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Abstract

Most conventional supervised super-resolution (SR) al-

gorithms assume that low-resolution (LR) data is obtained

by downscaling high-resolution (HR) data with a fixed

known kernel, but such an assumption often does not hold

in real scenarios. Some recent blind SR algorithms have

been proposed to estimate different downscaling kernels for

each input LR image. However, they suffer from heavy com-

putational overhead, making them infeasible for direct ap-

plication to videos. In this work, we present DynaVSR, a

novel meta-learning-based framework for real-world video

SR that enables efficient downscaling model estimation and

adaptation to the current input. Specifically, we train a

multi-frame downscaling module with various types of syn-

thetic blur kernels, which is seamlessly combined with a

video SR network for input-aware adaptation. Experimen-

tal results show that DynaVSR consistently improves the

performance of the state-of-the-art video SR models by a

large margin, with an order of magnitude faster inference

time compared to the existing blind SR approaches.

1. Introduction

Widespread usage of high-resolution (HR) displays in

our everyday life has led to increasing popularity of super-

resolution (SR) technology, which allows for enhancing

the resolution of visual contents from low-resolution (LR)

inputs. Recent advances in deep-learning-based SR ap-

proaches for images [7, 8, 12, 18, 19, 20, 22, 27, 41] and

videos [5, 16, 17, 31, 35] are driving this trend, showing ex-

cellent performance on public SR benchmarks [1, 4, 14, 24,

26, 38]. However, majority of the models are trained under

the assumption that the LR images are downscaled from the

ground truth HR images with a fixed known kernel, such as

MATLAB bicubic. It has been shown in Shocher et al. [29]

that SR performance of the existing models significantly de-

teriorates if test images do not match such training settings.

SR problem focusing on real-world scenarios with un-

known downscaling kernels is called blind SR. Numer-

*indicates equal contribution.

ous methods have been proposed to accurately estimate

image-specific kernels for each input [3, 11, 25]. These

methods, however, require training the estimation network

from scratch at inference time and typically runs in min-

utes [3, 6], or sometimes up to an hour [25] to handle a sin-

gle image. Such heavy computational overhead makes the

existing approaches impractical to run on a frame-by-frame

basis for video SR, as even a short video clip typically con-

tains over hundreds of frames.

Note that real-world LR video frames contain various

different types of degradations, including spatial downsam-

pling and motion blurs. To solve this problem by learn-

ing, we need to collect enough training data for all kinds

of degradations, which is computationally infeasible. How-

ever, it can be greatly alleviated if we could effectively esti-

mate the characteristics of the current input video, and build

an adaptive model that can adjust its parameters at test time.

In this work, we propose an efficient framework for blind

video SR named DynaVSR that can flexibly adapt to dy-

namic input videos. Our proposed framework is based on

novel downscaling kernel estimation and input-aware adap-

tation by meta-learning. It first estimates an approximate

downscaling process given input LR video sequences, and

generates further downscaled version of the LR frames,

which we call Super LR, or SLR in short. Then, us-

ing the constructed SLR-LR pairs, the parameters of the

video SR (VSR) network as well as the downscaling net-

work are jointly updated. The final output HR video is ob-

tained by inference through the VSR model with the pa-

rameters adapted to the input LR video. The HR output

predicted by DynaVSR for a real-world example sequence

is shown in Figure 1, compared to the recent blind SR meth-

ods [3, 11, 15]. We observe that DynaVSR greatly improves

the output quality upon the VSR baselines that are trained

with bicubic downsampled data, and shows more visually

pleasing results than the existing approaches, even with sig-

nificantly faster running time (see Sec. 5.3.1).

Overall, our contributions are summarized as follows:

• We propose DynaVSR, a novel adaptive framework for

real-world VSR that combines the estimation of the
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Figure 1: Sample results of the proposed DynaVSR on real video with unknown degradation kernels. The state-of-the-art

video SR model (EDVR [35]) and recent blind SR models (KG (KernelGAN) [3], CF (CorrectionFilter) [15], and IKC [11])

either show blurry outputs or generate unpleasing artifacts, while DynaVSR shows a much clearer result.

unknown downscaling process with test-time adapta-

tion via meta-learning.

