning parameters. In

our experiments, α and β are set to 1 and exponentially de-

creased to 0 while µ is kept 0 until 25 epochs, and later it is

set to 1. λ is the adaptation parameter. It is set to 1 through-

out the experiments. we set δ = 0.1 in all the experiments.

We also optimize the parameters of the adversarial discrim-

inator by minimizing the loss defined in Eq. 6 for a given

generator’s parameters.

5. Results and Discussion

5.1. Datasets

MNIST→ MNIST-M: We experiment with the MNIST

dataset [27] as source data. In order to obtain the target

domain (MNIST-M) we blend digits from the original set

over patches randomly extracted from color photos from

BSDS500 [3]. Due to this, a domain gap is observed, and

performance is poor on the MNIST-M classifier. There are

60k samples used to train the MNIST classifier, and 59k

samples of MNIST-M are used for adaptation. For adapta-

tion results are shown in Table 1.

SVHN→ MNIST: In this adaptation task, source data

(SVHN [45]) and target data (MNIST) both have ten-

classes. In this setting, we are provided the classifier trained

on the SVHN and unlabeled MNIST dataset. The provided

classifier is trained on the full SVHN dataset, and we adapt

the full MNIST dataset. There are 60k samples present in

the MNIST dataset, while SVHN has 73K samples. The

results are reported in Table 1.

MNIST→ SVHN: For the MNIST-SVHN transfer task,

the provided pre-trained classifier trained on the MNIST

dataset. We use the full SVHN dataset. The classifier is

also trained on the full MNIST dataset. The results are re-

ported in Table 1.

MNIST→ USPS: The USPS contains 16x16 grey im-

ages. We resized them to 32x32. In this experiment, we use

full MNIST and USPS images as the target set. The results

are reported in Table 1.

Office-31 [50]: It contains three domains Amazon (A),

Webcam (W), and DSLR (D). Each domain has 31 object

classes, and we evaluate all the six adaptation task. We ob-

tain the features from ResNet-50 [16], pre-trained on Ima-

genet.
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Source Data Required Method MNIST→MNIST-M SVHN→MNIST MNIST→SVHN MNIST→USPS

DANN [12] 81.5 71.1 35.7 89.1

CMD [73] 85.5 86.5 -

kNN-Ad [56] 86.7 78.8 40.3

DRCN [13] - 82.0 40.1 91.8

Yes PixelDA[5] 98.2 - -

ADDA [61] - 76.0 -

ATN [51] 94.2 86.2 52.8 -

MCD[52] - 96.2 -

JDDA[6] 88.4 94.2 -

UDA [10] 99.5 99.3 89.2

3CATN [31] - 98.3 - 96.1

Baseline 59.4 67.2 37.7 82.5

No SDDA(ours) 85.5 75.5 42.2 89.9

SDDA-P(ours) 84.1 76.3 43.6 88.5

Table 1: Classification accuracy (%) comparisons with baseline and other state-of-the-art methods on standard digit dataset

using the proposed method. Note that the proposed models do not use the source samples for adaptation, while all state-

of-the-art methods access the source data. The baseline is without the adaptation method. SDDA-P is referred to when we

initialized the classifier with the weight of a pre-trained classifier.
Dataset Performance

MNIST→MNIST-M 87.5

SVHN→MNIST 97.8

MNIST→SVHN 84.6

MNIST→USPS 95.3

Table 2: Classification performance on source data after the

adaptation.

5.2. Performance Evaluation

Table 1 shows the results for different adaptation tasks

for the proposed method. In the table, baseline refers to the

case when there is no adaptation performed. This is one of

the pioneering efforts to solve domain adaptation without

accessing source data to the best of our knowledge. The

SDDA-P is referred to when the classifier is initialized with

the pre-trained classifier weight, while SDDA is when it is

initialized randomly. Note that all the previous state-of-the-

art methods work when source data is accessible. Table 1

shows that the proposed model performs comparably to the

baselines that make use of full source information. Ta-

ble 2 shows the classifier’s performance on source dataset

after the adaptation. In target data, we achieve a boost

in the performance from the baselines; for example, from

MNIST →MNIST-M adaptation task, we obtained ∼ 25%

improvement. For the other adaptation task, we also ob-

tained improvement with a large margin. In Table 4, the

results for the other variant in the training method, we call

it adaptation after the generation (SDDA-G), are presented

for the MNIST→MNIST-M and MNIST→SVHN adapta-

tion tasks. In this method, we first learn the generative

model, and after that, samples are generated to train the

adaptation module. The number in the bracket indicates the

number of generated samples used for the adaptation. We

can observe that initially, the performance improves when

we increase the number for generated samples, but later it

slightly deteriorates.

