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Abstract

While ground truth depth data remains hard to obtain,
self-supervised monocular depth estimation methods enjoy
growing attention. Much research in this area aims at
improving loss functions or network architectures. Most
works, however, do not leverage self-supervision to its full
potential. They stick to the standard closed world train-test
pipeline, assuming the network parameters to be fixed after
the training is finished. Such an assumption does not allow
to adapt to new scenes, whereas with self-supervision this
becomes possible without extra annotations.

In this paper, we propose a novel self-supervised Con-
tinuous Monocular Depth Adaptation method (CoMoDA ),
which adapts the pretrained model on a test video on the fly.
As opposed to existing test-time refinement methods that use
isolated frame triplets, we opt for continuous adaptation,
making use of the previous experience from the same scene.
We additionally augment the proposed procedure with the
experience from the distant past, preventing the model from
overfitting and thus forgetting already learnt information.

We demonstrate that our method can be used for both
intra- and cross-dataset adaptation. By adapting the model
from train to test set of the Eigen split of KITTI, we achieve
state-of-the-art depth estimation performance and surpass
all existing methods using standard architectures. We also
show that our method runs 15 times faster than existing
test-time refinement methods. The code is available at
https://github.com/Yevkuzn/CoMoDA.

1. Introduction

Depth estimation is a fundamental component of any ap-
plication involving navigation (e.g., autonomous driving or
robotics). Prediction of depth maps from a single image is,
however, an ill-posed problem, due to the lack of informa-
tion on the three-dimensional structure of the scene. Despite
this fact, humans perform remarkably well at estimating dis-
tances to objects from a single view. Recently, noticeable
progress was achieved in the development of learning-based
depth estimation methods, which presumably make use of
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Figure 1. Relative § < 1.25 improvement achieved by CoMoDA
on different test videos when adapting from train to test set of
KITTI [! 1] (intra-dataset) and from KITTI to NuScenes [3] (cross-
dataset). The horizontal axis represents the test videos sorted by
performance gain.

some latent depth cues also utilized by humans.

1.1. Supervised methods

Learning depth in a supervised way requires signifi-
cant amounts of ground truth, which is usually obtained
by RGB-D cameras or LIDARs. One of the first super-
vised learning-based approaches to depth estimation was
proposed by Saxena et al. [33]. Eigen et al. [8] employed
a deep neural network to learn depth end-to-end. Laina et
al. [21] proposed a stronger encoder-decoder architecture
combined with a BerHu loss. Other notable improvements
are based on architectural refinements [9], the use of tem-
poral cues [47] and cross-modal (e.g. semantics, normals)
consistencies [48, 44].

The ground truth depth maps produced by the sensors
may show several imperfections, such as sparsity, measure-
ment noise, the absence of measurements due reflective sur-
faces, etc. In order to overcome this issue, Kuznietsov et
al. [20] proposed to leverage stereo cues as an additional
supervisory signal during training.

In outdoor scenarios, the high cost of LIDAR is another
drawback. To alleviate the need for metric depth ground
truth, Chen et al. [6] propose to use annotated depth rank-
ings instead. Alternatively, synthetic data can be used to
reduce the amount of ground truth required for training. Nu-
merous methods [25, 51, 28, 2, 17] utilize domain adapta-
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tion techniques to close the gap between synthetic and real
predictions.

1.2. Self-Supervised Methods

As the collection of depth data is cumbersome, and in-
volves the use of specifically designed sensors, researchers
have begun to explore more viable alternatives to train depth
prediction networks. Xie et al. [41] formulated the depth
estimation task as a view synthesis problem, which requires
only stereo image pairs as a supervisory signal. As stereo
images are arguably more easy to acquire than LIDAR, this
poses an interesting alternative to the supervised depth es-
timation methods from Section 1.1. A follow-up work by
Garg et al. [10] extended the method from [4 1] by regress-
ing continuous depth instead of discrete values. Addition-
ally, they proposed to add a smoothness regularization term.
Godard et al. [12] further improved these results by adding
left-right consistency and SSIM [39] terms to the image re-
construction loss. Notable improvements were achieved by
enforcing left-right consistency between intermediate fea-
ture maps [46], cycle-consistency [29, 40], or using tem-
poral cues [22, 46]. Some other self-supervised methods
[30, 1] utilize GANs [14] to improve image synthesis, thus
also improving the predicted depth quality.

