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Abstract

Coronavirus Disease 2019 (COVID-19) has spread ag-

gressively across the world causing an existential health

crisis. Thus, having a system that automatically detects

COVID-19 in tomography (CT) images can assist in quan-

tifying the severity of the illness. Unfortunately, labelling

chest CT scans requires significant domain expertise, time,

and effort. We address these labelling challenges by only

requiring point annotations, a single pixel for each in-

fected region on a CT image. This labeling scheme al-

lows annotators to label a pixel in a likely infected re-

gion, only taking 1-3 seconds, as opposed to 10-15 sec-

onds to segment a region. Conventionally, segmentation

models train on point-level annotations using the cross-

entropy loss function on these labels. However, these

models often suffer from low precision. Thus, we pro-

pose a consistency-based (CB) loss function that encour-

ages the output predictions to be consistent with spatial

transformations of the input images. The experiments on

3 open-source COVID-19 datasets show that this loss func-

tion yields significant improvement over conventional point-

level loss functions and almost matches the performance of

models trained with full supervision with much less human

effort. Code is available at: https://github.com/

IssamLaradji/covid19_weak_supervision.

1. Introduction

The severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) has quickly become a global pandemic and

resulted in over 400,469 COVID-19 related deaths as of

June 8th, 20201. The virus comes from the same family as

the SARS-CoV outbreak originated in 2003 and the MERS-

1Source: World Health Organization.
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Figure 1: Labeling Scheme. We illustrate the difference

between labels obtained using full supervision and point-

level supervision. One point is placed on each infected re-

gion, and several on the background region.

CoV outbreak of 2012, and is projected to join other coron-

avirus strains as a seasonal disease. The disease can present

itself in a variety of ways ranging from asymptomatic to

acute respiratory distress syndrome (ARDS). However, the

primary and most common presentation associated with

morbidity and mortality is the presence of opacities and

consolidation in a patient’s lungs. As the disease spreads,

healthcare centers around the world are becoming over-

whelmed and facing shortages of the essential equipment

necessary to manage the symptoms of the disease. Severe

cases require admission to the intensive care unit (ICU) and

need mechanical ventilation, some sources [10] citing at a

rate of 5% of all infected. Thus, availability of ICU beds due

to the overwhelming number of COVID-19 cases around the

world is a large challenge. Rapid screening is necessary to

diagnose the disease and slow the spread, making effective

tools essential for prognostication in order to efficiently al-

locate intensive care services to those who need it most.

Upon inhalation, the virus attacks and inhibits the alve-

oli of the lung, which are responsible for oxygen ex-

change [43]. In response, and as part of the inflamma-

tory repair process, the alveoli fill with fluid, causing var-
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ious forms of opacification within the lung when viewed on

Computed Tomography (CT) scans. Due to the increased

density, these areas present on CT scans as increased at-

tenuation with preserved bronchial and vascular markings

known as ground glass opacities (GGO). In addition, the

accumulation of fluid progresses to obscure bronchial and

vascular regions on CT scans is known as consolidation.

While reverse transcription polymerase chain reaction

(RT-PCR) has been considered the gold standard for

COVID-19 screening, the shortage of equipment and strict

requirements for testing environments limit the utility of

this test in all settings. Further, RT-PCR is also reported

to suffer from high false negative rates due to its relatively

low sensitivity yet high specificity [1]. CT scans are an

important complement to RT-PCR tests which were shown

to demonstrate effective diagnosis, including follow-up as-

sessment and the evaluation of disease evolution [1, 52].

In addition, expert interpretation of CT scans can provide

insight on the severity of the infection by identifying various

patterns of opacification. The prevalence of these patterns,

which are correlated with the severity of the infection, has

been correlated to different stages of the disease [21, 42].

The quantification of the opacification composition enables

efficient estimation of the stage of the disease and the pa-

tient outcome.