For Office-31 dataset, the adaptation results on all the six

tasks are reported in Table 3. In the dataset adaptation, we

generate the features of corresponding images from the gen-

erator. We can observe that we can achieve the ∼ 3% and ∼
1.5 % improvement over the baseline without accessing the

source dataset on hard adaptation task A→W and A→D.

We implement on Torch-Lua framework.

6. Analysis

6.1. Ablation study on Loss Functions

In Table 5, we show the ablation study of different

loss functions used by the proposed model for the MNIST

→MNIST-M adaptation task. We can observe that by in-

troducing the likelihood-based loss, we get better improve-

ment. The generative adversarial loss is very crucial to in-

corporate; the model does not converge without it. The rea-

son is that the generator can not be trained without any ad-

versarial discriminator.

6.2. Ablation on other Domain Adaptation models

This section provides the results for different domain

adaptation methods such as MMD [62], IDDA [26],

Wasserstein DA [57] and GRL [12]. In these experiments,

we use DCGAN architecture for both generator and clas-

sifier. This analysis reveals that the proposed method can

be plugged into any domain adaptation framework. Results

are shown in Table 6 for the MNIST→MNIST-M adapta-

tion task
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Source Data Required Method A→W D→W W→D A→D D→A W→A Avg

DANN [12] 81.2 98.0 99.8 83.3 66.8 66.1 82.5

Yes GTA [53] 89.5 97.9 97.9 87.7 72.8 71.4 86.5

DADA [59] 92.3 99.2 100. 93.9 74.4 74.2 89.0

Baseline 79.9 96.8 99.5 84.1 64.5 66.4 81.9

No SDDA(ours) 82.5 99.0 99.8 85.3 66.4 67.7 83.5

Table 3: Classification accuracy (%) comparisons with baseline and other state-of-the-art methods on Office-31 [50] dataset

using proposed method. Note that, the proposed models do not use source samples for adaptation, while all other methods

utilize the source data for adaptation.
Method MNIST→MNIST-M MNIST→SVHN

Source Only(0 samples) 59.4 37.7

SDDA-G(300 samples)) 64.3 38.5

SDDA-G(2000 samples)) 61.8 39.6

SDDA-G(6000 samples)) 70.5 38.8

SDDA-G(40000 samples)) 68.7 39.2

Oracle 82.5 39.8

Table 4: Classification accuracies for MNIST→MNIST-

M and MNIST→SVHN transfer task for different gener-

ated samples for Adaptation after Generation variant. Our

model is SDDA-G with the number in bracket indicating

the number of generated samples used for adaptation. Ora-

cle refer, when actual source data is used for adaptation.

Llik Ldis Lg
adv Lcrs Lcls Accuracy

- -
√ √ √

80.6

-
√ √ √ √

83.1√ √
-

√ √
not converged√ √ √ √ √

85.5

Table 5: Ablation study of different loss functions for the

MNIST→MNIST-M adaptation task.

6.3. Distribution Discrepancy

The domain adaptation theory [4] suggests A-distance as

a measure of a cross-domain discrepancy, which, together

with the source risk, bounds the target risk. The proxy A-

distance is defined similar to [47] as dA = 2(1−2ǫ), where

ǫ is the generalization error of a classifier (e.g. kernel SVM)

trained on the binary task of discriminating source and tar-

get. Figure 3 shows dA for MNIST→ MNIST-M adaptation

task between source-target, source-generated,and target-

generated domains in before adaption and after the adapta-

tion. We can infer from the figure that source and generated

domains are always closer. The target domain is closer after

the adaptation as compare to before adaptation model.

