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Abstract

While ground truth depth data remains hard to obtain,

self-supervised monocular depth estimation methods enjoy

growing attention. Much research in this area aims at

improving loss functions or network architectures. Most

works, however, do not leverage self-supervision to its full

potential. They stick to the standard closed world train-test

pipeline, assuming the network parameters to be fixed after

the training is finished. Such an assumption does not allow

to adapt to new scenes, whereas with self-supervision this

becomes possible without extra annotations.

In this paper, we propose a novel self-supervised Con-

tinuous Monocular Depth Adaptation method (CoMoDA),

which adapts the pretrained model on a test video on the fly.

As opposed to existing test-time refinement methods that use

isolated frame triplets, we opt for continuous adaptation,

making use of the previous experience from the same scene.

We additionally augment the proposed procedure with the

experience from the distant past, preventing the model from

overfitting and thus forgetting already learnt information.

We demonstrate that our method can be used for both

intra- and cross-dataset adaptation. By adapting the model

from train to test set of the Eigen split of KITTI, we achieve

state-of-the-art depth estimation performance and surpass

all existing methods using standard architectures. We also

show that our method runs 15 times faster than existing

test-time refinement methods. The code is available at

https://github.com/Yevkuzn/CoMoDA.

1. Introduction

Depth estimation is a fundamental component of any ap-

plication involving navigation (e.g., autonomous driving or

robotics). Prediction of depth maps from a single image is,

however, an ill-posed problem, due to the lack of informa-

tion on the three-dimensional structure of the scene. Despite

this fact, humans perform remarkably well at estimating dis-

tances to objects from a single view. Recently, noticeable

progress was achieved in the development of learning-based

depth estimation methods, which presumably make use of
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Figure 1. Relative δ<1.25 improvement achieved by CoMoDA

on different test videos when adapting from train to test set of

KITTI [11] (intra-dataset) and from KITTI to NuScenes [3] (cross-

dataset). The horizontal axis represents the test videos sorted by

performance gain.

some latent depth cues also utilized by humans.

1.1. Supervised methods

Learning depth in a supervised way requires signifi-

cant amounts of ground truth, which is usually obtained

by RGB-D cameras or LIDARs. One of the first super-

vised learning-based approaches to depth estimation was

proposed by Saxena et al. [33]. Eigen et al. [8] employed

a deep neural network to learn depth end-to-end. Laina et

al. [21] proposed a stronger encoder-decoder architecture

combined with a BerHu loss. Other notable improvements

are based on architectural refinements [9], the use of tem-

poral cues [47] and cross-modal (e.g. semantics, normals)

consistencies [48, 44].

The ground truth depth maps produced by the sensors

may show several imperfections, such as sparsity, measure-

ment noise, the absence of measurements due reflective sur-

faces, etc. In order to overcome this issue, Kuznietsov et

al. [20] proposed to leverage stereo cues as an additional

supervisory signal during training.

In outdoor scenarios, the high cost of LIDAR is another

drawback. To alleviate the need for metric depth ground

truth, Chen et al. [6] propose to use annotated depth rank-

ings instead. Alternatively, synthetic data can be used to

reduce the amount of ground truth required for training. Nu-

merous methods [25, 51, 28, 2, 17] utilize domain adapta-
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tion techniques to close the gap between synthetic and real

predictions.

1.2. Self-Supervised Methods

As the collection of depth data is cumbersome, and in-

volves the use of specifically designed sensors, researchers

have begun to explore more viable alternatives to train depth

prediction networks. Xie et al. [41] formulated the depth

estimation task as a view synthesis problem, which requires

only stereo image pairs as a supervisory signal. As stereo

images are arguably more easy to acquire than LIDAR, this

poses an interesting alternative to the supervised depth es-

timation methods from Section 1.1. A follow-up work by

Garg et al. [10] extended the method from [41] by regress-

ing continuous depth instead of discrete values. Addition-

ally, they proposed to add a smoothness regularization term.