Zhou et al. [53] propose to reduce the supervision to
monocular videos by reconstructing a video frame from its
neighbors. Since there is no fixed known baseline in this
problem setup, they train depth and ego-motion networks
simultaneously.

Supervision with monocular videos allows to use large
amounts of low cost or even free data for training. How-
ever, with the availability of data also come the following
limitations: (1) the monocular supervision is disturbed by
moving objects; (2) scale-ambiguity, due to unknown trans-
formations between frames.

To overcome the problem of moving objects, [53]
learned to estimate an explainability mask, that is supposed
to filter out the supervisory signal from dynamic objects or
areas reprojected outside of the image. A similar method
was developed by Vijayanarasimhan et al. [37]. Unlike
[53], they attempt to train a network for estimating motion
for a predefined number of objects. Yin and Shi [45], train
a residual flow network to refine the rigid flow estimated
from the predicted depth in an end-to-end manner. This im-
proves flow estimation, however, similarly to [53] and [37],
has little or no effect on moving objects.

Godard et al. [13] introduce significant improvements
to the loss function by handling occlusions and neglecting
supervision from image areas that do not change signifi-
cantly over time. The latter noticeably reduces the nega-
tive effect of objects moving similarly to the ego-vehicle.
Casser et al. [5] and Gordon et al. [15] make use of a
pretrained MaskRCNN [32] to produce masks of possibly

moving objects and predict the motion for those separately.
[7, 31, 54, 26] additionally train the optical flow network,
and utilize the discrepancy between the estimated non-rigid
flow and the flow from depth to suppress the effects of mov-
ing objects.

Scale ambiguity limits the applicability of the methods
supervised with monocular videos to real-world scenarios,
where absolute measurements are desired. To produce ab-
solute depth, these methods require depth priors. Such pri-
ors are normally not available without the use of additional
depth sensors. Guizilini et al. [16], along with architectural
improvements, proposed to use a velocity supervision term
to enable the learning of scale.

Due to the intensive research of self-supervised depth
estimation, the gap to supervised performance is getting
smaller. Yet, the previous methods mainly focus on im-
proving the model training, and leave the test-time under-
explored. In particular: (1) the use of video data beyond
training is currently limited to architectural (RNNs [36]);
(2) only few methods [7, 5] use self-supervision at test time
to improve their predictions, but they tune their models on
isolated frame triplets only, resetting the model parameters
for every new frame'. Without weight reset, the perfor-
mance drops substantially.

Similarly to this work, Li et al. [23] and Zhang et al. [50]
proposed to adapt depth and odometry continuously. How-
ever, the experimental setup of these concurrent works is
different from ours, which makes the direct comparison to
them not possible.

1.3. Our Contribution

Inspired by continual learning and the recent advances
in stereo matching [34, 35, 52, 49], we leverage both self-
supervision and long-term video information at test time.
More specifically:

e we propose to adapt depth and ego-motion estimators
continuously on monocular videos (in contrast to the
isolated fine-tuning [5, 7]);

e we introduce a ’baseline’ adaptation procedure
adopted from stereo matching approaches, yet we ob-
serve it is sensitive to overfitting to short video seg-
ments;

e 5o next, we incorporate the experience from the distant
past in a replay buffer fashion [24], effectively mitigat-
ing the consequences of overfitting and thus stabilizing
the adaptation.

Adapting the model continuously allows us to benefit from
the data previously observed in a video and perform only
one model update per frame, which results in an order of
magnitude faster runtime compared to [5, 7]. We perform
an extensive evaluation of our method and demonstrate the

IThe weight reset is not mentioned in [5], however, we refer the reader
to the official code repository (cfr [4] , 1.321)
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state-of-the-art performance among depth estimation ap-
proaches supervised with monocular videos.