• We greatly reduce the computational complexity of

estimating the real downscaling process, thereby en-

abling real-time execution of SR in videos.

• DynaVSR is generic and can be applied to any existing

VSR model for consistently improved performance.

2. Related Works

While the field of super-resolution (SR) has a long

history, in this section, we concentrate on more relevant

deep-learning-based approaches and review recent adaptive

methods applicable in real-world scenarios.

2.1. Single-Image SR (SISR)

Since Dong et al. [8] (SRCNN) have shown that a deep

learning approach can substantially outperform previous

optimization based approaches [4, 33, 34, 37, 38], great

advances have been made in SISR including VDSR [18],

EDSR [22], ESRGAN [21], and others [2, 7, 12, 19, 20, 27,

40, 41]. However, despite huge performance boost, many

works are limited to only performing well on LR images

downscaled by a fixed kernel such as bicubic, and otherwise

produce undesirable artifacts.

To overcome this issue, several approaches train SR net-

works which are applicable to multiple types of degrada-

tions, assuming that we already know the degradation ker-

nel (a.k.a. non-blind SR). SRMD [39] used the LR image

and its corresponding degradation kernel as the model in-

puts to generate high-quality HR images. ZSSR [29] in-

stead apply the same kernel used to generate the LR image

to make a smaller LR image, then train an image-specific

network. Park et al. [28] and Soh et al. [30] greatly reduce

the time required for input-aware adaptation by incorporat-

ing meta-learning. All methods, however, cannot perform

well unless we know the exact downscaling kernel, which

is unavailable in real-world cases. To this end, numerous

blind SR methods have been proposed.

Blind SR methods first estimate the unknown kernels in

a self-supervised manner, and then apply the predicted ker-

nels to the non-blind SR models. Existing kernel estima-

tion approaches either exploit self-similarity [10, 14, 42]

(with the hypothesis that similar patterns and structures

across different scales appear in natural images) or design

an iterative self-correction scheme [11, 15]. Michaeli and

Irani [25] first propose to estimate the downscaling kernel

by exploiting the patch-recurrence property of a single im-

age, which is further improved in KernelGAN [3] by utiliz-

ing the Internal-GAN [29]. IKC [11] introduce an iterative

correction scheme and successfully generates high-quality

SR images. Hussein et al. [15] also correct the downscaling

kernel for many iterations, and use the final kernel in the

same way as their non-blind settings.

Since most of the aforementioned methods require train-

ing the model from scratch to estimate an unknown kernel,

they suffer from heavy computational overhead at test time.

IKC does not need training at inference, but still requires

many iterations for refining its initial output. On the other

hand, our proposed framework directly integrates the input-

aware kernel estimation process with video SR models and

achieves better results with faster running time, enabling

practical application of blind SR techniques to videos.

2.2. Video SR (VSR)

Video SR is different from SISR in that the input frames

contain temporal information. Kappeler et al. [17] first

propose a convolutional neural network (CNN) based VSR

method by allowing the network input to be a sequence of

frames. Caballero et al. [5] and Tao et al. [31] incorpo-

rate optical flow estimation models to explicitly account for

the motion between neighboring frames. TOFlow [36] in-

troduce task-oriented flow, a computationally lighter flow

estimation module that is applicable to various video pro-

cessing tasks. Since the flow-based methods are highly de-

pendent on the motion estimation accuracy, DUF [16] pro-

pose the dynamic upsampling filter network, avoiding ex-

plicit calculation of the motion information. EDVR [35]

also handles motion implicitly with a unified framework,

including the Pyramid, Cascading and Deformable convolu-

tion (PCD) alignment and the Temporal and Spatial Atten-

tion (TSA) fusion processes. In this work, we use TOFlow,
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Figure 2: Overall training procedure for the proposed DynaVSR framework. (a) Both MFDN and VSR network are jointly

updated in the inner loop. (b) The base parameters, � and ✓, are separately updated in the outer loop.