Deep learning-based methods have been widely applied

in medical image analysis to combat COVID-19 [12, 15,

41]. They have been proposed to detect patients infected

with COVID-19 via radiological imaging. For example,

COVID-Net [39] was proposed to detect COVID-19 cases

from chest radiography images. An anomaly detection

model was designed to assist radiologists in analyzing the

vast amounts of chest X-ray images [34]. For CT imaging,

a location-attention oriented model was employed to calcu-

late the infection probability of COVID-19 [5]. A weakly-

supervised deep learning-based software system was devel-

oped in [48] using 3D CT volumes to detect COVID-19. A

list of papers for COVID-19 imaging-based AI works can

be found in Wang et al. [40]. Although plenty of AI sys-

tems have been proposed to provide assistance in diagnos-

ing COVID-19 in clinical practice, there are only a few re-

lated works [9], and no significant impact has been shown

using AI to improve clinical outcomes, as of yet.

According to Ma et al. [26], it takes around 400 minutes

to delineate one CT scan with 250 slices. That is an average

of 1.6 minutes per slice. On the other hand, it takes around

3 seconds to point to a single region at the pixel level Pa-

padopoulos et al. [30]. Thus, point-level annotations allow

us to label many more slices quickly.

Point-level annotations are not as expressive as segmen-

tation labels, making effective learning a challenge for seg-

mentation models (Fig. 1). Conventionally, segmentation

models train on point-level annotations using the cross-

entropy on these labels. While this loss can yield good

results in some real-life datasets [3], the resulting models

usually suffer from low precision as they often predict big

blobs. Such predictions are not suitable for imbalanced

images where only few small regions are labeled as fore-

ground. Thus, we propose a consistency-based (CB) loss

function that encourages the model’s output predictions to

be consistent with spatial transformations of the input im-

ages. While consistency methods have been successfully

deployed in semantic segmentation, the novel aspect of this

work is the notion of consistency under weak supervision,

which utilizes unlabeled pixels during training. We show

that this regularization method yields significant improve-

ment over conventional point-level loss functions was on 3

open-source COVID-19 datasets. We also show that this

loss function results in a segmentation performance that al-

most matches that of the fully supervised model. To the best

of our knowledge, this is the first time that self-supervision

has been applied in conjunction with point-level supervision

on a medical segmentation dataset.

We summarize our contributions and results on 3 pub-

licly available CT Scans 2 as follows:

1. We propose a framework that trains using a

consistency-based loss function on a medical segmen-

tation dataset labeled with point-level supervision.

2. We present a trivial, yet cost-efficient point-level su-

pervision setup where the annotator is only required to

label a single point on each infected region and several

points on the background.

3. We show that our consistency-based loss function

yields significant improvement over conventional

point-level loss functions and almost matches the per-

formance of models trained with full supervision.

2. Related Work

In this section, we review semantic segmentation meth-

ods applied to CT scans for general medical problems, and

for COVID-19. We also review methods for weakly su-

pervised problem setups and self-supervision methods that

were shown to help generalization performance. For all

of our methods, we use an ImageNet-pretrained VGG16

FCN8 [24] backbone as our segmentation method.

Semantic segmentation for CT Scans has been widely

used for diagnosing lung diseases. Diagnosis is often based

on segmenting different organs and lesions from chest CT

slices, which can provide essential information for doctors

to identify lung diseases. Many methods exist that perform

nodule segmentation of lungs. Early algorithms are based

on image processing and SVMs to segment nodules [15].

2Found here: https://medicalsegmentation.com/covid19/
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Then, algorithms based on deep learning emerged [12].

These methods include central focus CNNs [41] and GAN-

synthesized data for nodule segmentation in CT scans [14].

A recent method uses multiple deep networks to segment

lung tumors from CT slices with varying resolutions, and

multi-task learning of joint classification and segmenta-

tion [13].

Semantic segmentation for COVID-19 While COVID-

19 is a recent phenomenon, several methods have been pro-

posed to analyze infected regions of COVID-19 in lungs.

Fan et al. [9] proposed a semi-supervised learning algorithm

for automatic COVID-19 lung infection segmentation from

CT scans. Their algorithm leverages attention to enhance

representations. Similarly, Zhou et al. [49] proposed to

use spatial and channel attention to enhance representations,

and Chen et al. [6] augment U-Net [32] with ResNeXt [47]

blocks and attention. Instead of focusing on the architec-

ture, Amyar et al. [2] proposed to improve the segmentation

performance with a multi-task learning approach which in-

cludes a reconstruction loss. Although previous methods

are accurate, their computational cost can be prohibitive.