Godard et al. [12] further improved these results by adding

left-right consistency and SSIM [39] terms to the image re-

construction loss. Notable improvements were achieved by

enforcing left-right consistency between intermediate fea-

ture maps [46], cycle-consistency [29, 40], or using tem-

poral cues [22, 46]. Some other self-supervised methods

[30, 1] utilize GANs [14] to improve image synthesis, thus

also improving the predicted depth quality.

Zhou et al. [53] propose to reduce the supervision to

monocular videos by reconstructing a video frame from its

neighbors. Since there is no fixed known baseline in this

problem setup, they train depth and ego-motion networks

simultaneously.

Supervision with monocular videos allows to use large

amounts of low cost or even free data for training. How-

ever, with the availability of data also come the following

limitations: (1) the monocular supervision is disturbed by

moving objects; (2) scale-ambiguity, due to unknown trans-

formations between frames.

To overcome the problem of moving objects, [53]

learned to estimate an explainability mask, that is supposed

to filter out the supervisory signal from dynamic objects or

areas reprojected outside of the image. A similar method

was developed by Vijayanarasimhan et al. [37]. Unlike

[53], they attempt to train a network for estimating motion

for a predefined number of objects. Yin and Shi [45], train

a residual flow network to refine the rigid flow estimated

from the predicted depth in an end-to-end manner. This im-

proves flow estimation, however, similarly to [53] and [37],

has little or no effect on moving objects.

Godard et al. [13] introduce significant improvements

to the loss function by handling occlusions and neglecting

supervision from image areas that do not change signifi-

cantly over time. The latter noticeably reduces the nega-

tive effect of objects moving similarly to the ego-vehicle.

Casser et al. [5] and Gordon et al. [15] make use of a

pretrained MaskRCNN [32] to produce masks of possibly

moving objects and predict the motion for those separately.

[7, 31, 54, 26] additionally train the optical flow network,

and utilize the discrepancy between the estimated non-rigid

flow and the flow from depth to suppress the effects of mov-

ing objects.

Scale ambiguity limits the applicability of the methods

supervised with monocular videos to real-world scenarios,

where absolute measurements are desired. To produce ab-

solute depth, these methods require depth priors. Such pri-

ors are normally not available without the use of additional

depth sensors. Guizilini et al. [16], along with architectural

improvements, proposed to use a velocity supervision term

to enable the learning of scale.

Due to the intensive research of self-supervised depth

estimation, the gap to supervised performance is getting

smaller. Yet, the previous methods mainly focus on im-

proving the model training, and leave the test-time under-

explored. In particular: (1) the use of video data beyond

training is currently limited to architectural (RNNs [36]);

(2) only few methods [7, 5] use self-supervision at test time

to improve their predictions, but they tune their models on

isolated frame triplets only, resetting the model parameters

for every new frame1. Without weight reset, the perfor-

mance drops substantially.

Similarly to this work, Li et al. [23] and Zhang et al. [50]

proposed to adapt depth and odometry continuously. How-

ever, the experimental setup of these concurrent works is

different from ours, which makes the direct comparison to

them not possible.

1.3. Our Contribution

Inspired by continual learning and the recent advances

in stereo matching [34, 35, 52, 49], we leverage both self-

supervision and long-term video information at test time.

More specifically:

• we propose to adapt depth and ego-motion estimators

continuously on monocular videos (in contrast to the

isolated fine-tuning [5, 7]);

• we introduce a ’baseline’ adaptation procedure

adopted from stereo matching approaches, yet we ob-

serve it is sensitive to overfitting to short video seg-

ments;

• so next, we incorporate the experience from the distant

past in a replay buffer fashion [24], effectively mitigat-

ing the consequences of overfitting and thus stabilizing

the adaptation.

Adapting the model continuously allows us to benefit from

the data previously observed in a video and perform only

one model update per frame, which results in an order of

magnitude faster runtime compared to [5, 7]. We perform

an extensive evaluation of our method and demonstrate the

1The weight reset is not mentioned in [5], however, we refer the reader

to the official code repository (cfr [4] , l.321)
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state-of-the-art performance among depth estimation ap-

proaches supervised with monocular videos.

