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Abstract

Multimodal large-scale datasets for outdoor scenes are

mostly designed for urban driving problems. The scenes

are highly structured and semantically different from sce-

narios seen in nature-centered scenes such as gardens or

parks. To promote machine learning methods for nature-

oriented applications, such as agriculture and gardening,

we propose the multimodal synthetic dataset for Enclosed

garDEN scenes (EDEN). The dataset features more than

300K images captured from more than 100 garden mod-

els. Each image is annotated with various low/high-level

vision modalities, including semantic segmentation, depth,

surface normals, intrinsic colors, and optical flow. Experi-

mental results on the state-of-the-art methods for semantic

segmentation and monocular depth prediction, two impor-

tant tasks in computer vision, show positive impact of pre-

training deep networks on our dataset for unstructured nat-

ural scenes. The dataset and related materials will be avail-

able at https://lhoangan.github.io/eden.

1. Introduction

Synthetic data have been used to study a wide range

of computer vision problems since the early days [1, 4,

26]. Compared to real-world imagery (RWI), computer-

generated imagery (CGI) data provides allows for less ex-

pensive and more accurate annotation. Since the emergence

of deep learning, synthetic datasets using CGI has become

essential due to the data-hungry nature of deep learning

methods and the difficulty of annotating real-world images.

Most of the large-scale RWI datasets (with more than 20K

annotated data points) are focusing on higher-level com-

puter vision tasks such as (2D/3D) detection, recognition,

and segmentation [11, 15, 16, 33, 39, 54]. In contrast,

datasets for low-level image processing such as optical flow,

visual odometry (KITTI [20, 36]) and intrinsic image de-

composition (IIW [8], MIT [23], SAW [29]) are limited in

the number of samples (around 5K annotated images).

CGI-based synthetic datasets [10, 19, 30, 35, 42, 44]

provide more and diverse annotation types. The continu-

ous progress of computer graphics and video-game industry
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Figure 1. An overview of multiple data types provided in the dataset. The dataset includes data for both low- and high-level tasks such as

(stereo) RGB, camera odometry, instant and semantic segmentation, depth, surface normal, forward and backward optical flow, intrinsic

images (albedo, shading for diffuse materials, translucency)

results in improved photo-realism in render engines. The

use of physics-based renderers facilitates the simulation of

scenes under different lighting conditions (e.g. morning,

sunset, nighttime). Information obtained by video-game

pixel shaders [30, 42, 43] is of high-quality and can be used

to train low-level computer vision tasks such as optical flow,

visual odometry and intrinsic image decomposition.

Most of the existing datasets focus on car driving sce-

narios and are mostly composed of simulations of ur-

ban/suburban scenes. City scenes are structured containing

objects that are geometrically distinctive with clear bound-

aries. However, natural or agriculture scenes are often un-

structured. The gaps between them are large and required

distinctive attentions. For example, there are only trails and

no drive ways nor lane marks for travelling; bushes and

plants are deformable and often entangled; obstacles such

as small boulders may cause more trouble than tall grass.

To facilitate the development of computer vision and

(deep) machine learning for farming and gardening applica-

tions, which involve mainly unstructured scenes, in this pa-

per, we propose the synthetic dataset of Enclosed garDEN

scenes (EDEN), the first large-scale multimodal dataset

with >300K images, containing a wide range of botanical

objects (e.g. trees, shrubs, flowers), natural elements (e.g.

terrains, rocks), and garden objects (hedges, topiaries). The

dataset is created within the TrimBot2020 project1 for gar-

dening robots, and have pre-released versions used in the

3DRMS challenge [48] and in several work [6, 7, 31].

1http://trimbot2020.webhosting.rug.nl/

In contrast to man-made (structured) objects in urban

scenarios (such as buildings, cars, poles, etc.), the mod-

elling of natural (unstructured) objects is more challeng-

ing. Natural objects appear with their own patterns and

shapes, making a simplified or overly complex object eas-

ily recognized as unrealistic. Rendering techniques using

rotating billboards of real photos may provide realistic ap-

pearances, but lack close-up geometrical features. Although

synthetic datasets and video-games may offer natural ob-

jects and scenes, they often come with generic labels (e.g.

tree, grass, and simple vegetation), since their focus is on

the gaming dynamics. Therefore, objects in our dataset are

developed using high-fidelity parametric models or CADs

created by artists to obtain natural looking scenes. The

object categories are selected for the purpose of gardening

and agricultural scenarios to include a large variety of plant

species and terrain types. The dataset contains relatively

different lighting conditions to simulate the intricate aspects

of outdoor environments. The different data modalities are

useful for both low- and high-level computer vision tasks.