Thus, Qiu et al. [31] proposed Miniseg for efficient COVID-

19 segmentation. Unfortunately, these methods require full

supervision, which is costly to acquire compared to point-

level supervision: our problem setup.

Weakly supervised semantic segmentation methods

can vastly reduce the required annotation cost for collect-

ing a training set. According to Bearman et al. [3], man-

ually collecting image-level and point-level labels for the

PASCAL VOC dataset [8] takes only 20.0 and 22.1 sec-

onds per image, respectively. These annotation methods are

an order of magnitude faster than acquiring full segmenta-

tion labels, which is 239.0 seconds on average. Other forms

of weaker labels were explored as well, including bounding

boxes [16] and image-level annotation [50]. Weak supervi-

sion was also explored in instance segmentation where the

goal is to identify object instances as well as their class la-

bels [19, 20, 51]. In this work, the labels are given as point-

level annotations instead of the conventional per-pixel level

labels and the task is to identify the class labels of the re-

gions only.

Self-supervision for weakly supervised semantic seg-

mentation is a relatively new research area that has strong

potential in improving segmentation performance. The ba-

sic idea is to generate two perturbed versions of the input

and apply consistency training to encourage the predictions

to be similar [46]. For example, FixMatch [36] combined

consistency regularization with pseudo-labeling to produce

artificial image-level labels. In the case of dense predic-

tions, the outputs need to be further transformed in order

to compare them against a consistency loss, making the

model’s output equivariant against transformations. Self-

supervision was recently applied in a weakly supervised

setup where annotations are image-level [44]. The idea was

to make the output consistent across scales, which led to

new state-of-the-art results on PASCAL VOC dataset. Ouali

et al. [29] proposed to apply cross-consistency training,

where the perturbations are applied to the outputs of the en-

coder and the dense predictions are enforced to be invariant.

These perturbations can also be used for data augmentation,

which can be learnt automatically using methods based on

reinforcement learning and bilevel optimization [7, 28]. For

medical segmentation, self-supervision has been used along

with semi-supervised learning [4, 22]. Bortsova et al. [4]

made the outputs consistent across elastic transforms, while

Li et al. [22] added a teacher-student paradigm for consis-

tency training. In this work, we apply consistency loss on

the novel setup of medical segmentation with point super-

vision.

3. Methodology

Problem Setup and Network Architecture. We define

the problem setup as follows. Let X be a set of N training

images with corresponding ground truth labels Y . Yi is a

W × H matrix with non-zero entries that indicate the lo-

cations of the object instances. The values of these entries

indicate the class label that the point corresponds to.

We use a standard fully-convolutional neural network

that takes as input an image of size W × H and outputs

a W × H × C per-pixel map where C is the set of object

classes of interest. The output map is converted to a per-

pixel probability matrix Si by applying the softmax func-

tion across classes. These probabilities indicate how likely

each pixel belongs to the infected region of a class c ∈ C.

Proposed Loss Function. Our weakly supervised method

uses a loss function that consists of a supervised point-level

loss and an unsupervised consistency loss. Given a network

fθ that outputs a probability map Si given an image Xi, we

optimize its parameters θ using the following loss function,

L(X,Y ) =

N∑

i=1

LP (Xi, Yi)
︸ ︷︷ ︸

Point-level

+λ LC(Xi)
︸ ︷︷ ︸

Consistency

, (1)

where λ is used to weigh between the two loss terms.

Point-level loss. We apply the standard cross-entropy

function against point annotations, which is defined as fol-

lows,

LP (Xi, Yi) = −
∑

j∈Ii

log(fθ(Xi)jYj
) , (2)
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Figure 2: Model Training. Our model has two branches with shared weights. The first branch encodes the original input

x while the second branch encodes the transformed input t(x). The point-level loss compares the outputs f(x) and f(t(x))
with the corresponding weak labels y and t(y). In addition, an unsupervised consistency loss is used to make the outputs

t(f(x)) and f(t(x)) consistent.

where fθ(Xi)jYj
is the output corresponding to class Yj for

pixel j, and Ii is the set of labeled pixels for image Xi.