2. Method

In this section we provide a detailed overview of the pro-

posed CoMoDA method. We start with explaining the back-

ground for self-supervised depth estimation with monocular

videos.

2.1. Warping

Given a video recorded by a moving camera, a recon-

struction Îs�t of a target frame It at time t can be ob-

tained from a source frame Is at time s by bilinear interpo-

lation over the reprojected image coordinates (also known

as warping):

Îs�t(pt) = Is(p̂s), (1)

where p̂s is the reprojection of point pt into frame Is. To

obtain the mapping from pt to p̂s, pt is first backprojected

into 3D point P using camera intrinsics matrix K and the

depth map Dt corresponding to It. Then P is transformed

to account for camera motion Mt�s and projected onto the

image plain:

p̂s ∼ KMt�s Dt(pt)K
91

| {z }

P

(2)

2.2. Loss

Zhou et al. [53] propose to optimize depth estimator

ED(Is) = Ds and ego-motion estimator EM (It, Is) =
Mt�s simultaneously, using the discrepancy between It
and Îs�t as a supervisory signal. The typical inputs for

the corresponding loss are the triplet of consecutive video

frames, the depth map D predicted for the central frame t

and the reconstructions of It obtained from its neighbors Is
via warping.

We build our loss upon Monodepth2 [13] as one of the

best performing and reliably reproducible depth estimation

methods. In order to obtain absolute depth, we augment

their loss with a velocity supervision term from [16]. In

driving scenarios, such an additional supervision is usually

possible without extra expense, since most cars already have

velocity measuring systems on board. Our total loss is for-

malized by Eq. 3:

L = Lrec + γLsm + λLvel (3)

Image Reconstruction Loss. Lrec used by [13] can be de-

fined as auto-masking µauto applied to minimum reprojec-

tion error Lmin:

Lrec = µauto · Lmin, (4)

where Lmin is the per-pixel minimum over photoconsis-

tency errors Lp between target image It and its reconstruc-

tions Îs�t:

Lmin = min
s

Lp(It, Îs�t) (5)

This term diminishes the negative effect of occlusions. If an

object is occluded in only one of the source images Is, one

can assume that the reconstruction affected by occlusion is

less similar to the target It, implying higher photoconsis-

tency error.

Auto-masking µauto is designed to suppress the trivial

supervisory signal from stationary or almost stationary im-

age regions (e.g., from objects moving similarly to ego-

vehicle or static scenes). Small appearance changes be-

tween the same image region in different frames imply low

photoconsistency error Lp for that region. Thus, Lrec is

computed only for those pixels for which holds the right

side of Eq. 6:

µauto =
^

s

[Lmin < Lp(Is, It)] (6)

For the photoconsistency error, we use the standard im-

age dissimilarity measure Lp, as introduced by [12]:

Lp(I, Î) = α
1−SSIM(I,̂I)

2 + (1− α)|I− Î|, (7)

where SSIM is the pixel-wise variant of the widely-used

Structure Similarity Image Matching index [39].

Smoothness Term. Lsm is typically used to regularize the

predicted depth in the textureless areas. It penalizes depth

discontinuities in continuous image regions:

Lsm = [∂xD]e−∂xI + [∂yD]e−∂yI, (8)

where ∂i denotes the gradient along axis i. This term is

computed only for the target frame t.

Velocity Supervision Term. Lvel penalizes the difference

between the magnitude of the predicted ego-translation T

and the distance covered by the car:

Lvel =
X

s

|Ts�t −∆τs�tVs|, (9)

where ∆τ is the time difference between the frames, and

V – the instantaneous velocity magnitude measured by a

sensor. The term is computed for each source frame ∈ s.

All computations for smoothness and image reconstruc-

tion terms are initially performed independently for differ-

ent pixels and scales. Then, the losses are added over all

scales and averaged over all pixels.