In addition to the new dataset itself, we provide analyses

and benchmarks of the dataset on state-of-the-art methods

of two important tasks in computer vision, namely semantic

segmentation and depth prediction.

2. Related Work

2.1. Real­imagery datasets

To accommodate the emergence of deep learning and its

data-demanding nature, many efforts have been spent on
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Figure 2. Sample tree models (top: tree stems, bottom: with leaves) for various tree species

creating large-scale generic datasets, starting with the well-

known ImageNet [16], COCO [33], and Places [53]. These

are real-world imagery (RWI) datasets with more than 300K

annotated images at object and scene-level. Also in the

domain of semantic segmentation, there are a number of

datasets available such as Pascal-Context [37] (10,103 im-

ages, 540 categories) and ADE20K [54] (20,210 images,

150 categories).

Annotation is expensive. Lower-level task annotation

is even more expensive. In contrast to the availability of

large datasets for higher-level computer vision tasks, there

are only a few RWI datasets for low-level tasks such as

optical flow, visual odometry, and intrinsic image decom-

position due unintuitive data annotation. Middlebury [3]

and KITTI [20, 36] are the only datasets providing optical

flow for real-world images, yet too small to train a deep

network effectively. For intrinsic image decomposition, the

MIT [23] dataset provides albedo and shading ground truths

for only 20 objects in controlled lighting conditions, while

IIW [8] and SAW [29] provide for up to 7K in-the-wild and

indoor images. Indoor-scene datasets [46, 2, 11, 15] pro-

vide a larger number of images (up to 2.5M) and with more

modalities (such as depth) than generic datasets. However,

their goal is to provide data for 3D (higher-level) indoor

computer vision tasks.

Outdoor scenes are subject to changing imaging con-

ditions, such as lighting conditions, viewpoint, occlusion

and object appearance, resulting in annotation difficulties.

A number of methods are proposed focusing on scene un-

derstanding for autonomous driving [32, 9, 20, 36, 14, 39].

However, these datasets are limited in number of images

and/or the number modalities. Mapillary [39, 50] is the

most diverse dataset with varying illumination conditions,

city views, weather and seasonal changes. Their focus is on

semantic segmentation and place recognition. Large-scale

multimodal datasets are restricted to synthetic data.

2.2. Synthetic datasets

Computer vision research uses synthetic datasets since

the early days to study low-level tasks, e.g. optical flow [26,

1, 4]. Synthetic data provide cheaper and more accurate

annotations. It can facilitate noise-free and controlled en-

vironments for otherwise costly problems [47, 38] or for

intrinsic understanding [27] and proof of concept [28, 40].

Obviously, the quality of synthetic data and annotation

depends on the realism of modelling and rendering algo-

rithms. The development of computer graphic techniques

has led to physics-based render engines and the improve-

ment of photo-realistic computer-generated imagery (CGI).

SYNTHIA [44] and Virtual KITTI [19] simulate various

daylight conditions (morning, sunset), weather (rain, snow),

and seasonal variations (spring, summer, fall, winter) for

autonomous (urban) driving datasets. Datasets obtained

from video-games [43, 42, 30] and movies [10, 35] show

adequate photo-realism. These datasets provide not only

dense annotations for high and low-level tasks, but also im-

ages are taken from multiple viewpoints and under different

illumination/weather/seasonal settings. They have proven

useful for training robust deep models under different envi-

ronmental conditions [42, 30].

Datasets for outdoor scenes, real or synthetic, focus

mostly on either generic or urban driving scenarios. They

mainly consist of scenes containing man-made (rigid) ob-

jects, such as lane-marked streets, buildings, vehicles, etc.

Only a few datasets contain (non-rigid) nature environments

(e.g. forests or gardens [48, 49]).

CGI-based datasets rely on the details of object models,

and computer-aided designed (CAD) model repositories,

such as ShapeNet [12], play an important role in urban driv-

ing datasets [19, 44]. However, the models usually include

rigid objects with low fidelity. Others focus on capturing the

uniqueness of living entities, such as humans [34, 24], and

trees [51, 25, 5] to generate highly detailed models with re-
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Figure 3. Sample models for hedges (top) and topiaries (bottom). The bushes can be generated with various sizes, leaf colors, and internal

stem structures.

alistic variations. Synthetic garden datasets have been used

in [7, 31, 48], albeit these datasets are relatively small and

have just one or two modalities and are not all publicly

available. In this paper, we use different parametric mod-

els, e.g. [51], to generate different botanical objects in an

garden. We create multiple gardens with different illumi-

nation conditions, and extract multi-modal data (including

RGB, semantic segmentation, depth, surface normals etc.)

from each frame, yielding over 300K garden frames, which

we will make publicly available.