2. Method

In this section we provide a detailed overview of the pro-
posed CoMoDA method. We start with explaining the back-
ground for self-supervised depth estimation with monocular
videos.

2.1. Warping

Given a video recorded by a moving camera, a recon-
struction Is_¢ of a target frame I at time ¢ can be ob-
tained from a source frame I at time s by bilinear interpo-
lation over the reprojected image coordinates (also known
as warping): A

Isat(pt) = Is(f’s)a (D
where Pg is the reprojection of point py into frame Is. To
obtain the mapping from p¢ to Ps, Py is first backprojected
into 3D point P using camera intrinsics matrix K and the
depth map Dy corresponding to It. Then P is transformed
to account for camera motion M _,5 and projected onto the
image plain:

Ps ~ KM_s D¢ (pe) K™ 2
————
P
2.2. Loss
Zhou et al. [53] propose to optimize depth estimator
Ep(Is) = Ds and ego-motion estimator Epf(Ig,Is) =

M;_s simultaneously, using the discrepancy between I
and I as a supervisory signal. The typical inputs for
the corresponding loss are the triplet of consecutive video
frames, the depth map D predicted for the central frame t
and the reconstructions of Iy obtained from its neighbors Ig
via warping.

We build our loss upon Monodepth2 [13] as one of the
best performing and reliably reproducible depth estimation
methods. In order to obtain absolute depth, we augment
their loss with a velocity supervision term from [16]. In
driving scenarios, such an additional supervision is usually
possible without extra expense, since most cars already have
velocity measuring systems on board. Our total loss is for-
malized by Eq. 3:

L="Lrec+ 'Y‘Csm + ALyer 3)

Image Reconstruction Loss. L,... used by [13] can be de-
fined as auto-masking fiq.+0 applied to minimum reprojec-
tion error L,,in:

Erec = Mauto * Emina (€]

where L, is the per-pixel minimum over photoconsis-
tency errors £, between target image I and its reconstruc-
tions Tg_¢:

Emin = min ‘Cp(Itv Is—>t) (5)

This term diminishes the negative effect of occlusions. If an
object is occluded in only one of the source images I, one
can assume that the reconstruction affected by occlusion is
less similar to the target Iy, implying higher photoconsis-
tency error.

Auto-masking fiqy10 1S designed to suppress the trivial
supervisory signal from stationary or almost stationary im-
age regions (e.g., from objects moving similarly to ego-
vehicle or static scenes). Small appearance changes be-
tween the same image region in different frames imply low
photoconsistency error £, for that region. Thus, L. is
computed only for those pixels for which holds the right
side of Eq. 6:

Hauto = /\[Lmin < ‘CP(IS7 It)} (6)

S
For the photoconsistency error, we use the standard im-
age dissimilarity measure Ly, as introduced by [12]:

L,(L 1) = @1=S5IMAD | (g )11, @)

where SSIM is the pixel-wise variant of the widely-used
Structure Similarity Image Matching index [39].
Smoothness Term. L;,, is typically used to regularize the
predicted depth in the textureless areas. It penalizes depth
discontinuities in continuous image regions:

Lom = [0,D]e™*" + [9,D]e=", ®)

where 0, denotes the gradient along axis ¢. This term is
computed only for the target frame ¢.

Velocity Supervision Term. L,.; penalizes the difference
between the magnitude of the predicted ego-translation T
and the distance covered by the car:

Loyel = Z ITsat - ATsatVsL 9)

where A7 is the time difference between the frames, and
V — the instantaneous velocity magnitude measured by a
sensor. The term is computed for each source frame € s.

All computations for smoothness and image reconstruc-
tion terms are initially performed independently for differ-
ent pixels and scales. Then, the losses are added over all
scales and averaged over all pixels.

2.3. Continuous Adaptation

Given the depth and ego-motion estimators £% (I) = D
and £9,(I;,I;) = M,_; pretrained on the source set of
data 2 with the loss described in Section 2.2, the model is
adapted on a target monocular video v (v N © = ) on the
fly. More specifically, for each frame in the video, the depth
map is produced before accessing any following frames.

