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Abstract

Detecting and localizing image splicing has become es-

sential to fight against malicious forgery. A major challenge

to localize spliced areas is to discriminate between authen-

tic and tampered regions with intrinsic properties such as

compression artifacts. We propose CAT-Net, an end-to-end

fully convolutional neural network including RGB and DCT

streams, to learn forensic features of compression artifacts

on RGB and DCT domains jointly. Each stream considers

multiple resolutions to deal with spliced object’s various

shapes and sizes. The DCT stream is pretrained on dou-

ble JPEG detection to utilize JPEG artifacts. The proposed

method outperforms state-of-the-art neural networks for lo-

calizing spliced regions in JPEG or non-JPEG images.

1. Introduction

Modern mobile devices mean that anyone can take a pic-

ture anywhere anytime. Image editing is very easy due

to user-friendly image editing software and images can be

shared in seconds due to social networking services. Al-

though these advances have benefited people’s lives, they

have also caused problems when forged images are used as

fake news, false propaganda, or fake evidence [44]. There-

fore, it has become increasingly important to detect image

manipulations.

Image splicing is defined as copy-pasting some part of

an image onto another image (Figure 1) [37]. It is one of

the easiest and most popular image manipulations, but it is

also one of the most frequently used manipulations for bad

purposes. For example, one can make a person appear to

be somewhere they should not and had not been. Thus, this

paper focuses on image splicing detection and localization.

Given a possibly spliced image (Figure 1(c)), our goal is

to generate a mask that localizes the potentially tampered

image portion (Figure 1(d)).

To distinguish between spliced and authentic areas, it is

(a) Authentic image 1 (b) Authentic image 2 (c) Spliced image

(d) Ground truth mask (e) ManTra-Net [41] (f) CAT-Net (Proposed)

Figure 1. Challenge of localizing spliced regions from a JPEG im-

age. Although ManTra-Net can trace various manipulations using

RGB pixels, it is not ideal for capturing compression artifacts. The

proposed approach considers RGB and DCT domains jointly to ef-

fectively tracks visual clues and compression traces.

important to analyze statistical fingerprints caused by inter-

nal processes of camera or image editing software (e.g. sen-

sor pattern noise [22], interpolation traces from the color

filter array [30], compression artifacts [2, 26, 38, 40], etc.).

Modern digital cameras typically compress the image to

reduce storage space, with JPEG compression being em-

ployed in most cases due to its efficiency. However, this

generates various JPEG artifacts due to information loss,

even though they are generally not visible to human eyes.

Thus, analyzing JPEG compression artifacts could help lo-

calize forged regions.

Double JPEG detection, i.e., determining if a JPEG im-

age has been compressed once or twice, can help identify

splice forgery. A region spliced onto another image will

likely have a statistically different distribution of DCT co-

efficients in Y-channel compared with an authentic region

(Figure 2). The authentic region is doubly compressed:

first in the camera and again as part of the forgery, leav-

ing periodic patterns in the histogram [29]. The spliced
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(a) Spliced image (b) DCT histograms

Figure 2. Statistical differences between tampered and authentic

regions. DCT histograms are obtained from Y-channel DCT coef-

ficients at the frequency (2,1) for tampered and authentic regions

separately.

region behaves like singly compressed, following the sec-

ondary quantization table [29]. Traditionally, DCT his-

tograms have been employed to detect double JPEG com-

pression [7, 21]. Even in deep learning era, deep neural

networks tend to require preprocessed histograms as input

[2, 26, 38, 40] because naively giving DCT coefficients as

input commonly performs poorly due to the large decor-

relation of DCT coefficients, unlike pixels [42]. All such

methods produce patch-wise predictions due to the usage of

histograms. Therefore, we adopt the binary volume repre-

sentation for DCT coefficients to obtain pixel-wise predic-

tions, originally designed for steganalysis [42]. This allows

combining a semantic segmentation network with the dou-

ble JPEG detection concept, providing pixel-wise predic-

tion.