DUF, and EDVR as the baseline VSR models and show

how DynaVSR can consistently improve the performance

of those models.

3. Preliminary on MAML

Before diving into our main framework, we briefly sum-

marize model-agnostic meta-learning (MAML) [9] algo-

rithm that we use for test-time adaptation. The goal of

meta-learning is to rapidly adapt to novel tasks with only

few examples. For MAML, the adaptation process is mod-

eled with a few gradient updates to the parameters.

Specifically, MAML first samples a set of examples DTi

from the current task Ti ⇠ p(T ), where p(T ) denotes a

distribution of tasks. Then, adaptation to the current task is

done by fine-tuning the model parameters ✓:

✓0i = ✓ � ↵rθLTi
(Sθ(DTi

)), (1)

where LTi
is a loss function, and Sθ can be any parameter-

ized model. After adapting to each task Ti, new examples

D0

Ti
are sampled from the same task to test the generaliza-

tion capability and update the base parameters:

✓  ✓ � �rθ

X

Ti

LTi
(Sθ0

i
(D0

Ti
)). (2)

Note that Eq. 1, inner loop update, is performed both at

training and inference, while the outer loop update (Eq. 2,

a.k.a. meta-update) is only executed during training.

4. Dynamic Adaptive Blind VSR Framework

In this section, we first summarize the overall framework

and the problem formulation, and describe in detail how

meta-learning is integrated for efficient adaptation.

4.1. Overall Framework

For blind VSR application, we define a task as super-

resolving each input video sequence. Since only the input

LR frames are available at test time, we further downscale

the input to form super-low-resolution (SLR) frames. Then,

we can update the model by making it predict the LR frames

well given the SLR frames. The resulting adapted parame-

ters perform especially well on the current inputs, generat-

ing high-quality HR frames given the LR inputs.

In the blind SR setting, each LR input may have come

through a different downscaling process, therefore test-time

adaptation is crucial. For video application, real-time exe-

cution of estimating the downscaling process is also critical.

Thus, we introduce an efficient Multi-Frame Downscaling

Network (MFDN), and combine it with the VSR network.

The proposed framework is named as DynaVSR, as it can

adapt well to each of the dynamically-varying input videos.

Figure 2 illustrates the overall training process of Dy-

naVSR, which consists of three stages: 1) estimation of the

unknown downscaling process with MFDN, 2) joint adap-

tation of MFDN and VSR network parameters w.r.t. each

input video, and 3) meta-updating the base parameters for

MFDN and VSR network. At test time, only 1) and 2) are

processed, and the updated parameters of the VSR network

is used to generate the final super-resolved images. The de-

tailed training and test processes are described in Sec. 4.4.

4.2. Blind VSR Problem Formulation

The goal of VSR is to accurately predict the HR frames
n

ÎHR
t

o

given the input LR frames
�

ILR
t

 

, where t de-

notes the time step. In practice, many recent models such

as [16, 32, 35] estimate the center HR frame ÎHR
t given

the surrounding (2N + 1) LR frames ILR
t2T

, where T =
{t � N, · · · , t + N}, and generate the HR sequence in a

sliding window fashion. Thus, VSR problem for a single

time step t can be formulated as:

ÎHR
t = Sθ

�

ILR
t2T

�

, (3)

In a fixed-kernel SR setting, a large number of train-

ing pairs is available since
�

ILR
t

 

can be easily obtained
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by applying the designated downscaling kernel to
�

IHR
t

 

.

When tackling blind SR, however, the downscaling process

is unknown and acquiring a large training set becomes im-

practical. As previously studied in KernelGAN [3], correct

estimation of the downscaling process is crucial to the SR

performance. This can be formalized as:

ÎLR
t = Dφ

�

IHR
t

�

, (4)

where Dφ denotes a downscaling model parameterized by

�. Existing blind SR approaches typically find a good Dφ

by learning � in a self-supervised manner. Then, using Dφ

that is optimized to the current inputs, the final SR results

are obtained in the same way as a non-blind SR setting.