For simplicity, we will first describe our baseline (gray
area of Figure 2). A similar adaptation algorithm works
off-the-shelf for stereo matching approaches [52]. Yet, it
has not been previously applied to the monocular setup.
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DepthNet

Baseline. The depth estimates for the two first frames are
produced without adaptation. For every frame ¢ in the video
(starting from third), the baseline works as follows:
1. Estimate the camera motion between the previous
frame and its two neighbors — M¢_1¢, M¢-25¢-13

2. Check if the minimum motion constraints are satisfied
(e.g., ego-translations from Step 1 exceed some value).
If not, the supervisory signal might be close to trivial,
proceed to Step 5;

3. Reconstruct the frame ¢ -1 (as described in the Sec-
tion 2.1) from its neighbors ¢ and ¢ -2 using the ego-
motion estimates from Step 1, and the depth previously
inferred for t-1;

4. Compute the loss from Eq. 3 and update the network
parameters 6 via backpropagation;

5. Estimate the depth map for the current frame ¢ (this
estimate is further used for evaluation). Proceed to the
next frame.

CoMoDA. In our experiments we observe that the super-
vision obtained from monocular videos is too unstable to
achieve any performance improvement using the previously
described baseline (see Section 4.2). In order to overcome
this issue, we introduce a replay buffer as a crucial element
of monocular adaptation, augmenting the supervisory sig-
nal of the baseline with the experience from the distant past.
In particular, every iteration of our method (Fig. 2) is per-
formed using a batch of samples. Every batch consists of a
single sample (velocity, time data and a triplet of consecu-
tive images) from the test video v and one or several sam-
ples randomly drawn from the replay buffer with the data
previously observed by the model (e.g. during pretraining).
As demonstrated in Section 4.2, the replay buffer stabilizes
the adaptation substantially.

PoseNet 4\{ V, t

Replay Buffer Figure 2. Proposed
continuous  adapta-
tion. Images on the
left correspond to
the video on which
the adaptation is
performed. Different
colors represent the
operations performed
l l at different iterations
of the adaptation. We
omit motion handling
for simplicity.

Baseline

Optimize

While auto-masking (Eq. 6) does not fully prevent mov-
ing objects from disrupting the adaptation (see Section 4.2),
we employ an additional motion handling mechanism. Sim-
ilarly to [5] and [7], it enhances the performance of our
method, in particular the predictions for moving objects.
Since the way we handle motion is not essential for showing
the benefits of our method, we incorporate the most primi-
tive strategy - masking out potentially moving objects from
the total loss using semantic information. This allows us to
achieve plausible depth predictions for dynamic objects.

3. Experimental Setup

In this section, we describe the setup used for the ex-
perimental validation of our method. The adaptation is
performed from a source set of data to a target set of test
videos. We adapt the model independently on every video
in the way described in Section 2. In the beginning of each
video, the model is initialized from the one pretrained on the
source data. Such a separation prevents the order in which
we adapt on the videos from affecting the evaluation.

To be clear, this setup is completely different from train-

ing on the test set. When producing a depth estimate for a
particular frame of a particular test video, our method nei-
ther has the future frame access, nor the access to the images
from other test videos.
Datasets. Our method requires videos and either veloc-
ity or translation data. Thus, we chose KITTI [11] and
NuScenes [3] for our experiments. In the above described
setup, we apply our method to two different tasks:

e Intra-dataset adaptation: KITTI Eigen train to test;

e Cross-dataset adaptation: KITTI Eigen train to

NuScenes test.

We utilize the commonly used Eigen split [8] as the eval-
uation set for KITTI. The test set of the Eigen split contains
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28 videos of length varying from 28 to 4550 frames. We
evaluate the predictions produced during the adaptation us-
ing the standard procedure (as in [13]). In all our experi-
ments, KITTI images are resized to 192 x 640 pixels.