This paper proposes Compression Artifact Tracing Net-

work (CAT-Net), an end-to-end fully convolutional neural

network to detect and localize spliced regions. The network

includes an RGB stream, a DCT stream, and a final fusion

stage. The RGB stream learns visual artifacts and the DCT

stream learns compression artifacts (i.e., DCT coefficient

distributions). We pretrain the DCT stream for double JPEG

detection and use it as initialization for splicing localization.

The fusion stage fuses multiple resolution features from the

two streams to generate the final mask.

Our main contributions are summarized as follows.

• For the first time, CAT-Net localizes spliced objects

considering RGB and DCT domains jointly. Extensive

experiments with diverse benchmark datasets showed

CAT-Net achieved state-of-the-art performance com-

pared to baselines [41, 15], and stable performance for

JPEG and non-JPEG images.

• We designed the DCT stream to learn compression ar-

tifacts that trace double-compressed clues based on bi-

nary volume representation of DCT coefficients. This

approach outperforms previous state-of-the-art net-

works using histogram representation [2, 26, 40] in

terms of detecting double JPEG compression.

2. Related Work

Image forgery localization can be categorized as block-

wise classification, patch matching, and end-to-end neural

network approaches.

Block-wise classification finds forgery distributions us-

ing classification per block for specific manipulations such

as double JPEG compression [2, 26, 38, 40], image resam-

pling [30], contrast enhancement [36], and multiple manip-

ulations [4]. Images are divided into several fixed-sized

blocks to localize manipulation areas, and detection results

from each block are combined. Detection is performed in-

dependently for each block, hence overall image statistics

cannot be derived.

Patch matching extracts statistical features from im-

age patches and measures consistency among the patches.

Highly inconsistent patches are considered to have been

manipulated (e.g. spliced from another image). Predefined

feature extractors [1, 34] or neural networks [15, 23] are

used to extract appropriate features for matching. Huh et al.

[15] proposed a self-supervised approach to train a model

to determine whether an image was self-consistent in terms

of EXIF metadata. However, patch matching localization

requires high resources because it needs to compute con-

sistency for every patch pair and it needs time-consuming

post-processing to derive actual forgery location by aggre-

gating results from all pairs.

Neural networks have improved object detection [18, 31,

32] and semantic segmentation [20, 33, 39] performance

considerably, and hence image forgery localization methods

have been developed employing such techniques. In [45],

SRM kernel [11] was added to an object detection model

to extract bounding boxes of splicing, copy-move, and re-

moval forgeries. Bi et al. [5] proposed a U-Net [33] based

segmentation network to localize image splicing. It only

used RGB pixel domain information like usual semantic

segmentation networks. Wu et al. [41] proposed ManTra-

Net using SRM kernel [11] in feature extraction and con-

strained convolution [4] followed by pixel-wise anomaly

detection. Although they considered JPEG compression as

a type of manipulation to train the feature extractor, it was

unable to distinguish single and double JPEG compression.

Consequently, localization performance degrades for JPEG

images.

We propose a novel approach to detect and localize im-

age splicing on JPEG images, overcoming the limitations of

previous works. For fast inference and obtaining pixel-wise

prediction, we adopt a segmentation network considering

multi-resolution features [39]. To make the network robust

to JPEG compression, we extract JPEG artifacts in the DCT

domain employing binary volume representation of quan-

tized DCT coefficients [42].
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Figure 3. The proposed CAT-Net architecture includes an RGB stream, a DCT stream, and a final fusion stage. The RGB stream takes

RGB pixels and the DCT stream takes Y-channel DCT coefficients and a Y-channel quantization table as input. The JPEG artifact learning

module is shown in Figure 5.
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Figure 4. Elements in the proposed network. A convolutional unit in Figure 3 mainly consists of four consecutive basic blocks. The fusion

unit fuses multi-resolution feature maps by summing them after matching resolutions.