2.3. Continuous Adaptation

Given the depth and ego-motion estimators Eθ
D(I) = D

and Eθ
M (Ii, Ij) = Mi�j pretrained on the source set of

data Ω with the loss described in Section 2.2, the model is

adapted on a target monocular video ν (ν ∩Ω = ∅) on the

fly. More specifically, for each frame in the video, the depth

map is produced before accessing any following frames.

For simplicity, we will first describe our baseline (gray

area of Figure 2). A similar adaptation algorithm works

off-the-shelf for stereo matching approaches [52]. Yet, it

has not been previously applied to the monocular setup.
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Figure 2. Proposed

continuous adapta-

tion. Images on the

left correspond to

the video on which

the adaptation is

performed. Different

colors represent the

operations performed

at different iterations

of the adaptation. We

omit motion handling

for simplicity.

Baseline. The depth estimates for the two first frames are

produced without adaptation. For every frame t in the video

(starting from third), the baseline works as follows:

1. Estimate the camera motion between the previous

frame and its two neighbors – Mt91�t, Mt92�t91;

2. Check if the minimum motion constraints are satisfied

(e.g., ego-translations from Step 1 exceed some value).

If not, the supervisory signal might be close to trivial,

proceed to Step 5;

3. Reconstruct the frame t91 (as described in the Sec-

tion 2.1) from its neighbors t and t92 using the ego-

motion estimates from Step 1, and the depth previously

inferred for t91;

4. Compute the loss from Eq. 3 and update the network

parameters θ via backpropagation;

5. Estimate the depth map for the current frame t (this

estimate is further used for evaluation). Proceed to the

next frame.

CoMoDA. In our experiments we observe that the super-

vision obtained from monocular videos is too unstable to

achieve any performance improvement using the previously

described baseline (see Section 4.2). In order to overcome

this issue, we introduce a replay buffer as a crucial element

of monocular adaptation, augmenting the supervisory sig-

nal of the baseline with the experience from the distant past.

In particular, every iteration of our method (Fig. 2) is per-

formed using a batch of samples. Every batch consists of a

single sample (velocity, time data and a triplet of consecu-

tive images) from the test video ν and one or several sam-

ples randomly drawn from the replay buffer with the data

previously observed by the model (e.g. during pretraining).

As demonstrated in Section 4.2, the replay buffer stabilizes

the adaptation substantially.

While auto-masking (Eq. 6) does not fully prevent mov-

ing objects from disrupting the adaptation (see Section 4.2),

we employ an additional motion handling mechanism. Sim-

ilarly to [5] and [7], it enhances the performance of our

method, in particular the predictions for moving objects.

Since the way we handle motion is not essential for showing

the benefits of our method, we incorporate the most primi-

tive strategy - masking out potentially moving objects from

the total loss using semantic information. This allows us to

achieve plausible depth predictions for dynamic objects.

3. Experimental Setup

In this section, we describe the setup used for the ex-

perimental validation of our method. The adaptation is

performed from a source set of data to a target set of test

videos. We adapt the model independently on every video

in the way described in Section 2. In the beginning of each

video, the model is initialized from the one pretrained on the

source data. Such a separation prevents the order in which

we adapt on the videos from affecting the evaluation.

To be clear, this setup is completely different from train-

ing on the test set. When producing a depth estimate for a

particular frame of a particular test video, our method nei-

ther has the future frame access, nor the access to the images

from other test videos.

Datasets. Our method requires videos and either veloc-

ity or translation data. Thus, we chose KITTI [11] and

NuScenes [3] for our experiments. In the above described

setup, we apply our method to two different tasks:

• Intra-dataset adaptation: KITTI Eigen train to test;

• Cross-dataset adaptation: KITTI Eigen train to

NuScenes test.

We utilize the commonly used Eigen split [8] as the eval-

uation set for KITTI. The test set of the Eigen split contains
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28 videos of length varying from 28 to 4550 frames. We

evaluate the predictions produced during the adaptation us-

ing the standard procedure (as in [13]). In all our experi-

ments, KITTI images are resized to 192× 640 pixels.