The NuScenes test set consists of 100+ short videos of ~

240 frames (or 20 seconds) each. First, we evaluate on each
test video separately, applying the evaluation (as in [ 13], but
without cropping) to all test frames with available ground
truth. Then, we report the metrics averaged over the test
videos. We resize all NuScenes images to 256 x 480 pixels,
so that the focal length matches the one of KITTI.
Model Setup. Our pretraining is performed using the same
hyper-parameters and network architectures as in Mon-
odepth2 [13]. However, we do not apply depth normaliza-
tion in order to produce absolute depth. The velocity super-
vision term weight is empirically set to A = 0.005, and only
auto-masking is used for motion handling.

For the test-time adaptation, we use the same hyper-
parameters as during the pretraining, but freeze the batch
normalization layers. We mask out the potentially moving
objects using both auto-masking and the bounding boxes
produced by off-the-shelf YOLOvS5m [19] object detection
model. No data augmentation is performed, and the net-
work weights are not updated if the magnitude of the trans-
lation between any neighboring frames in the test triplet
does not exceed 0.2m.

Unless stated otherwise, three samples are drawn from
the replay buffer for every iteration of the adaptation. This
allows the adaptation to be performed at the frame rate of
KITTI. Our method runs at 107ms per frame on an Nvidia
GTX 1080Ti (excluding 10ms for the preprocessing by
YOLOv5m). Since our model does not use the semantic in-
formation for inference, the preprocessing should be done
parallel to it, thus, not increasing the runtime.

Unless stated otherwise, we use the entire set of pre-
training data for experience replay, resulting in 39810 sam-
ples for KITTI. Drawing samples from the replay buffer in-
troduces a degree of randomness into our method. There-
fore, we report our quantitative results averaged over six
runs with the samples drawn in a predetermined order.

4. KITTI Train to Test
4.1. Comparison to Other Methods

In this section we provide qualitative and quantitative
comparison to other depth estimation methods. In order
to show the benefits of the continuous depth adaptation
concept, we will focus on comparison to the approaches
performing test-time fine-tuning [5, 7]. To produce the
fine-tuned predictions for a particular image, these meth-
ods make use of its neighboring frames (also future). This
implies the need for video data, even if other video bene-
fits are not explored. Thus, the comparison of [5, 7] to our

method, which also requires video for the adaptation, is fair.
Especially, if taking into account that we do not make use
of the future frames while producing predictions.

Table 1 shows the performance of our method compared
to other self-supervised approaches on the test set of Eigen
split [8] of KITTI [ 1]. Even though our method is scale-
aware, we evaluate it both with and without median rescal-
ing [53] to allow better comparison to the scale-ambiguous
methods. In order to restore the scale for a particular test
frame, these methods use the median of the ground truth
depth map corresponding to that frame. As a note, such a
rescaling provides the unfair advantage of known ground
truth depth statistics, and, as shown in [16], leads to signifi-
cantly better quantitative results than using a model trained
with velocity supervision.

Our approach surpasses all methods supervised with
monocular videos that do not perform test-time network
updates (except PackNet-SfM [16] which performs on par
with our method). While [16] gains performance pre-
dominantly from the architecture improvements, we use a
standard backbone (ResNet18 [18]) in all our experiments.
Moreover, our method is architecture-agnostic and can uti-
lize the PackNet-SfM architecture for further performance
improvement.

Struct2Depth [5]. Compared to the refined results of [5],
we demonstrate the superior performance on 5 metrics out
of 7, with RMSE and § < 1.25 improvements reaching
15.6cm and 2.8% respectively. The use of the previous ex-
perience from the same scene allows us to perform 1 back-
propagation per frame instead of 20 for [5]. This results in
15 times faster runtime of our method (0.107s vs ~1.6s, or
0.117s vs ~1.75s with the preprocessing time” added).
GL-Net [7]. Similarly to [5], we outperform [7] on 5 out
of 7 metrics, with RMSE and § < 1.25 improvements
reaching 14.9cm and 1.5% respectively. The quality of the
depth maps predicted by [7] is closer to our method than
[5]. However, 50 backpropagation iterations per frame per-
formed by [7] result in ~40s runtime, which is 374 times
slower than our method (or 342 times slower with the pre-
processing time added for our method).