3. Proposed Method

3.1. Network Structure

Figure 3 shows that CAT-Net comprises an RGB stream,

a DCT stream, and a final fusion stage. RGB pixel val-

ues, quantized Y-channel DCT coefficients, and a Y-channel

quantization table are extracted from JPEG file input. The

RGB pixel values are fed into the RGB stream and the other

data into the DCT stream. The RGB stream focuses on vi-

sual clues and the DCT stream on compression artifacts.

The stream outputs are then fused to generate the final out-

put.

We use HRNet [39] as the CAT-Net backbone, which

was originally designed for computer vision problems. We

introduce HRNet to a forensic problem since it maintains

high-resolution representations through the whole process

and employs a novel fusion method to combine multiple

resolution features and capture the overall picture. This

helps capture the overall structure without losing fine ar-

tifacts required for forensic investigations. Also, HRNet

uses stride-2 convolution to downsample feature maps and

does not use pooling layers. Recent studies have shown that

pooling is undesirable for tasks that require subtle signals

since pooling reinforces content and suppresses noise-like

signals [6]. Although this behavior is desirable for com-

puter vision tasks, it is inappropriate for forensic tasks since

noise is an important clue.

The network includes two elements: a convolutional unit

and a fusion unit. Each convolutional unit in Figure 3

consists of four consecutive basic blocks shown in Fig-

ure 4(a), with a few exceptions such as the first and the last

part [39]. Figure 4(b) shows the fusion unit, which fuses

multi-resolution feature maps by summing multi-resolution

features after matching resolutions by bilinear interpolation

(upsampling) or strided convolution (downsampling).

The RGB stream structure is identical to HRNet except

the last part is removed. The RGB stream takes RGB pixel

values as input and the first convolutional unit reduces res-
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Figure 5. Proposed JPEG artifact learning module architecture.

olution 4-fold. Starting from the high-resolution path, it

gradually goes through the network adding high-to-low res-

olution paths one by one and connecting multi-resolution

paths in parallel. Each resolution remains until the end, pro-

ducing 1
4 , 1

8 , 1
16 , and 1

32 resolutions.

The DCT stream captures compression artifacts, i.e., sta-

tistical distributions of Y-channel DCT coefficients. The

structure is a three-resolution variant of HRNet with the

first convolutional unit replaced by a JPEG artifact learning

module (Figure 5). All convolutional units in this stream

comprise four basic blocks (Figure 4(a)) without excep-

tions.

The JPEG artifact learning module initially converts the

input array of DCT coefficients, M, to a binary volume us-

ing the transformation f : Z
H×W → {0, 1}

(T+1)×H×W

such that

f(M)t,i,j =

{

1, if abs(clip(M))i,j = t

0, otherwise
, (1)

where clip(·) clips the array element-wisely into the interval

[  T, T ] and abs(·) takes element-wise absolute values [42].

We experimentally determined optimal T to be 20. This

binary volume representation is similar to DCT histogram

[40] but allows the network to learn the relationship among

adjacent DCT coefficients. DCT histogram merges infor-

mation patch-wise, whereas this representation maintains

image resolution which is suitable for segmentation.

Consecutive convolutions are applied to the binary vol-

ume. Dilated convolution is used here, which is originally

designed for increasing CNN receptive fields [43]. How-

ever, the proposed network uses 8-dilated convolutions in

order to extract features in DCT coefficients derived from

the same frequency basis. The number of feature map chan-

nels is reduced to 4 using 1× 1 convolution and the feature

map is forked. For the forked path, 8 × 8 quantization ta-

ble obtained from the JPEG header is multiplied to the cor-

responding frequency components. This is similar to the

procedure of dequantizing DCT coefficients in JPEG de-

coding. For the other path, the table is not multiplied. Each

64 (= 8 × 8) frequency component is separated for both

paths. Note that previous operations are done frequency-

wise, hence each value in an 8 × 8 block represents a fre-

quency component. Separating components changes shape

from 4×H ×W to 256× H
8 × W

8 , which helps to signif-

icantly reduce resolution. Lastly in this module, the feature

maps from the two paths are concatenated in channel di-

mension. The output passes the remaining path of the DCT

stream.