The NuScenes test set consists of 100+ short videos of ∼

240 frames (or 20 seconds) each. First, we evaluate on each

test video separately, applying the evaluation (as in [13], but

without cropping) to all test frames with available ground

truth. Then, we report the metrics averaged over the test

videos. We resize all NuScenes images to 256×480 pixels,

so that the focal length matches the one of KITTI.

Model Setup. Our pretraining is performed using the same

hyper-parameters and network architectures as in Mon-

odepth2 [13]. However, we do not apply depth normaliza-

tion in order to produce absolute depth. The velocity super-

vision term weight is empirically set to λ = 0.005, and only

auto-masking is used for motion handling.

For the test-time adaptation, we use the same hyper-

parameters as during the pretraining, but freeze the batch

normalization layers. We mask out the potentially moving

objects using both auto-masking and the bounding boxes

produced by off-the-shelf YOLOv5m [19] object detection

model. No data augmentation is performed, and the net-

work weights are not updated if the magnitude of the trans-

lation between any neighboring frames in the test triplet

does not exceed 0.2m.

Unless stated otherwise, three samples are drawn from

the replay buffer for every iteration of the adaptation. This

allows the adaptation to be performed at the frame rate of

KITTI. Our method runs at 107ms per frame on an Nvidia

GTX 1080Ti (excluding 10ms for the preprocessing by

YOLOv5m). Since our model does not use the semantic in-

formation for inference, the preprocessing should be done

parallel to it, thus, not increasing the runtime.

Unless stated otherwise, we use the entire set of pre-

training data for experience replay, resulting in 39810 sam-

ples for KITTI. Drawing samples from the replay buffer in-

troduces a degree of randomness into our method. There-

fore, we report our quantitative results averaged over six

runs with the samples drawn in a predetermined order.

4. KITTI Train to Test

4.1. Comparison to Other Methods

In this section we provide qualitative and quantitative

comparison to other depth estimation methods. In order

to show the benefits of the continuous depth adaptation

concept, we will focus on comparison to the approaches

performing test-time fine-tuning [5, 7]. To produce the

fine-tuned predictions for a particular image, these meth-

ods make use of its neighboring frames (also future). This

implies the need for video data, even if other video bene-

fits are not explored. Thus, the comparison of [5, 7] to our

method, which also requires video for the adaptation, is fair.

Especially, if taking into account that we do not make use

of the future frames while producing predictions.

Table 1 shows the performance of our method compared

to other self-supervised approaches on the test set of Eigen

split [8] of KITTI [11]. Even though our method is scale-

aware, we evaluate it both with and without median rescal-

ing [53] to allow better comparison to the scale-ambiguous

methods. In order to restore the scale for a particular test

frame, these methods use the median of the ground truth

depth map corresponding to that frame. As a note, such a

rescaling provides the unfair advantage of known ground

truth depth statistics, and, as shown in [16], leads to signifi-

cantly better quantitative results than using a model trained

with velocity supervision.

Our approach surpasses all methods supervised with

monocular videos that do not perform test-time network

updates (except PackNet-SfM [16] which performs on par

with our method). While [16] gains performance pre-

dominantly from the architecture improvements, we use a

standard backbone (ResNet18 [18]) in all our experiments.

Moreover, our method is architecture-agnostic and can uti-

lize the PackNet-SfM architecture for further performance

improvement.

Struct2Depth [5]. Compared to the refined results of [5],

we demonstrate the superior performance on 5 metrics out

of 7, with RMSE and δ < 1.25 improvements reaching

15.6cm and 2.8% respectively. The use of the previous ex-

perience from the same scene allows us to perform 1 back-

propagation per frame instead of 20 for [5]. This results in

15 times faster runtime of our method (0.107s vs ∼1.6s, or

0.117s vs ∼1.75s with the preprocessing time2 added).