6.4. Performance on number of Generated Samples

We experiment on the number of generated samples re-

quired for the adaptation. In this setting, we first generate

the samples without the adaptation module. Both genera-

tion and adaptation modules are trained separately. We have

experimented with this variant in the MNIST→ MNIST-M

Figure 3: Proxy distance between source-target (S&T),

source-generated (S&G) and target-generated (T&G) do-

mains before and after the adaptation for MNIST→
MNIST-M adaptation task. In figure, S, T, and G stands

for source data, target data, and generated data respectively.

Method Source Only Full Source data Source free(Proposed)

MMD [62] 59.1 64.3 62.5

IDDA [26] 59.1 82.3 83.0

WDA [57] 59.1 82.8 79.5

GRL [12] 59.1 82.5 85.5

Table 6: Performance of different domain adaptation model

on MNIST→MNIST-M adaptation task. Source only: when

there is no-adaptation, Full source data: full source data is

used for adaptation, the Proposed method: samples are gen-

erated from the trained classifier, and for adaptation, these

dummy samples are used.

λ 0.1 0.3 0.5 0.8 1 1.5 2

SDDA-G(6k) 66.3 66.5 68.7 70.8 70.5 66.9 -

SDDA-P 78.9 80.2 84.0 84.0 84.1 79.3 77.8

SDDA 82.8 83.4 83.5 83.2 85.5 82.6 82.3

Table 7: Ablation study of adaptation parameter λ for

MNIST→MNIST-M adaptation task.

and MNIST → SVHN adaptation tasks with different num-

bers of generated samples. The performance is reported in

Table 4. From the table, we can observe that we obtain the

best performance MNIST→ MNIST-M when the number of

generated samples is selected 6000.
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Figure 4: Visualization of source data (MNIST), Target data (MNIST-M)and Generated data for class digit 0-9. We can

observe that generated images have proper class discrimination.

No Adapt Adapt

around Src around Tgt around Src around Tgt

Density 0.771 0.769 0.734 0.776

Table 8: Density estimation generated samples

around the source (Src) and target (Tgt) domains for

MNIST→MNIST-M adaptation task on adapted and

non-adapted features.

6.5. Image Generation Visualization

In Figure 4, we provide visualization of generated im-

aged during the adaptation process for MNINT→MNIST-

M adaptation task. Here MNIST data is source data, and

MNIST-M data is target data. We can observe that the gen-

erated images look like the target samples. The reason is

that we use the target samples as real data for training the

GAN. We can also observe that the generated images are

class discriminative, i.e., each sample has one class. This

implies that the cross-entropy loss from the pre-trained clas-

sifier helps generator to provide the class structure so it can

avoid the mode collapsed problem. The third observation

is that all the examples are diverse so that we can generate

sufficient distinct examples to train the classifier.

6.6. Ablation Study with Adaptation parameter λ

We provide ablation of proposed method for value of λ

in Table 7 for MNIST→MNIST-M adaptation. It can be ob-

served in the adaption; the proposed model is not very sen-

sitive to the adaptation value. Performance is better when

we choose λ = 1 for the SDDA model.

.

6.7. Density Estimation of Generated samples

The objective of density estimation is to estimate the

closeness of generated samples with source and target do-

mains. We estimate density in both cases i.e around the

source data and the target data [19]. For obtaining it,

the features are obtained by forward images till convolu-

tion layers. We analyze the density estimation using both

adapted and non-adapted features. The generated samples

density around the source domain is the average number of

samples, which can be found within a ǫ neighborhood of

source samples. These results are reported in Table 8. This

density estimation shows that the generated samples have a

similar density with source and target data using the non-

adapted model for features. It shows that the distribution of

generated samples is equally close to both the source and

target dataset. However, in adapted features, the generated

samples’ density is slightly higher around the target domain.

7. Conclusion

We propose a source data-free adaptation method that

solves one of the critical challenges that existing domain

adaptation techniques face, i.e., the availability of source

data. The proposed approach is generic, i.e., it can be ap-

plied with any existing domain adaptation models. The pro-

posed work is one of the novel attempt that tackles the do-

main adaptation problems without the source data’s avail-

ability. From the results obtained, we believe that the pro-

posed model provides an exciting avenue for further re-

search on this problem.
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