During training, input images are cropped to a fixed size

to construct a tensor having a batch dimension. It is worth

noting that a rectangular cropping region must be aligned

with the 8 × 8 grid since JPEG encodes images into 8 × 8
blocks. This makes each channel of a channel-separated

tensor represent a frequency component. This also allows

the RGB stream to learn JPEG blocking artifacts as well as

visual artifacts.

Output feature maps have resolutions ( 14 , 1
8 , 1

16 , 1
32 ) and

( 18 , 1
16 , 1

32 ) for the RGB and DCT streams, respectively.

Two-stream feature maps are concatenated resolution-wise

in channel dimension and passed to the final fusion stage

(Figure 3), which is structurally identical to the final HR-

Net stage, but with a different number of channels. All four

resolution feature maps are finally bilinearly upsampled to

match the highest resolution, concatenated, and pass the fi-

nal convolutional layer. The final output is a 2 × H
4 × W

4
array of logits for each class (authentic and tampered).

3.2. Handling nonJPEG images

Although our network uses a quantization table as input,

the network can also handle non-JPEG images. Since non-

JPEG images do not contain quantized DCT coefficients,

they are calculated from RGB pixels, similarly to a JPEG

encoder. We regard the quantization table for those images

to be all ones, corresponding to JPEG quality 100. For a

simple implementation, we put a JPEG encoder at the front

of the network and compress non-JPEG images to JPEG im-

ages using quality factor 100 with no chroma subsampling.
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Figure 6. DCT stream classification and segmentation head archi-

tecture. Each is attached at the end of the DCT stream to clas-

sify double JPEG images for pretraining (Section 3.3) and localize

the forgery using the DCT stream only for ablation study (Sec-

tion 4.4), respectively. RGB stream heads can be similarly con-

structed using four resolutions.

Method Input Type Acc TPR TNR

VGG-16 [35] RGB pixels 50.00 0.00 100.00

Wang [40] DCT histogram [-5, 5] 73.05 67.74 78.37

Barni [2] DCT histogram [-60, 60] 84.46 78.35 90.53

Park [26]
DCT histogram [-60, 60]

& q. table
92.76 90.90 94.59

DCT stream
w/o q. table

DCT volume [-20, 20] 91.71 84.97 97.42

DCT stream
(Proposed)

DCT volume [-20, 20]

& q. table
93.93 89.43 97.75

Table 1. Double JPEG detection performance (%). The DCT

stream, a substream of CAT-Net, showed the highest classification

accuracy.

This automatically creates quantized DCT coefficients and

a quantization table with all ones.

This is based on the compression assumption: Although

a spliced image is saved in uncompressed image format, two

source (authentic) images used for the splice forgery were

initially compressed in a camera, during acquisition. The

file extension for the manipulated image does not matter,

i.e., we do not assume a forger saved the forged image in a

specific format.

3.3. Pretraining on Double JPEG detection

DCT stream weights are initialized by pretraining on

double JPEG detection. The task is to classify whether the

given JPEG image has been compressed once or twice. Fig-

ure 6 shows that the classification head is attached at the

end of the DCT stream since this is a binary classification

task. Pretraining on this task helps the stream to capture

rich compression artifacts.

We trained and tested the DCT stream on a dataset com-

prising 1.054M single and double-compressed JPEG im-

ages with mixed quality parameters [26]. They compressed

raw images from [3, 8, 13] using 1,120 quantization tables

including not only 51 standard tables (Q50–Q100) but also

non-standard tables obtained from requested images from

their public forensic web service. Table 1 shows the double

JPEG detection performance of the proposed DCT stream

Dataset Images JPEGs Q. tables Test

CASIA v2 [10]
auth. 7,491 7,437 50 300

tamp. 5,105 2,057 7 300

Fantastic Reality [16]
auth. 16,592 16,592 153 1,200

tamp. 19,423 19,423 1 1,325

IMD2020 [25]
auth. 414 414 58 -

tamp. 2,010 1,813 73 141

NC16 Splicing [14] tamp. 288 288 3 288

Carvalho [9]
auth. 100 0 - 100

tamp. 100 0 - 100

Columbia [24]
auth. 183 0 - 183

tamp. 180 0 - 180

Spliced COCO

(Section 4.1)
tamp. 917,648 917,648 50 4,816

Table 2. Splicing datasets employed in the experiments.