When it comes to blind video SR, efficiency becomes

the key issue, since videos may contain several hundreds

and thousands of frames. Existing blind image SR tech-

niques require long processing time for finding the down-

scaling model Dφ, and are therefore computationally infea-

sible (see Sec. 5.3.1 for runtime comparison). To this end,

we design a new light-weight model, named Multi-Frame

Downscaling Network (MFDN), for effective estimation of

the downscaling process in real-time.

4.3. Multi-Frame Downscaling Network (MFDN)

Though video clips at different time steps can be af-

fected by various different types of degradations (e.g. mo-

tion blurs, noises), in this work, we primarily focus on the

downscaling process. Consequently, we assume that each

LR frame ILR
t is generated from the corresponding HR

frame IHR
t following the same but unknown downscaling

process within a single video sequence.

To model Dφ in Eq. 4, we propose MFDN that receives

a multi-frame LR inputs and produces the corresponding

further downscaled multi-frame outputs. This process is

formulated as:

ÎSLR
t2T

= Dφ

�

ILR
t2T

�

, (5)

where ILR
t2T

is an input LR sequence, and ÎSLR
t2T

denotes

an estimated Super LR (SLR) sequence which is a further

downscaled version. To model various kernels w.r.t. differ-

ent inputs while maintaining efficiency, we model MFDN

with a 7-layer CNN including non-linearities. For han-

dling multi-frame information, 3-D convolutions are used

for the first and the last layers of MFDN, and 2-D convo-

lution layers for the rest. Contrary to the existing meth-

ods [3, 15], MFDN does not require additional training at

test time. This greatly improves the efficiency in estimat-

ing the unknown downscaling process and thereby enables

application to computation-heavy problems like VSR.

To accurately predict the SLR frames for diverse cases

with a single discriminative model, MFDN is first pre-

trained with various synthetic kernels and later employed to

our meta-learning framework for further adaptation to each

input. The training LR-SLR pairs are generated by random

sampling of the anisotropic Gaussian kernels. Note that, the

LR frames ILR
t2T

are themselves generated from the ground

truth HR frames IHR
t2T

by applying randomly selected kernel

in the synthetic kernel set. The corresponding SLR frames

ISLR
t2T

are then generated from LR with the same kernel.

Pre-training MFDN is done by minimizing the pixel-wise

loss between ISLR
t2T

and the estimated output ÎSLR
t2T

.

After pretraining MFDN, it is further fine-tuned during

the meta-training process to be readily adaptable to each

input. Though we only use synthetic kernels for training

MFDN, it can generalize to the real inputs reasonably well,

as we show in the experiments (see Sec. 5.4). Further anal-

ysis on the effects of MFDN is shown in Sec. 5.5.1, where

we compare it to the other downscaling methods.

4.4. Meta-Learning for Blind VSR

4.4.1 Meta-training

For the inner loop update, we first generate ÎSLR
t2T

with

MFDN using Eq. (5). The generated SLR sequence is then

fed into the VSR network as the input:

ÎLR
t = Sθ

⇣

ÎSLR
t2T

⌘

= Sθ

�

Dφ

�

ILR
t2T

��

. (6)

We introduce two loss terms to update � and ✓: LR fidelity

loss (Lin
LR) and SLR guidance loss (Lin

SLR). The LR fi-

delity loss (Lin
LR) indicates the difference between ÎLR

t and

ILR
t , and we match the type of loss function used for each

backbone VSR network (denoted as LV SR). However, Lin
LR

alone cannot guarantee that the updated MFDN would pro-

duce the correct SLR frames. Inaccurate downscaling es-

timation can generate erroneous SLR frames, and can also

give wrong update signals to the VSR network. To cope

with this issue, SLR guidance loss (Lin
SLR) is proposed to

make sure that MFDN outputs do not move far away from

the actual SLR frames. In practice, Lin
SLR is calculated as

the `1 distance between generated SLR frames ÎSLR
t2T

and

the ground truth ISLR
t2T

. The total loss for the inner loop

update is computed as a sum of the two terms:

Lin = Lin
LR + Lin

SLR (7)

= LV SR

⇣

ÎLR
t , ILR

t

⌘

+
�

�

�
ÎSLR
t2T

� ISLR
t2T

�

�

�

1

. (8)

This process corresponds to the left part of Figure 2.