3. Dataset Generation

We create synthetic gardens using the free and open-

source software of Blender2, and render using the physics-

based Cycles render engine. Each garden consists of a

ground with different terrains and random objects (gener-

ated with random parameters or randomly chosen from a

pre-designed models). The modelling details of each com-

ponent object and the rendering settings are presented in the

following sections.

3.1. Modelling

To expand the diversity of objects and scenes, we pro-

pose to combine parametric and pre-built models in the gen-

eration process.

Trees We use the tree parametric model described

in [51], implemented by the Blender Sapling Add-on3. A

tree is constructed recursively from common predefined

tree shapes (conical, (hemi-)spherical, (tapered) cylindri-

cal, etc.) with the first level being the trunk. The parameters

define the branch features such as length, number of splits,

curvatures, pointing angles, etc., each with a variation range

for random sampling. Leaves are also defined in a simi-

lar manner as stems, besides a fractional value determin-

ing their orientation to simulate phototropism. The model

2blender.com, GPL GNU General Public License version 2.0
3See the supplementary for the reference link

can generate different tree species such as quaking aspens,

maples, weeping pillows, and palm trees. We use the pa-

rameter presets provided in the sampling add-on and Ar-

baro3 (Figure 2). Totally there are 19 common tree species.

Bushes Hedges and topiaries are generated by grow-

ing an ivy adhering to a rectangular or spherical skeleton ob-

ject using the Ivy Generator3, implemented by the Blender

IvyGen add-on3. An ivy is recursively generated from a

single root point by forming curved objects under different

forces including a random influence to allow overgrowing,

an adhesion force to keep it attached to the trellis, a gravity

pulling down, and an up-vector simulating phototropism.

The add-on is known for creating realistic-looking ivy ob-

jects (Figure 3). We use more than 20 leaf types with dif-

ferent color augmentation for both topiaries and hedges.

Landscapes and terrain The landscape is created

from a subdivided plane using a displacement modifier with

the Blender cloud gradient noise which is a representation

of Perlin noise [41]. The modifier displaces each sub-vertex

on the plane according to the texture intensity, creating the

undulating ground effect. The base ground is fixed at 10x10

square meters, on which are paved the terrain patches of

1x1 square meter. Each patch is randomly assigned to one

of the terrain types, including grass, pebble stones, gravels,

dirt and pavement.

The grass is constructed using Blender particle modi-

fier which replicates a small number of elemental objects,

known as particles, over a surface. We use the grass parti-

cles provided by the Grass Essentials3, and the Grass pack-

age3, containing expert-designed realistic-looking grass

particles. There are more than 30 species of grass, e.g.

St. Augustine grass, bahiagrass, centipedegrass, etc. and

weed, e.g. dandelions, speedwell, prickly lettuce, etc. Each

species has up to 49 model variations. The appearance of

the grass patch is controlled via numerical parameters, such

as freshness, brownness, wetness, trimmed levels, lawn

stripe shape for mowed field, etc. Illustrations for different

grass and weed species are shown in Figure 4 (top).
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Figure 4. Sample tiles of different terrain types: grass with weed (top), gravel, pavement, pebble stones, dirt (bottom). The grass and weed

species are chosen and combined randomly.

clear cloudy overcast sunset twilight

Figure 5. Illustration for scene appearance changed according to different illumination conditions.

The other terrains are designed using textures from the

Poliigon collection3 of high quality photo-scanned textures.

Illustrations are shown in Figure 4 (bottom). Each texture

contains a reflectance, surface normal, glossy, and reflection

map with expert-designed shaders for photo-realism. The

resulted landscapes can be seen on the first page.

Environment Lighting in our dataset is created by 2

sources, a sun lamp and a sky texture. A sun lamp is a di-

rect parallel light source, simulating an infinitely far light

source. The source parameters include direction, intensity,

size (shadow sharpness), and color. A sky texture provides

the environmental background of rendered images and a

source of ambient lights. We use the Pro-Lighting: Skies

package3 composing of 95 realistic equirectangular HDR

sky images of various illuminations. The images are manu-

ally chosen and divided into 5 scenarios, namely clear (sky),

cloudy, overcast, sunset, and twilight. We also use 76 HDR

scenery images3 to create more various and complex back-

grounds, some with night lighting, coined scenery. An ex-

ample of lighting effects is shown in Figure 5.