GL-Net [7]. Similarly to [5], we outperform [7] on 5 out

of 7 metrics, with RMSE and δ < 1.25 improvements

reaching 14.9cm and 1.5% respectively. The quality of the

depth maps predicted by [7] is closer to our method than

[5]. However, 50 backpropagation iterations per frame per-

formed by [7] result in ∼40s runtime, which is 374 times

slower than our method (or 342 times slower with the pre-

processing time added for our method).

Qualitative Comparison. We additionally demonstrate the

advantages of the continuous adaptation by visualizing the

depth maps generated by our method and other approaches

with code. Fig. 3 shows that we produce the sharpest and

the most accurate depth estimates for background objects.

For instance, our method is the only to capture the ground

altitude variation on the right of the right-most image.

4.2. Ablation Studies

We analyze the performance of our method by assessing

the importance of the replay buffer, the additional motion

2The preprocessing does not influence our runtime if performed in par-

allel to inference. [5] require temporally aligned instance masks for their

fine-tuning procedure.
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Lower is better Higher is better

Method Ref Abs Rel Sq Rel RMSE RMSElog δ<1.25 δ<1.252 δ<1.253

Zhou et al. [53] - 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Yang et al. [43] - 0.182 1.481 6.501 0.267 0.725 0.906 0.963

LEGO [42] - 0.162 1.352 6.276 0.252 - - -

Mahjourian et al. [27] - 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Wang et al. [38] - 0.151 1.257 5.583 0.228 0.810 0.936 0.974

GeoNet [45] - 0.149 1.060 5.567 0.226 0.796 0.935 0.975

Zou et al. [54] - 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Ranjan et al. [31] - 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Luo et al. [26] - 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth [5] - 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Gordon et al. [15] - 0.128 0.959 5.23 - - - -

GL-Net [7] - 0.135 1.070 5.230 0.210 0.841 0.948 0.980

Monodepth2 [13] - 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Patil et al. [36] - 0.112 0.863 4.730 0.188 0.879 0.960 0.981

Packnet-SfM∗ [16] - 0.111 0.829 4.788 0.199 0.864 0.954 0.980

Struct2depth [5] X 0.109 0.825 4.750 0.187 0.874 0.958 0.982

GL-Net [7] X 0.099 0.796 4.743 0.186 0.884 0.955 0.979

CoMoDA: µ,σ X
0.103 0.862 4.594 0.183 0.899 0.961 0.981

7.5e-4 4.1e-3 1.9e-2 8.9e-4 9.8e-4 1.2e-3 5.2e-4

CoMoDA∗: µ,σ X
0.117 0.873 4.753 0.200 0.877 0.956 0.979

1.0e-3 5.0e-3 1.6e-2 1.0e-3 1.0e-3 1.2e-3 7.5e-4

Table 1. Quantitative re-

sults of self-supervised

depth estimation meth-

ods on the test set of

Eigen split [8] of KITTI

[11]. Ref indicates the

use of model refinement

or adaptation at test time.
∗ means that the median

rescaling [53] was not ap-

plied for evaluation. Bold

and underlined numbers

indicate the best results

obtained with and without

median rescaling respec-

tively. For our method, we

report mean and standard

deviation on every metric.
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Figure 3. Qualitative results of self-supervised methods on Eigen test split [8] of KITTI [11]. We do not visualize the predictions of

Monodepth2 [13], since our non-adapted model is a scale-aware variant of it. GT stands for the interpolated depth ground truth.

handling, and the effect of velocity supervision on monoc-

ular test-time adaptation on KITTI.

Table 2 shows that the baseline adaptation (no replay

buffer and motion handling) has a negative influence on

depth prediction. We assume there are two reasons behind

it: 1) the effect of moving objects and 2) the instability

caused by overfitting.