For the outer loop, the base parameter values of � and ✓

(before inner loop updates) are adjusted to make the models

more adaptive to new inputs. Given the input LR sequence

ILR
t2T

, VSR network and MFDN generate the HR and SLR

predictions, correspondingly, as follows:

ÎHR
t = Sθ0

�

ILR
t2T

�

, ÎSLR
t2T

= Dφ0

�

ILR
t2T

�

. (9)
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Algorithm 1: DynaVSR training

Require: p(T ): uniform distribution over videos

Require: ↵,�: inner / outer-loop learning rates

1 Initialize parameters ✓ and �

2 while not converged do

3 Sample a batch of sequences Ti ⇠ p(T )
4 foreach i do

5 Generate
�

IHR
t

 

i
,
�

ILR
t

 

i
,
�

ISLR
t

 

i
from

Ti using random synthetic kernels

6 Generate
n

ÎSLR
t

o

i
using Eq. (5)

7 Calculate rφ,θL
in using Eq. (8)

8 Compute adapted parameters �0 and ✓0 with:

9 �0 = �� ↵rφL
in, ✓0 = ✓ � ↵rθL

in

10 Save
�

IHR
t

 

i
,
�

ISLR
t

 

i
for meta-update

11 end

12 Update ✓  ✓ � �rθ

P

Ti
Lout
HR using Eq. (10)

13 Update � ���rφ

P

Ti
Lout
SLR using Eq. (11)

14 end

From the two predictions, we can define the two loss terms:

Lout
HR = LV SR

⇣

ÎHR
t , IHR

t

⌘

, (10)

Lout
SLR =

�

�

�
ÎSLR
t2T

� ISLR
t2T

�

�

�

1

, (11)

where each loss is used to update the parameters in corre-

sponding networks. Note that the loss is calculated with

updated parameters, Dφ0 and Sθ0 , but the gradient is calcu-

lated w.r.t. � and ✓, respectively. The right part of Figure 2

depicts the outer update mechanism.

Algorithm 1 summarizes the full procedure for train-

ing DynaVSR. Compared to the existing blind SISR ap-

proaches, the proposed algorithm has multiple advantages:

1) DynaVSR does not require a necessary number of it-

erations as a hyperparameter, achieving maximum perfor-

mance with only a single gradient update, leading to im-

proved computational efficiency compared to IKC [11] or

CorrectionFilter [15]; 2) DynaVSR is generic and can be

applied to any existing VSR models, while the other meth-

ods need specific SR network architectures; 3) DynaVSR

can handle multiple frames as inputs for video application.

4.4.2 Meta-test

At test time, only the inner loop update is performed to

adapt the MFDN and VSR network parameters to the test

input frame sequence. Since there are no ground truth (GT)

SLR frames, we replace it with the SLR frames predicted

by our pretrained MFDN. Although we do not use the real

GT SLR frames, we show in experiments that the pseudo

GT frames generated by MFDN are still valid (see Sec. 5.3).

The final output HR frame ÎHR
t can then be generated using

the updated VSR network.