(93.93%), which is the state-of-the-art performance com-

pared with baselines [40, 2, 26]. The proposed network out-

performed state-of-the-art neural network [26], which used

histogram, even though we used a smaller range of coeffi-

cients. Hence, the binary volume representation is a good

alternative to the DCT histogram for double JPEG detec-

tion.

We also investigated networks without quantization table

multiplication to evaluate the effectiveness of using quanti-

zation tables. This differed from the original DCT stream

in that the quantization table path and concatenation in Fig-

ure 5 were removed. Using quantization tables improved

double JPEG detection accuracy. Thus, we have adopted

quantization tables for forgery localization for the first time.

4. Experiments

4.1. Datasets

Table 2 summarizes the splicing datasets employed in

the experiments. We also report the number of Y-channel

quantization tables for the first time. Various quantization

tables are used, including standard and custom tables, to

simulate real-world forgery.

CASIA v2 [10] is a popular dataset for image forgery

localization, including images from several sources. We

use masks provided by a third-party user [28] since offi-

cial ground truth masks are not provided. Fantastic Re-

ality [16] includes authentic and spliced images for vari-

ous scenes along with pixel-level ground truth masks. Al-

though authentic images have diverse (153) quantization

tables, tampered images have only one quantization ta-

ble. IMD2020 [25] includes real-life manipulated images

as well as manually created ground truth masks. This

dataset contains the most diverse quantization tables be-

cause images were collected from the Internet and hence

reflects real-world compression schemes. NC16 Splicing

[14] is a subset of NC16 provided by the National Insti-
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tutes of Standards and Technology (NIST). NC16 contains

high resolution and challenging manipulated images. Al-

though there are several forgery types, we only use splic-

ing forgery. Carvalho [9] DSO-1 contains images of peo-

ple. Forgeries were created by adding one or more indi-

viduals from one to another image with post-processing to

increase photorealism. Blocking artifacts are evident when

zoomed in, which means that although the images are not

in JPEG format, the source images were JPEG compressed,

which satisfies the compression assumption (Section 3.2).

Columbia [24] is a historic dataset for manipulation detec-

tion. Ground truth masks are obtained by taking the dif-

ference between authentic and forged images followed by

some post-processing. The images in this dataset were not

compressed in a camera, which violates the compression

assumption (Section 3.2).

Quantization tables for tampered images were not di-

verse, except for IMD2020. Therefore, we created another

dataset (Spliced COCO) to avoid overfitting specific com-

pression parameters, using COCO 2017 dataset [19] with

various quantization tables. Similarly to [25, 45], spliced

images were automatically created by selecting one or more

arbitrary objects in one image and pasting them onto an-

other image at random positions, with random rotation and

resizing. These images were then compressed at random

JPEG quality factor 50–99. We did not apply other post-

processing, such as blurring the spliced boundary, because

that might mislead the network to act like a blur-detector.

We used CASIA v2 (auth./tamp.), Fantastic Real-

ity (auth./tamp.), IMD2020 (tamp.), and Spliced COCO

(tamp.) for a training set; and the remaining datasets for

testing only. The rightmost column in Table 2 shows the

number of images used for testing. We used authentic im-

ages too, in contrast with previous image forgery localiza-

tion studies. We expect this to help the network learn ab-

solute boundaries between tampered and authentic regions,

rather than relative boundaries to predict the most suspi-

cious region per image.

4.2. Implementation Details

We initialized the weights of the network by pretrain-

ing on ImageNet classification [17] for the RGB stream

and double JPEG classification for the DCT stream (Sec-

tion 3.3). We sampled a balanced number of images in each

dataset to construct one epoch, to better handle the high

variety of dataset sizes. Training images were cropped to

512×512 patches aligned with an 8×8 grid. Full-resolution

images were used for testing, which was possible since the

proposed network was fully convolutional.