Qualitative Comparison. We additionally demonstrate the
advantages of the continuous adaptation by visualizing the
depth maps generated by our method and other approaches
with code. Fig. 3 shows that we produce the sharpest and
the most accurate depth estimates for background objects.
For instance, our method is the only to capture the ground
altitude variation on the right of the right-most image.

4.2. Ablation Studies

We analyze the performance of our method by assessing
the importance of the replay buffer, the additional motion

2The preprocessing does not influence our runtime if performed in par-
allel to inference. [5] require temporally aligned instance masks for their
fine-tuning procedure.

2911



Lower is better

Higher is better Table 1. Quantitative re-

Method Ref AbsRel SqRel RMSE RMSE;,, 4<1.25 §<1.252 §<1.253 sults of self-supervised
Zhou et al. [53] - 0.183 1595  6.709 0.270 0.734 0.902 0.959 depth estimation meth-
Yang et al. [43] - 0182 1481 6501 0267 0725 0906 0963 ods on the test set of
LEGO [42] - 0.162 1.352 6.276 0.252 - - - Eigen split [8] of KITTI
Mahjourian ef al. [27] - 0.163 1240  6.220 0.250 0.762 0.916 0.968 [11]. Ref indicates the
Wang etal. [38] - 0.151 1.257 5.583 0.228 0.810 0.936 0.974 use of model refinement
GeoNet [43] - 0.149  1.060  5.567 0.226 0.796 0.935 0.975 or adaptation at test time.
Zou et al. [54] . 0.150  1.124  5.507 0.223 0.806 0.933 0.973 * means that the median
Ranjan et al. [31] . 0.140  1.070 5326 0.217 0.826 0.941 0.975 s
Luo et al. [26] - 0.141  1.029 5350 0.216 0.816 0.941 0.976 rescaling [53] was not ap-
Struct2depth [5] - 0.141 1.026 5291 0.215 0.816 0.945 0.979 plied for evaluation. Bold
Gordon et al. [15] - 0.128 0.959 523 - - - - and underlined numbers
GL-Net [7] . 0.135 1070  5.230 0.210 0.841 0.948 0.980 indicate the best results
Bl 0L 01b ose 47 o1ss 089 090 098] obtained with and without
atil et al. | 50 - B . . . . . B . .
Packnet-SEM* [16] - 0lll 0829 4788 0.199 0864 0954 0.980 median rescaling respec-
tively. For our method, we
Struct2depth [5] v 0109 0825 4750 0.187 0.874 0.958 0.982 report mean and standard
GL-Net [7] V0099 0796 4743 0.186 0.884 0.955 0.979 deviation on every metric.
) 0.103 0862  4.594 0.183 0.899 0.961 0.981
CoMoDA: i, & V' 754 4le3  19e2  8.9c-4 98e-4 1263 5.2e-4
. 0.117 0873  4.753 0.200 0.877 0.956 0.979
CoMoDA™: i, & Y 10e3  50e3  l.e2 1.0e-3 1.0e-3 1.2¢-3 7.5e-4

Figure 3. Qualitative results of self-supervised methods on Eigen test split [8] of KITTI [11]. We do not visualize the predictions of
Monodepth2 [13], since our non-adapted model is a scale-aware variant of it. GT stands for the interpolated depth ground truth.

handling, and the effect of velocity supervision on monoc-
ular test-time adaptation on KITTI.

Table 2 shows that the baseline adaptation (no replay
buffer and motion handling) has a negative influence on
depth prediction. We assume there are two reasons behind
it: 1) the effect of moving objects and 2) the instability

caused by overfitting.