5. Experiments

5.1. Dataset

We use three popular VSR datasets for our experi-

ments: REDS [26], Vimeo-90K [36], and Vid4 [23]. Also,

many low-resolution videos are gathered from YouTube to

demonstrate the performance of DynaVSR on real-world

scenarios. REDS dataset is composed of 270 videos each

consisting of 100 frames, and each frame has 1280 ⇥ 720

spatial resolution. Out of 270 train-validation videos, we

use 266 sequences for training and the other 4 sequences

(REDS-val) for testing, following the experimental settings

in Wang et al. [35] (EDVR). Videos from REDS dataset

typically contain large and irregular motion, which makes it

challenging for VSR. Vimeo-90K dataset contains 91,707

short video clips, each containing 7 frames. We use Vimeo-

90K only for training, using the training split of 64,612

clips. Although the resolution of each frame is low (448 ⇥

256), Vimeo-90K is one of the most frequently used dataset

for training VSR models. Vid4 dataset is widely used for

evaluation purposes only; many previous works [13, 32, 35]

train their models with Vimeo-90K and report their perfor-

mance on Vid4 dataset, and we follow the same setting.

5.2. Implementation Details

DynaVSR can be applied to any deep-learning-based

VSR model, and we show its effectiveness using EDVR

[35], DUF [16], and TOFlow [36] as backbone VSR net-

works. All models are initialized with pretrained param-

eters for scale factor s = 2, with a known downscal-

ing process, MATLAB bicubic downsampling with anti-

aliasing. Separate models are trained for each training

dataset, Vimeo-90K and REDS. We denote these pretrained

models as (bicubic) Baseline, and report their performance

to show how existing approaches using this ideal downscal-

ing kernel fail in synthetic and real-world settings.

When pretraining MFDN and meta-training DynaVSR,

diverse kinds of downscaling kernels are used to generate

the HR-LR-SLR patches for each iteration. Specifically, we

select �1,�2 2 U [0.2, 2.0], and ✓ 2 U [�⇡,⇡] indepen-

dently for randomly generating many anisotropic Gaussian

kernels. More details are described in supplemantary slides.

The source code along with our pretrained models is made

public to facilitate reproduction and further research.1

5.3. Quantitative Results

We thoroughly evaluate the performance improvements

of DynaVSR w.r.t. the bicubic baselines in three differ-

ent kinds of synthetic blur kernels: isotropic Gaussian,

1https://github.com/esw0116/DynaVSR
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Table 1: Quantitative results, running time comparison for meta-training with recent VSR models and blind SISR

methods. We evaluate the benefits of DynaVSR algorithm on Vid4 [23] and REDS-val [26] dataset. Performance is measured

in PSNR (dB). Red denotes the best performance, and blue denotes the second best. The right part indicates the running time

to make a single HD frame. DynaVSR shows the shortest time among the existing algorithms on all three VSR baselines.

Method
Vid4 [23] REDS-val [26] Time (s)

Iso. Aniso. Mixed Iso. Aniso. Mixed Preprocessing Super-resolution Total

B
li

n
d

S
IS

R KG [3] + ZSSR [29] 25.92 24.36 22.62 29.05 27.30 25.23 58.96 92.07 151.03

CF [15] + DBPN [12]* 27.30 25.61 24.03 30.37 29.30 28.02 664.77 0.03 664.78

CF [15] + CARN [2]* 27.95 26.82 25.62 30.98 30.47 29.70 106.11 0.02 106.13

IKC [11] 29.46 26.19 27.82 34.10 30.11 31.41 - 2.21 2.21

V
id

eo
S

R

EDVR [35]
Baseline 25.35 25.84 26.27 29.14 29.66 30.21 - 0.40 0.40

DynaVSR 28.72 28.81 29.25 32.45 33.41 33.67 0.88 0.40 1.28

DUF [16]
Baseline 25.26 25.70 26.47 29.01 29.38 30.14 - 1.00 1.00

DynaVSR 27.43 27.54 27.77 31.23 31.29 31.36 0.30 1.00 1.30

TOFlow [36]
Baseline 25.27 25.66 26.48 29.04 29.46 30.40 - 0.98 0.98

DynaVSR 27.16 27.07 27.69 31.50 31.56 31.87 0.96 0.98 1.94

Average PSNR gain +2.48 +2.07 +1.83 +2.66 +2.59 +2.05 - - -

anisotropic Gaussian, and mixed Gaussian. For all exper-

iments in this section, we report the standard peak signal-

to-noise ratio (PSNR).