Consistency loss. We first define a set of geometric trans-

formations T = {t1, t2, ..., tn}. An example of tk is hor-

izontal flipping, which can be used to transform an im-

age Xi and its corresponding label Yi collectively to their

flipped version. The goal of this loss function is to make

the model’s output consistent with respect to these transfor-

mations on the input image. The loss function is defined as

follows,

LC(Xi) =
∑

j∈Pi

|tk(fθ(Xi))j − fθ(tk(Xi))j |, (3)

where Pi is the set of pixels for image Xi. This unsuper-

vised loss function helps the network learn equivariant se-

mantic representations that go beyond the translation equiv-

ariance that underlies convolutional neural networks, serv-

ing as an additional form of supervision.

Model Training. The overview of the model training is

shown in Fig. 2 and Alg. 1. The model has two branches

with shared weights θ. At each training step k, we sam-

ple an image Xi and a transform function tk ∈ T . The

model’s first branch takes as input the original image Xi

and the second branch takes as input the transformed im-

age tk(Xi). The transformed output of the first branch,

y1 := tk(fθ(Xi)), is aligned with the prediction of the sec-

ond branch y2 := fθ(tk(Xi)) for pixel-wise comparison by

the consistency loss function 3.

In addition to the consistency loss, the point-level

loss LP is applied to both input Xi and tk(Xi), i.e.

LP (tk(Xi), tk(Yi)), where tk(Yi) is a pseudo ground-truth

mask for tk(Xi) generated by applying the same geometric

transformation tk to the ground-truth mask Yi. In this case,

the network is forced to update the prediction for tk(Xi) to

be more similar to tk(Yi).
In this work, we use geometric transformations which al-

low us to infer the true label of images that undergo these

transformations. For instance, the segmentation mask of the

flipped version of an image is the flipped version of the orig-

inal segmentation mask. Thus, we include the following

transformations: 0, 90, 180 and 270 degree rotation and a

horizontal flip. At test time, the trained model can then be

directly used to segment infected regions on unseen images

with no additional human input.

4. Experiments

4.1. Experimental Setup

Here we describe the details behind the datasets, meth-

ods, and evaluation metrics used in our experiments.

4.1.1 Datasets

We evaluate our weakly supervised learning system on three

separate open source medical segmentation datasets (re-

ferred to as COVID-19-A/B/C). For each dataset, a point-

level label is obtained for a segmentation mask by taking

the pixel with the largest distance transform as the centroid.

Thus, we generate a single supervised point for each dis-

joint infected region on the training images. For the back-

ground region, we randomly sample several pixels as the

ground-truth points (Figure 1). We show the dataset statis-

tics in Table 1 and describe them in the next sections.
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Algorithm 1: Model Training

Input : X = {X1, X2, ..., Xn} images,

Y = {Y1, Y2, ..., Yn} point-level

masks.

Output : Trained parameters θ∗

Parameters: A weight coefficient λ,

A set of transformation functions T ,

A model forward function fθ.

1 for each batch B do

2 L ← 0
3 for each (Xi, Yi) ∈ B do

4 Compute Point Loss

5 LP ← −
∑

j∈Ii
log(fθ(Xi)jYj

)

6 Uniformly sample a transform function

7 tk ∼ T

8 Compute Consistency Loss

9 LC ←
∑

j∈Pi
|tk(fθ(Xi))j − fθ(tk(Xi))j |

10 L ← L+ LP + λLC

11 end

12 Update θ by backpropagating w.r.t. L

13 end

COVID-19-A [9, 27] consists of 100 axial lung CT JPEG

images obtained from 60 COVID-19 lung CTs provided by

the Italian Society of Medical and Interventional Radiol-

ogy. Each image was labeled for ground-glass, consolida-

tion, and pleural effusion by a radiologist. We discarded two

images without areas of infection from this dataset due to

their low resolution. Images were resized to a fixed dimen-

sion of 352 × 352 pixels and normalized using ImageNet

statistics [33]. The final dataset consisted of 98 images sep-

arated into a training set (n = 50), validation set (n = 5),

and a test set (n = 48).

COVID-19-B [27] consists of 9 volumetric COVID-19

chest CTs in DICOM format containing a total of 829 axial

slices. Images were first converted from Houndsfield units

to unsigned 8-bit integers, then resized to 352× 352 pixels

and normalized using ImageNet statistics [33].