Motion Handling. In our experiments, we observe that
the auto-masking has a smaller effect on moving objects
during adaptation (see Fig. 4). We assume this is caused
by moving objects affecting every iteration of the proce-
dure from appearance till vanishing (that can be hundreds
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Lower is better Higher is better

Experiment ~ Abs Rel SqRel RMS RMS;,, §<1.25 §<1.25% §<1.25%

Lower is better Higher is better

Experiment AbsRel SqRel RMS RMS;,, §<1.25 §<1.25% §<1.25°

No adaptation  0.129  0.947 5.199 0.219 0.841 0.946 0.976

Baseline 0.266 3.182 7.551 0.698 0.690 0.801 0.837
No RB 0.164 1.537 5.711 0.291 0.801 0914 0.950
No MH 0.118 0.885 4.803 0.202 0.876 0.955 0.978
CoMoDA 0.117 0.873 4.753 0.200 0.877 0.956 0.979

-Vel™ 0.135 0924 4920 0.217 0.845 0.953 0.977
Vel ™ 0.124  0.885 4.802 0.207 0.869 0.955 0.978
-Vel 0.102  0.871 4.596 0.183 0.898 0.961 0.981

CoMoDA™  0.117 0.873 4.753  0.200 0.877 0.956 0.979
CoMoDA 0.103  0.862 4.594 0.183 0.899 0.961 0.981

Table 2. Effect of various design choices evaluated on KITTI [11].
RB stands for the replay buffer, and MH — for the motion handling.

Figure 4. Examples of the predictions for adaptation with the ad-
ditional motion handling (top) and without (bottom). The auto-
masking and the replay buffer are used in both cases.

of frames), while being scarce during the normal training.
Table 2 shows that the additional motion handling has a sig-
nificant effect on the baseline adaptation. If used together
with the replay buffer, the effect of the motion handling on
the quantitative results becomes smaller, probably due to the
use of pretraining samples with few moving objects. How-
ever, as shown in Fig. 4, it still plays a role in maintaining
the quality of the depth estimates for moving objects.
Replay Buffer. Even with the supervision from moving ob-
jects suppressed, we notice that the adaptation without the
replay buffer does not improve over the non-adapted model.
During adaptation, the model is supervised with many con-
secutive video frames, which look very similar most of the
time. This is very different from training, when the images
used for the supervision are randomly drawn from the en-
tire training set, and can cause the monocular adaptation to
overfit to short video segments.

To support our claim, we visualise the error (RMSE)
evolution on several test videos of KITTI (see Fig. 5). We
observe that the adaptation without the replay buffer often
starts performing worse than the non-adapted model when
there are significant changes in observed scenes, e.g. when
the car turns or starts driving on the bridge. For instance,
the adaptation with the additional motion handling degrades
when the car turns in video 2011.09_.26_0117. Such a be-
haviour implies that the model sometimes overfits to short
video segments with low image variation, suffering from
the noticeable changes in the distribution of the supervisory
data in the future.

To mitigate possible overfitting, we augment the adapta-
tion with the experience from the distant past. As shown in
Table 2 and Fig. 5, the use of the replay buffer effectively
stabilizes the adaptation procedure.

Compared to the best of all experiments without replay

Table 3. The effect of velocity supervision on the adaptation. -
Vel indicates that velocity supervision is disabled, while the su-
perscript indicates the type of depth rescaling used for evaluation.
No superscript corresponds to median rescaling [53], * indicates
no rescaling, and ™ — that the predictions were rescaled with the
depth inferred by the non-adapted model.

buffer CoMoDA achieves:
e > 15¢m mean RMSE decrease for 18 videos;
e < 15¢m mean RMSE decrease for 5 videos;
e < 15¢m mean RMSE increase for 4 videos;
e > 15¢m mean RMSE increase for 1 video.

It only performs noticeably worse than the adapta-
tion without the replay buffer on the shortest video
2011.09_26_0048, with a duration of about 2 seconds. Such
behaviour can be explained by the fact that CoMoDA is
augmented with the samples from past and trades short-
term adaptation performance in for stability. Figure 1 shows
that CoMoDA improves over the non-adapted model on all
videos except 2011.09-26_0052. This video is short, with
almost stationary ego-vehicle and many other cars.