Pre-built models To enhance the model variations in

the dataset, we also include models prebuilt from differ-

ent artists, including rocks3, flowers3, garden assets such

as fences, flower pots3, etc.

Garden construction For each garden, 2 to 4 types

are sampled of each grass species, as well as for tree, ter-

rains, bushes, rocks, flowers, and garden assets. The num-

ber of tree, bush, and obstacle instances are uniformly sam-

pled from the closed intervals [5, 17], [10, 24], and [3, 17],
respectively; each instance is randomly assigned with one

of the corresponding species. The random seeds in para-

metric models allow plants of the same species to contain

internal variations. The objects are distributed at random

places around the garden, avoiding overlapping each others,

while the fences, if any, are placed at the 4 edges.

3.2. Rendering

Camera setup We follow the real-world camera setup

in the 3DRMS challenge to create a ring of 5 pairs of virtual

stereo cameras with angular separation of 72◦ (Figure 7),

baseline of 0.03 meters. Each camera has a virtual focal

length of 32mm on a 32mm wide simulated sensor. The

rendered resolution is set to VGA-standard of 480x640 pix-

els. The camera intrinsic matrix is as follows:

K =





640 0 320
0 640 240
0 0 1



 . (1)

We generate a random trajectory for the camera ring

for each illumination variation of each garden model. The

speed is set to about 0.5m/s, frame rate of 10fps, simulating

a trimming robot in a garden. To improve the variability, the

camera ring is set to randomly turn after a random number

of steps and avoid running through the objects. The turn-

ing angles are also randomized to include both gradual and
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Figure 6. Examples of the generated trajectories used in the ren-

dering process. The 5 pairs of cameras, illustrated by different

color shades, are randomly moved, turned, and self-rotated while

avoiding obstacles in a garden.

Figure 7. The camera system: a ring of 5 pairs of stereo cameras

at 72◦ angular separation

abrupt angles. The trajectory lengths are set to be at least

100 steps. The examples are shown in Figure 6.

Render engine Blender Cycles is a probabilistic ray-

tracing render engine that derives the color at each pixel by

tracing the paths of light from the camera back to the light

sources. The appearances of the objects are determined by

the objects’ material properties defined by the bidirectional

scattering distribution function (BSDF) shaders, such as dif-

fuse BSDF, glossy BSDF, translucent BSDF, etc.

Scene aspects such as geometry, motion and the object

material properties are rendered into individual images be-

fore being combined into a final image. The formation of a

final image I(x) at position x is as follows4:

fg(x) = gcolor(x)(gdirect(x) + gindirect(x)), (2)

I(x) = fD(x) + fG(x) + fT (x) +B(x) + E(x), (3)

where D,G, T,B,E are respectively the diffuse, glossy,

transmission, background, and emission passes. Dcolor is

the object colors returned by the diffuse BSDF, also known

as albedo; Ddirect is the lighting coming directly from light

sources, the background, or ambient occlusion returned by

the diffuse BSDF, while Dindirect after more than one reflec-

tion or transmission off a surface. Similar are G and T with

4c.f . Blender 2.83 Manual, last access July 2020

Split train (127)
test (20)

full 20K

clear 74,913 10,035 3,333

cloudy 73,785 10,030 3,378

overcast 73,260 10,015 3,349

sunset 73,715 10,040 3,250

twilight 73,990 10,045 3,369

total 369,663 50,165 20,000

Table 1. Number of images per scene and split; the number of

models are in parentheses

glossy and transmission BSDFs. Emission and background

are pixels from directly visible objects and environmental

textures. The intermediate image contains at each pixel the

corresponding data or zeros otherwise.

All the computations are carried out in the linear RGB

space. Blender converts the composite image to sRGB

space using the following gamma-correction formula and

clipped to [0, 1] before saving to disk:

γ(u) =

{

12.92u u ≤ 0.0031308

1.055u1/2.4 − 0.055 otherwise
(4)

In our dataset, besides the RGB stereo pairs and cam-

eras’ poses, we provide the images from intermediate

stages, namely albedo, shading, glossy, translucency, etc.

for the left camera. As the modelling and rendering are

physics-based, the intermediate images represent different

real-life modalities, such as geometry, motion, intrinsic col-

ors, etc. Examples are shown in Figure 1.