Motion Handling. In our experiments, we observe that

the auto-masking has a smaller effect on moving objects

during adaptation (see Fig. 4). We assume this is caused

by moving objects affecting every iteration of the proce-

dure from appearance till vanishing (that can be hundreds
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Lower is better Higher is better

Experiment Abs Rel Sq Rel RMS RMSlog δ<1.25 δ<1.252 δ<1.253

No adaptation 0.129 0.947 5.199 0.219 0.841 0.946 0.976

Baseline 0.266 3.182 7.551 0.698 0.690 0.801 0.837

No RB 0.164 1.537 5.711 0.291 0.801 0.914 0.950

No MH 0.118 0.885 4.803 0.202 0.876 0.955 0.978

CoMoDA 0.117 0.873 4.753 0.200 0.877 0.956 0.979

Table 2. Effect of various design choices evaluated on KITTI [11].

RB stands for the replay buffer, and MH – for the motion handling.

Figure 4. Examples of the predictions for adaptation with the ad-

ditional motion handling (top) and without (bottom). The auto-

masking and the replay buffer are used in both cases.

of frames), while being scarce during the normal training.

Table 2 shows that the additional motion handling has a sig-

nificant effect on the baseline adaptation. If used together

with the replay buffer, the effect of the motion handling on

the quantitative results becomes smaller, probably due to the

use of pretraining samples with few moving objects. How-

ever, as shown in Fig. 4, it still plays a role in maintaining

the quality of the depth estimates for moving objects.

Replay Buffer. Even with the supervision from moving ob-

jects suppressed, we notice that the adaptation without the

replay buffer does not improve over the non-adapted model.

During adaptation, the model is supervised with many con-

secutive video frames, which look very similar most of the

time. This is very different from training, when the images

used for the supervision are randomly drawn from the en-

tire training set, and can cause the monocular adaptation to

overfit to short video segments.

To support our claim, we visualise the error (RMSE)

evolution on several test videos of KITTI (see Fig. 5). We

observe that the adaptation without the replay buffer often

starts performing worse than the non-adapted model when

there are significant changes in observed scenes, e.g. when

the car turns or starts driving on the bridge. For instance,

the adaptation with the additional motion handling degrades

when the car turns in video 2011 09 26 0117. Such a be-

haviour implies that the model sometimes overfits to short

video segments with low image variation, suffering from

the noticeable changes in the distribution of the supervisory

data in the future.

To mitigate possible overfitting, we augment the adapta-

tion with the experience from the distant past. As shown in

Table 2 and Fig. 5, the use of the replay buffer effectively

stabilizes the adaptation procedure.

Compared to the best of all experiments without replay

Lower is better Higher is better

Experiment Abs Rel Sq Rel RMS RMSlog δ<1.25 δ<1.252 δ<1.253

-Vel∗ 0.135 0.924 4.920 0.217 0.845 0.953 0.977

-Vel+ 0.124 0.885 4.802 0.207 0.869 0.955 0.978

-Vel 0.102 0.871 4.596 0.183 0.898 0.961 0.981

CoMoDA∗ 0.117 0.873 4.753 0.200 0.877 0.956 0.979

CoMoDA 0.103 0.862 4.594 0.183 0.899 0.961 0.981

Table 3. The effect of velocity supervision on the adaptation. -

Vel indicates that velocity supervision is disabled, while the su-

perscript indicates the type of depth rescaling used for evaluation.

No superscript corresponds to median rescaling [53], ∗ indicates

no rescaling, and + – that the predictions were rescaled with the

depth inferred by the non-adapted model.

buffer CoMoDA achieves:

• > 15cm mean RMSE decrease for 18 videos;

• < 15cm mean RMSE decrease for 5 videos;

• < 15cm mean RMSE increase for 4 videos;

• > 15cm mean RMSE increase for 1 video.

It only performs noticeably worse than the adapta-

tion without the replay buffer on the shortest video

2011 09 26 0048, with a duration of about 2 seconds. Such

behaviour can be explained by the fact that CoMoDA is

augmented with the samples from past and trades short-

term adaptation performance in for stability. Figure 1 shows

that CoMoDA improves over the non-adapted model on all

videos except 2011 09 26 0052. This video is short, with

almost stationary ego-vehicle and many other cars.