We use COVID-19-B to evaluate the consistency loss on

two splits of the dataset: separate and mixed. In the separate

split (COVID-19-B-Separate), the slices in the training, val-

idation, and test set come from different scans. The goal is

to have a trained model that can generalize to scans of new

patients. In this setup, the first 5 scans are defined as the

training set, the sixth scan as validation, and the remaining

scans as the test set.

For the mixed split (COVID-19-B-Mixed), the slices in

the training, validation, and test set come from the same

scans. The idea is to have a trained model that can infer the

masks in the remaining slices of a scan when the annotator

only labels few of the slices in that scan. In this setup, the

first 5 scans are defined as the training set, the sixth scan

as validation, and the remaining scans as the test set. For

each scan, the first 45% slices of the scan are defined as

the training set, the next 5% as the validation set, and the

remaining slices as the test set.

COVID-19-C [25] consists of 20 CT volumes. Lungs and

areas of infection were labeled by two radiologists and ver-

ified by an experienced radiologist. Each three-dimensional

CT volume was converted from Houndsfield units to un-

signed 8-bit integers and normalized using ImageNet statis-

tics [33].

As with COVID-19-B, we also split the dataset into sep-

arate and mixed versions to evaluate our model’s efficacy.

For the separate split (COVID-19-B-Sep), we assign 15

scans to the training set, 1 scan to the validation set, and

4 scans to the test set. For the mixed split (COVID-19-C-

Mixed), we separate the slices from each scan in the same

manner as in COVID-19-B, training on the first 45% axial

slices, validating on the next 5% of slices, and testing on the

remaining 50% of slices.

4.1.2 Evaluation Metrics

As common practice [35], we evaluate our models against

the following metrics for semantic segmentation:

Intersection over Union (IoU) measures the overlap

between the prediction and the ground truth: IoU =
TP

TP+FP+FN
, where TP, FP, and FN is the number of true

positive, false positive and false negative pixels across all

images in the test set.

Dice Coefficient (F1 Score) is similar to IoU but gives

more weight to the intersection between the prediction and

the ground truth: F1 = 2∗TP
2∗TP+FP+FN

.

PPV (Positive Predicted Value) measures the fraction of

positive samples that were correctly predicted, which is also

known as precision: PPV = TP
TP+FP

.

Sensitivity (recall) measures the fraction of real positive

samples that were predicted correctly: Sens. = TP
TP+FN

.

Specificity (true negative rate) measures the fraction

of real negative samples that were predicted correctly:

Spec. = TN
FP+TN

.

4.2. Methods and baselines

We provide experiments with three weakly supervised

loss functions based on point-level annotations and a fully-

supervised upper bound method:
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Table 1: Statistics of open-source COVID-19 datasets.

Name # Cases # Slices # Slices with Infections (%) # Infected Regions

COVID-19-A 60 98 98 (100.0%) 776

COVID-19-B 9 829 372 (44.9%) 1488

COVID-19-C 20 3520 1841 (52.3%) 5608

• Point loss (PL). It is defined in Eq. 2 in Bearman et al.

[3]. The loss function encourages all pixel predictions

to be background for background images and applies

cross-entropy against the provided point-level annota-

tions, ignoring the rest of the pixels.

• CB(Flip) + PL. It is defined in Eq. 1 in Section 3,

which combines the point loss and the horizontal flip

transformation for the consistency loss.

• CB(Flip, Rot) + PL. It is the same as CB(Flip) + PL

except that the transformation used for the consistency

loss also includes the 0, 90, 180, and 270 degree rota-

tion transformation uniformly sampled for each image.

• Fully supervised. This loss function combines

weighted cross-entropy and IoU loss as defined in Eq.

(3) and (5) from Wei et al. [45], respectively. It is an

efficient method for ground truth segmentation masks

that are imbalanced. Since this loss function requires

full supervision, it serves as an upper bound perfor-

mance in our experimental results.

Implementation Details All methods use an Imagenet-

pretrained VGG16 FCN8 network [24]. Models are trained

with a batch size of 8 for 100 epochs with ADAM [17] and a

learning rate of 10−4. We also achieved similar results with

optimizers that do not require a learning rate [23, 37, 38].