4. Experiments

In this section, the goal is to quantitatively analyze the

newly created dataset to assess its realism and usability. The

evaluation is performed via two proxy tasks: semantic seg-

mentation and monocular depth estimation.

We split the dataset into training (127 models, 369,663

monocular images) and test set (20 models, 60,195 images).

To speed up the evaluation process, we uniformly sample

20K images from the full test set. The statistics are shown

in Table 1. The sample list will also be released together

with the dataset.

4.1. Semantic segmentation

For semantic segmentation, we use the state-of-the-art

DeepLabv3+ architecture with Xception-65 backbone [13].

Three aspects of the dataset are analyzed, namely (1) train-

ing size, (2) lighting conditions, and (3) compatibility with

real-world datasets. The label set is from the 3DRMS chal-

lenge [45, 48]: void, grass, ground, pavement, hedge, top-
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Figure 8. Number of pixels per class in the dataset (top) and dis-

tributions in the images (bottom). The boxplot shows the 1st, 2nd

(median) and 3rd quartile of the number of pixels in each frame,

with the whisker value of 1.5. background includes sky and object

outside of the garden, while void indicates unknown pixels, which

should be ignored.

Sampling
test

full 20K

25% 75.71 75.89

50% 79.42 79.52

100% 81.96 82.09

Table 2. Performance with respect to different training size and at 2

test splits. The network performance increase when being trained

on higher number of images. The performance on the reduced test

set is on par with the full set.

iary, flower, obstacle, tree, background. Background con-

tains the sky and objects outside of the garden, while void

indicates unknown objects to be ignored. The label statistics

are shown in Figure 8. We also follow the network’s train-

ing setup and report mean intersection-over-union (mIOU).

The results are shown in percentage and higher is better.

Training and testing size We first show the benefit

of an increasing training set and the performance on the

full and reduced test set. The results are shown in Table 2.

The performance increases when the training size increases,

showing the advantage of having large amount of training

samples. The evaluation on the reduced test set is similar to

the full set. Thus, unless mentioned otherwise, the test20K

split will be used for evaluation in later experiments.

Lighting conditions Our dataset contains the same

garden models in various lighting conditions, allowing

in-depth analysis of illumination dependency of different

methods for different tasks. In this section we perform

Training
test

clear cloudy overcast sunset twilight 20K

clear 76.10 76.91 76.43 72.23 75.91 72.03

cloudy 75.09 77.59 77.16 72.37 76.40 72.30

overcast 65.75 75.52 78.41 70.76 74.63 70.22

sunset 73.21 75.76 77.17 74.44 77.28 71.84

twilight 66.19 72.86 76.21 70.55 78.16 68.83

Table 3. Cross-lighting analysis. Each row corresponds to a model

trained on the specific lighting condition (highest values are in ital-

ics), while each column corresponds to the results evaluated on the

specific subset (highest values are in boldface). Lighting-specific

training gives better results on the specific lighting, while the re-

sults in the cross-lighting vary depending on the conditions of the

training and test images.

cross-lighting analysis on semantic segmentation. We con-

duct lighting-specific training of the networks, and evaluate

the results on each lighting subset of the full test set, as well

as the reduced test set. The results are shown in Table 3. All

experiments are trained with the same epoch numbers.

For almost all of the categories, training on the specific

lighting produces the best results on that same categories.

This is not surprising, as networks always perform the best

on the most similar domains. In general, training with

cloudy images gives the highest performance, while twi-

light are the lowest. This could be due to relatively bright

images and less intricate cast shadows in cloudy scenes, in

contrast to the mostly dark and color cast twilight images.

Compared to training with all the full training set in Ta-

ble 2, the results from training with lighting-specific images

are generally lower and near to the 25% subset. This agrees

to the training size conclusion as the lighting-specific train-

ing sets account only for around 20% of the data. Testing

on the same lighting gives a boost in performance, similarly

to training with double data size.

Real-world datasets Semantic segmentation requires

a method to recognize different objects from the appearance

models learned during training. Therefore, it indicates the

closeness of training data to the testing domain. By ana-

lyzing the features learned from EDEN on real images of

unstructured natural scenes, the results indicate the realism

level of our dataset. To that end, the real-imagery datasets

3DRMS [45, 48] (garden scenes, 221 annotated real images

for train, 268 for validation, 10 classes), Freiburg forest [49]

(forested scenes, 228 annotated real images for train, 15 for

validation, 6 classes) are used for evaluation.