We additionally show (Fig. 6) that our method is ro-

bust to the choice of hyperparameters such as the replay
buffer size and the number of samples drawn from the re-
play buffer for every iteration.
Velocity Supervision. Table 3 shows the effect of velocity
supervision on the adaptation. If median rescaling is ap-
plied, this effect is negligible. Without median rescaling,
however, the model adapted without velocity supervision
performs significantly worse. Interestingly, if we keep the
scale of the depth predictions during the adaptation (by us-
ing the median of the non-adapted model), the results do
not get much worse compared to those with velocity super-
vision. Based on these observations, we conclude that ve-
locity supervision does not influence structural adaptation,
but allows our method to slightly adapt the scale.

5. KITTI to NuScenes

Table 4 and Figure 1 (left part) show that CoMoDA
dramatically improves over the non-adapted model in this
setup. Yet, the variant of the adaptation without the re-
play buffer suffers from overfitting, which results in the
increased Abs Rel and the average RMSE not improving
towards the ends of videos. While the typical pattern of
error evolution affected by overfitting can be observed in
video 0549 (Figure 7), we explain this effect in detail in
Section 4.2.
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Figure 5. The effect of the adaptation on moving mean RMSE on the test videos of KITTI [11]. Horizontal axis represents video frames,
vertical —- RMSE in meters. Instead of showing RMSE at a particular time step, we show it averaged over all frames up until that time. This

makes the graph less noisy and more readable.
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Figure 6. The effect of the replay buffer parameters on the adap-
tation. Vertical axis represents RMSE in meters. The ends of
the sticks correspond to minimum and maximum measurements,
while the bars represent the regions within p + o.

Lower is better Higher is better

Experiment Abs Rel RMS 0<1.25
100%  20% 100%  20% 100%  20%
No adaptation 0.277 | 0.277 9.367 | 9.291 0.434 0.431
No RB 0.289 | 0.304 8.733 | 8.964 0.610 0.676
CoMoDA 0.228 | 0.206 7.774 | 1571 0.669 0.744
NuScenes trained ~ 0.131 0.131 6.606 | 6.674 0.859 0.856

Table 4. Quantitative results on the NuScenes test set evaluated
on the whole videos (100%) and only on the last 20% of frames
(20%). The bottom row corresponds to the model (monodepth2
+ velocity supervision) trained on the NuScenes train set without
any adaptation.

On average, our adaptation still falls behind the model
trained on NuScenes. However, we observe that CoMoDA
already demonstrates reasonably good performance after
only 16 seconds of adaptation. In particular, the gap be-
tween our method and the model trained on NuScenes no-
ticeably diminishes for all metrics on the last 20% of video
frames (~ 4 last seconds). This encourages us to assume
even better adaptation performance given the availability of
longer videos. To support this, we provide additional results
and analysis in the supplementary materials.

—— No adaptation
8.5 14 NorB
—— CoMoDA
8.0 12
w w
V75 (2 N0]
2 2
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0090 0549

Figure 7. Running mean RMSE on the NuScenes test videos. Hor-
izontal axis represents video frames, vertical - RMSE in meters.

6. Conclusion

In this paper, we propose a novel approach for contin-
uous monocular depth adaptation. By complementing the
monocular supervisory signal with past experience, we are
able to substantially improve the quality of depth predic-
tions in both intra- and cross-dataset setups.

Our scale-aware method achieves state-of-the-art results
on Eigen split [8] of KITTI [11], while being an order of
magnitude faster compared to the competing methods per-
forming test-time fine-tuning. We investigated the influence
of various design choices on the model performance and
showed that the replay buffer is the efficient and robust tech-
nique to mitigate overfitting, affecting the ’baseline’ variant
of monocular adaptation.

For future work, we would like to incorporate a stronger
motion handling strategy (e.g., use optical flow or model
motion), which would allow us to obtain additional supervi-
sion from objects such as static cars. Further improvements
might be achieved by strengthening temporal consistency
(e.g., by using RNNs or depth network with multiple image
inputs), or by integrating more sophisticated strategies for
the replay buffer generation and sampling.
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