The reported scores are on the test set which were obtained

with early stopping on the validation set. Point annotations

were obtained by uniformly sampling one pixel from each

annotated mask. The same amount of points are uniformly

sampled from the background.

4.3. Segmentation Results

Here we evaluate the loss functions on three covid

datasets and discuss their results.

4.3.1 COVID-19-A

Table 2 shows that with only point supervision, our method

was able to perform competitively compared to full super-

vision. In terms of sensitivity, it can be observed that the

point loss outperformed the fully-supervised baseline by

0.11 points. For the other metrics, we were able to obtain

competitive performance when using the consistency-based

Table 2: COVID-19-A Segmentation Results

Loss Function Dice IoU PPV Sens. Spec.

Fully Supervised 0.65 0.48 0.52 0.85 0.85

Point Loss (PL) 0.54 0.37 0.39 0.88 0.73

CB(Flip) + PL (Ours) 0.58 0.41 0.46 0.80 0.82

CB(Flip, Rot) + PL (Ours) 0.73 0.57 0.65 0.82 0.92

(CB) loss. The gap between fully supervised and point-

based loss is reduced when using flips and rotations (Flip,

Rot) instead of simple horizontal flips (Flip). Moreover,

with (Flip, Rot), our method surpasses the fully-supervised

sensitivity by 0.12 points. Figure 3 contains qualitative re-

sults comparing the ground truth with the point-level loss

and the effect of the CB loss. It can be observed how us-

ing the CB loss produces masks that are more contained in

the region of interest (the lungs). COVID-19-A is a small

and easy dataset compared to COVID-19-B and COVID-

19-C. Thus, in the next sections, we show that with bigger

datasets, CB point loss obtains even better performance on

the rest of the metrics with weak supervision.

4.3.2 COVID-19-B

As seen in Table 3 and 4, the CB method is more robust

against different splits of the data. In both COVID-19-B-

Sep and COVID-19-B-Mixed, the CB method achieves sim-

ilar results, whereas there is more variance in the results

with Point Loss and W-CE metrics. While the W-CE base-

line has an average gap of 0.37 between sep and mixed over

all metrics, the CB Point loss only has a difference of 0.07

with (Flip) and 0.08 with (Flip, Rot). Remarkably, on sep,

our weakly supervised method with (Rot, Flip) improved

by 0.48, 0.42, and 0.56, on the Dice, IoU, and Sensitivity

metrics, with respect to the W-CE baseline. On PPV and

Specificity, our method was able to retain a competitive per-

formance, with a difference of 0.16 and 0.02 respectively.

Except the for Sensitivity in COVID-19-B-Sep, the CB loss

(Rot, Flip) yields better results than the point loss.

4.3.3 COVID-19-C

As seen in Tables 5 and 6, the fully supervised method per-

forms better on COVID-19-C than in the other two datasets

and the performance gap between mixed and sep is smaller.
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Original Image Ground Truth Point Loss (PL) Consistency Loss

CB(Flip, Rot) + PL

Figure 3: Qualitative results. We show the predictions obtained from training the model with the point-level loss in Bearman

et al. [3] and our consistency-based (CB) loss. With the CB loss the predictions are much closer to the ground-truth labels.

This can be attributed to the larger size of COVID-19-C.

The average gap in performance of the fully supervised

baseline between the mixed and sep versions is 0.06 for

COVID-19-C. The weakly supervised CB loss yields a gap

of 0.05 in performance between mixed and sep. Similar

to COVID-19-B, except for Sensitivity, the CB point loss
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Table 3: COVID-19-B-Mixed Segmentation Results

Loss Function Dice IoU PPV Sens. Spec.

Fully Supervised 0.84 0.73 0.90 0.80 1.00

Point Loss (PL) 0.33 0.20 0.20 0.91 0.94

CB(Flip) + PL (Ours) 0.73 0.57 0.64 0.85 0.99

CB(Flip, Rot) + PL (Ours) 0.75 0.60 0.63 0.92 0.99

Table 4: COVID-19-B-Sep Segmentation Results

Loss Function Dice IoU PPV Sens. Spec.