The network was implemented with PyTorch [27], using

stochastic gradient descent with a momentum of 0.9 for the

optimizer. The batch size was 24. The learning rate started

from 0.005 and decayed exponentially. The objective was

to minimize the pixel-wise binary cross entropy loss with

fivefold more weight on tampered class. The experiments

were performed using 2x NVIDIA TITAN RTX.

4.3. Evaluation Metrics

Our task is a binary segmentation, labeling each pixel

in the input image as tampered (positive, 1) or authentic

(negative, 0). Thus, each output pixel can be marked as true

positive (G:1, P :1), true negative (G:0, P :0), false positive

(G:0, P :1), and false negative (G:1, P :0), where G is the

ground truth mask and P is the prediction output. G and

P are 2-dimensional binary arrays with the same size as the

input image.

We evaluated network performances using mean in-

tersection over union (mIoU), a popularly used metric

for semantic segmentation [12]. For the two-class case,

mIoU(G,P ) = 1
2 ·

#(G∩P )
#(G∪P )+

1
2 ·

#(G∁
∩P∁)

#(G∁∪P∁)
= 1

2 ·
TP

TP+FP+FN
+

1
2 · TN

TN+FP+FN
, where #(·) is the number of positive pixels

and ∁ negates (flips) the mask.

Following [15], we also used the permuted metrics for

evaluation. Permuted mIoU is defined as: p-mIoU(G,P ) =
max

 

mIoU(G,P ),mIoU(G,P ∁)
)

. For forgery localization

tasks, it is sometimes ambiguous which of the two segments

is spliced. Permuted metrics measure how well a model can

distinguish authentic and tampered regions, rather than its

ability to say which is which.

However, mIoU is inappropriate for authentic images,

since every pixel in the ground truth mask is negative.

Therefore, we used pixel accuracy for testing authentic im-

ages: Acc(G,P ) = #(G∩P )+#(G∁
∩P∁)

#(G∪G∁)
= TP+TN

TP+TN+FP+FN
.

Similarly, permuted pixel accuracy is defined as:

p-Acc(G,P ) = max
 

Acc(G,P ),Acc(G,P ∁)
)

. Each met-

ric was calculated per image and averaged over a dataset.

4.4. Results

This section summarizes CAT-Net performance. Tables

3 and 4 show results for test splits and completely unseen

images, respectively. We tested ManTra-Net [41] and EXIF

consistency [15] to compare CAT-Net with current state-of-

the-art image manipulation detectors. Results for those two

networks are reported only for completely unseen datasets

to ensure fair comparison. We also report performances for

the two CAT-Net sub-streams for ablation study and we in-

cludes a robustness test for JPEG compression (Figure 7).

Figures 8 and 9 show some typical prediction outcomes.

The codes for the two baseline networks were obtained

from official public repositories along with their trained

weights. ManTra-Net could not test some NC16 Splicing

images with full resolution due to GPU memory constraints

(NVIDIA TITAN RTX 24GB). Therefore, we cropped

those images to QHD (2560×1440) for all networks. A nor-

malized cut was used to aggregate patch-wise predictions
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CASIA v2 Fantastic Reality IMD2020 Spliced COCO

Network authentic tampered authentic tampered tampered tampered

Acc p-Acc mIoU p-mIoU Acc p-Acc mIoU p-mIoU mIoU p-mIoU mIoU p-mIoU

CAT-Net (Proposed) 99.66 99.66 87.63 87.69 99.73 99.75 93.31 93.31 76.00 76.53 93.87 93.87

RGB stream only 99.47 99.70 77.54 77.54 99.89 99.89 92.14 92.14 74.52 74.78 93.80 93.80

DCT stream only 97.83 97.83 83.00 83.12 99.47 99.59 83.91 83.94 68.89 69.64 81.08 81.10

Table 3. Image splicing detection and localization performance for test splits (%).