We additionally show (Fig. 6) that our method is ro-

bust to the choice of hyperparameters such as the replay

buffer size and the number of samples drawn from the re-

play buffer for every iteration.

Velocity Supervision. Table 3 shows the effect of velocity

supervision on the adaptation. If median rescaling is ap-

plied, this effect is negligible. Without median rescaling,

however, the model adapted without velocity supervision

performs significantly worse. Interestingly, if we keep the

scale of the depth predictions during the adaptation (by us-

ing the median of the non-adapted model), the results do

not get much worse compared to those with velocity super-

vision. Based on these observations, we conclude that ve-

locity supervision does not influence structural adaptation,

but allows our method to slightly adapt the scale.

5. KITTI to NuScenes

Table 4 and Figure 1 (left part) show that CoMoDA

dramatically improves over the non-adapted model in this

setup. Yet, the variant of the adaptation without the re-

play buffer suffers from overfitting, which results in the

increased Abs Rel and the average RMSE not improving

towards the ends of videos. While the typical pattern of

error evolution affected by overfitting can be observed in

video 0549 (Figure 7), we explain this effect in detail in

Section 4.2.
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2011 09 26 0086 2011 09 26 0096 2011 09 26 0117

Figure 5. The effect of the adaptation on moving mean RMSE on the test videos of KITTI [11]. Horizontal axis represents video frames,

vertical – RMSE in meters. Instead of showing RMSE at a particular time step, we show it averaged over all frames up until that time. This

makes the graph less noisy and more readable.

Number of samples drawn RB size relative to the train set size

Figure 6. The effect of the replay buffer parameters on the adap-

tation. Vertical axis represents RMSE in meters. The ends of

the sticks correspond to minimum and maximum measurements,

while the bars represent the regions within µ± σ.

Lower is better Higher is better

Experiment Abs Rel RMS δ<1.25

100% 20% 100% 20% 100% 20%

No adaptation 0.277 0.277 9.367 9.291 0.434 0.431

No RB 0.289 0.304 8.733 8.964 0.610 0.676

CoMoDA 0.228 0.206 7.774 7.571 0.669 0.744

NuScenes trained 0.131 0.131 6.606 6.674 0.859 0.856

Table 4. Quantitative results on the NuScenes test set evaluated

on the whole videos (100%) and only on the last 20% of frames

(20%). The bottom row corresponds to the model (monodepth2

+ velocity supervision) trained on the NuScenes train set without

any adaptation.

On average, our adaptation still falls behind the model

trained on NuScenes. However, we observe that CoMoDA

already demonstrates reasonably good performance after

only 16 seconds of adaptation. In particular, the gap be-

tween our method and the model trained on NuScenes no-

ticeably diminishes for all metrics on the last 20% of video

frames (∼ 4 last seconds). This encourages us to assume

even better adaptation performance given the availability of

longer videos. To support this, we provide additional results

and analysis in the supplementary materials.

0090 0549

Figure 7. Running mean RMSE on the NuScenes test videos. Hor-

izontal axis represents video frames, vertical – RMSE in meters.

6. Conclusion

In this paper, we propose a novel approach for contin-

uous monocular depth adaptation. By complementing the

monocular supervisory signal with past experience, we are

able to substantially improve the quality of depth predic-

tions in both intra- and cross-dataset setups.

Our scale-aware method achieves state-of-the-art results

on Eigen split [8] of KITTI [11], while being an order of

magnitude faster compared to the competing methods per-

forming test-time fine-tuning. We investigated the influence

of various design choices on the model performance and

showed that the replay buffer is the efficient and robust tech-

nique to mitigate overfitting, affecting the ’baseline’ variant

of monocular adaptation.

For future work, we would like to incorporate a stronger

motion handling strategy (e.g., use optical flow or model

motion), which would allow us to obtain additional supervi-

sion from objects such as static cars. Further improvements

might be achieved by strengthening temporal consistency

(e.g., by using RNNs or depth network with multiple image

inputs), or by integrating more sophisticated strategies for

the replay buffer generation and sampling.
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