Fully Supervised 0.24 0.14 0.89 0.14 1.00

Point Loss (PL) 0.57 0.40 0.44 0.82 0.94

CB(Flip) + PL (Ours) 0.69 0.53 0.72 0.66 0.99

CB(Flip, Rot) + PL (Ours) 0.72 0.56 0.73 0.70 0.98

Table 5: COVID-19-C-Mixed Segmentation Results

Loss Function Dice IoU PPV Sens. Spec.

Fully Supervised 0.78 0.64 0.79 0.77 1.00

Point Loss (PL) 0.12 0.07 0.07 0.95 0.82

CB(Flip) + PL (Ours) 0.66 0.49 0.56 0.80 0.99

CB(Flip, Rot) + PL (Ours) 0.68 0.51 0.56 0.85 0.99

Table 6: COVID-19-C-Sep Segmentation Results

Loss Function Dice IoU PPV Sens. Spec.

Fully Supervised 0.71 0.55 0.78 0.65 0.99

Point Loss (PL) 0.37 0.23 0.23 0.97 0.76

CB(Flip) + PL (Ours) 0.69 0.53 0.62 0.79 0.96

CB(Flip, Rot) + PL (Ours) 0.75 0.59 0.66 0.86 0.97

yields substantially better results than the point loss. We

also observed better results when adding rotations. In fact,

with (Flip, Rot), our weakly supervised method improves

over the fully supervised baseline by 0.04, 0.04, and 0.21

on Dice, IoU and Sensitivity on the sep split.

4.4. Counting and Localization Results

In this setup we consider the task of counting and lo-

calizing COVID-19 infected regions in CT Scan images.

Radiologists strive to identify all regions that might have

relevance to COVID-19, which is a very challenging task,

especially for small infected regions. Thus, having a model

that can localize these regions can help improve radiologist

performance in the identification of infected regions.

We consider the COVID-19-B and COVID-19-C

datasets to evaluate 3 types of loss functions: point loss

(Eq.2 from Bearman et al. [3]), LCFCN loss (Eq. 1

from Laradji et al. [18]), and consistency-based LCFCN

loss that we propose in this section.

The consistency based LCFCN (CB LCFN Loss) loss ex-

tends the LCFCN loss with the CB loss proposed in Eq. 1

Table 7: COVID-19-B-Mixed Counting and Localization

Loss Function MAE GAME

Point Loss 5.97 7.24

LCFCN Loss 1.15 2.09

CB LCFCN (Ours) Loss 0.66 1.74

Table 8: COVID-19-C-Mixed Counting and Localization

Loss Function MAE GAME

Point Loss 9.63 11.76

LCFCN Loss 1.01 1.70

CB LCFCN Loss (Ours) 0.82 1.42

using the horizontal flip transformation. To evaluate these

3 loss functions, we consider each connected infected re-

gion as a unique region. The goal is to identify whether

these regions can be counted and localized. We use the

mean absolute error (MAE) and grid average mean abso-

lute error (GAME) [11] to measure how well the methods

can count and localize infected regions. We provide results

for GAME(L = 4) which divides the image using a grid

of 4L non-overlapping regions, and the error is computed as

the sum of the MAE in each of these subregions.

Table 7 and 8 shows that the consistency loss helps

LCFCN achieve superior results in counting and localiz-

ing infected regions in the CT image. It is expected that

the Point Loss achieves poor performance as it predicts big

blobs that can encapsulate several regions together. On the

other hand, the consistency loss helped LCFCN improve

its results suggesting the model learns more informative se-

mantic features for the task with such self-supervision.

5. Conclusion

Machine learning has the potential to solve a number

challenges associated with COVID-19. One example is the

identification of high-risk patients by segmenting infected

regions in CT scans. However, conventional annotations

methods rely on per-pixel labels which are costly to collect

for CT scans. In this work, we have proposed an efficient

method that can learn from point-level annotations, which

are much cheaper to acquire than per-pixel labels. Our

method uses a consistency-based loss that significantly im-

proves the segmentation performance compared to conven-

tional point-level loss on 3 COVID-19 open-source datasets.

Further, our method obtained results that almost match the

performance of the fully supervised methods and they are

more robust against different splits of the data.
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