NC16 Splicing Carvalho Columbia

Network tampered authentic tampered authentic tampered

mIoU p-mIoU Acc p-Acc mIoU p-mIoU Acc p-Acc mIoU p-mIoU

CAT-Net (Proposed) 68.41 69.18 99.79 99.79 79.44 79.44 99.54 99.54 83.05 90.09

RGB stream only 60.04 61.25 99.85 99.85 61.17 61.17 99.60 99.60 85.04 89.22

DCT stream only 54.76 59.31 99.33 99.33 78.84 78.84 99.37 99.37 39.34 40.49

ManTra-Net [41] 50.12 50.34 98.65 98.65 56.28 56.46 95.66 95.66 52.34 52.40

EXIF consistency [15] 48.68 53.55 62.04 63.56 48.40 51.33 67.60 68.20 80.81 85.29

Table 4. Image splicing detection and localization performance for completely unseen datasets (%).

for the EXIF consistency network.

Table 4 and Figure 8 show that CAT-Net excelled in al-

most all datasets for authentic and tampered images, com-

pared with current state-of-the-art neural networks. The

comparison networks always detect some region as tam-

pered, since they are anomaly detectors, even for authen-

tic images. However, CAT-Net produces less false posi-

tives since it is a segmentation model and we used authen-

tic images during training. Differences between CAT-Net

and the other networks were much larger for tampered im-

ages. Thus, CAT-Net was very effective tracking fine traces

even if forged images were compressed, e.g. NC16 Splic-

ing. Hence, CAT-Net achieved state-of-the-art performance

in terms of detecting and localizing real-world image splic-

ing forgeries.

Tables 3, 4, and Figure 9 show that RGB and DCT

streams complementary cooperated to improve network

performance. For example, in Carvalho (tamp.), the DCT

stream performed better; whereas in NC16 Splicing (tamp.),

the RGB stream performed better. In both cases, the full

network performed best. As discussed in Section 4.1,

Columbia violates the compression assumption. Here, the

DCT stream couldn’t predict well since the images were not

compressed at the beginning, leaving no compression arti-

facts. However, the full network (CAT-Net) performed well

on this dataset, with the help of the RGB stream.

Figure 7 shows robustness on JPEG compression tested

by compressing Columbia and Carvalho using quality fac-

tor 60–90. When additional compression was applied, all

three network performances were degraded for Columbia,

which had splicing created by two different cameras without

compression. In Carvalho, additional compression surely

decreased the performance, but the change was smaller be-

cause images have initial compression traces, which helped

the networks to detect a spliced object. CAT-Net achieved
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Figure 7. Robustness test on JPEG compression. CAT-Net showed

the highest robustness for most of the JPEG quality factors.

good performance for various quality factors.

5. Conclusion

We have proposed CAT-Net which localizes spliced re-

gions on given images. CAT-Net was the first attempt to

consider RGB and DCT domains simultaneously to effec-

tively learn forensic features for visual and compression

artifacts remaining in each domain through the RGB and

DCT streams. In particular, the DCT stream, containing the

JPEG artifact learning module, achieved outstanding per-

formance detecting double JPEG compression. We applied

transfer learning from double JPEG detection tasks to im-

age forgery localization tasks for the first time. This helped

the network to distinguish statistical fingerprints between

spliced and authentic regions. CAT-Net achieved state-of-

the-art performance on localizing spliced regions for JPEG

or non-JPEG images on diverse datasets compared with cur-

rent networks.
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Figure 8. Image splicing localization results for the proposed net-

work and two state-of-the-art networks. Ground truth mask is the

union of TP and FN.

Figure 9. Image splicing localization results for the proposed net-

work and its sub-streams. Ground truth mask is the union of TP

and FN.
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Bestagini, Andrea Costanzo, Marco Maggini, Benedetta

Tondi, and Stefano Tubaro. Aligned and non-aligned double

jpeg detection using convolutional neural networks. Jour-

nal of Visual Communication and Image Representation,

49:153–163, 2017.
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