The baselines include (1) the network pre-trained

on combination of generic datasets, ImageNet [16],

COCO [33], and augmented PASCAL-VOC 2012 [17], and

(2) the network pre-trained on ImageNet and urban driving

scene dataset Cityscapes [14]. The encoder part is set to the

pre-trained weights provided by the authors [13], while the
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Pre-training
test

3DRMS Freiburg

Generic 24.35 41.33

Cityscapes 31.11 50.08

EDEN 34.55 52.45

Table 4. Adaptability of features pre-trained on different datasets

to unstructured natural real-world scenes. The network pre-trained

on EDEN outperforms all other alternative approaches on both

3DRMS and Freiburg test sets.
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Figure 9. Number of pixels per depth range in the dataset. Each

range is a left-inclusive half-open interval.

decoder is finetuned using the train split of each target set

for 50K iterations. The results are shown in Table 4.

The networks using the features learned from EDEN

out-perform all alternative approaches. Both 3DRMS and

Freiburg features highly unstructured scenes with mostly

deformable and similar objects found in the nature, drasti-

cally different from the generic images and structured urban

scenes. The results show the realism of our dataset to natu-

ral scenes and its benefit on training deep networks. The re-

sults on Freiburg test are higher than on 3DRMS due to the

relatively simpler and general class labels (e.g. trails, grass,

vegetation, and sky) compared to the garden-specific label

sets of 3DRMS (e.g. hedges, topiaries, roses, tree, etc.).

4.2. Monocular depth prediction

Monocular depth prediction is an ill-posed problem. Of-

ten the ambiguity is mitigated by learning from a large-

scale depth-annotated dataset [18, 52] or imposing photo-

metric constraints on image sequences using relative cam-

era poses [21, 22] As camera pose prediction can be formu-

lated using depth constraint, the depth-pose prediction prob-

lems can be combined in a self-supervised learning pipeline.

Synthetic datasets are favored for being noise-free,

which can act as controlled environments for algorithm

analysis. In this section, we use EDEN to test different

monocular depth prediction networks. Specifically, we ex-

amine the effectiveness of using supervised signals in learn-

ing depth prediction for unstructured natural scenes. The

statistics of the depth in the dataset are shown in Figure 9.

We show the results of training state-of-the-art archi-

tectures using different ground truth information, namely

Method Supervised Dataset rel log10 rms

MD2 None KITTI 0.115 0.193 4.863

VNL Depth KITTI 0.072 0.117 3.258

MD2 None EDEN 0.438 0.556 1.403

MD2 Pose EDEN 0.182 0.220 0.961

VNL Depth EDEN 0.181 0.083 1.061

Table 5. Performance of different SOTA methods for monocular

depth prediction when trained on KITTI and EDEN. The gap is

larger between unsupervised and supervised methods on EDEN,

showing the necessity of having supervised signals for learning

unstructured scenes. The errors on EDEN are generally higher

than on KITTI, showing the more challenging scenes of the (un-

structured) dataset.

depth and camera pose. To that end, the 2 methods,

VNL [52] and MD2 [22] are used. VNL is trained with su-

pervised depth, while MD2 can be trained with ground truth

camera pose or in self-supervised manner. Both are trained

using the schedules and settings provided by the respective

authors. The results are shown in Table 5. We show the 3 er-

ror metrics (rel, log10, rms, seall is better) after the original

work and also include the reported results of the respective

methods on the KITTI dataset for comparison.

Generally, supervised method always produce better re-

sults than their self-supervised counterpart as shown by the

smaller errors. The difference are less for the KITTI dataset

compared to EDEN. As KITTI contains mostly rigid ob-

jects and surfaces, it is simpler to obtain predicted camera

poses with high accuracy. On the other hand, camera pose

prediction for self-supervised learning on EDEN are unre-

liable because of deformable objects and their similarities.

The errors are, therefore, also higher for supervised meth-

ods on EDEN than on KITTI, showing the more challenging

dataset. KITTI has higher RMS numbers due to the larger

depth ranges, approximately 80m vs. 15m of EDEN.

5. Conclusion

The paper presents EDEN, a large-scale multimodal

dataset for unstructured garden scenes, and provides base-

line results and analysis on two popular computer vision

tasks, namely the problems of semantic segmentation and

monocular depth prediction.

The experiments show favorable results of using the

dataset over generic and urban-scene datasets for nature-

oriented tasks. The dataset comes with several computer

vision modalities and is expected to stimulate applying ma-

chine and deep learning to agricultural domains.
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