For isotropic Gaussians, we adapt the Gaussian8 setting

from Gu et al. [11], which consists of eight isotropic Gaus-

sian kernels of � 2 [0.8, 1.6] for scale factor 2, originally

proposed for evaluating blind image SR methods. The HR

image is first blurred by the Gaussian kernel and then down-

sampled by bicubic interpolation. Since it is unclear from

Gu et al. [11] how to handle the boundary �-s, we evaluate

on nine different kernel widths including both � = 0.8 and

� = 1.6 with step size 0.1. However, isotropic Gaussian

kernels are insufficient to represent various types of degra-

dations in the real world. Thus, we also evaluate DynaVSR

on anistropic Gaussian settings, where we fix the Gaussian

kernel widths to the boundary values of Gaussian8 so that

(�x,�y) = (0.8, 1.6). Evaluation is done on 4 cases with

different rotations (0�, 45�, 90�, and 135�), and the average

performance is reported. Lastly, we introduce a mixed set-

ting which consists of randomly generated kernels. Each

sequence is individually downscaled by random Gaussian

kernels with �1,�2 2 U [0.2, 2.0] and ✓ 2 U [�⇡,⇡] with

direct downsampling. Note that the sampled downscaling

kernel is kept same for the entire sequence.

Table 1 compares the results of DynaVSR with its base-

lines and other blind SR methods. Compared to the bicubic

baseline, DynaVSR consistently improves the performance

over all evaluation settings by a large margin (over 2dB

on average). This proves the effectiveness of adaptation

via meta-training, since we use the same architecture with-

out introducing any additional parameters. Compared to

blind SISR models, DynaVSR with any baseline VSR net-

work performs favorably against existing methods in gen-

eral. IKC performs well in isotropic Gaussian settings, but

DynaVSR with EDVR ranks the second while greatly out-

performing IKC for the other evaluation settings. Note that,

while IKC is specifically optimized with isotropic Gaus-

sian kernels only, the reported performance for DynaVSR

is from our final model trained also with various other ker-

nels including anisotropic and rotated Gaussians.

5.3.1 Time Complexity Analysis

The right part of Table 1 demonstrates the running time for

generating a single HD resolution (1280⇥ 720) frame from

a ⇥2 downscaled LR frame sequence w.r.t each blind SR

method. Preprocessing indicates the steps required to pre-

pare the input LR frames for putting through the SR net-

work, which may include kernel estimation (KG [3]) or iter-

ative correction of the inputs to modify their characteristics

(CF [15]). For IKC [11], it is difficult to explicitly separate

each step, so we include the runtime for iterative correction

to Super-Resolution category, which reports the inference

time for each SR network.

Since MFDN is highly efficient, DynaVSR shows much

faster preprocessing time compared to existing blind SISR

models. Recent approaches, KG [3] and CF [15], require

minutes of preprocessing time because both models need

to train from scratch at test time, which is very expensive

even with a small network. On the other hand, DynaVSR

*Since CF require too much time for preprocessing, we report the per-

formance for random 10% of the validation set. For fair comparison, we

show the results of the other models on the same 10% validation set in the

supplementary document. We can observe that the overall trend in perfor-

mance is almost same as the full evaluation.
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Figure 3: Qualitative results on REDS-val [26] dataset. DynaVSR consistently improves the visual details upon all baseline

VSR models, and also produces visually more pleasing outputs compared to recent blind SR approaches.

Table 2: Quantitative comparison w.r.t. different down-

scaling models. We evaluate on REDS-val using EDVR

baseline. The right 3 columns indicate the SR performance

for each downscaling model in our framework, where the

joint training with MFDN shows the best results.

Downscaling models SLR Isotropic Anisotropic Mixed

Bicubic 34.78 31.82 33.26 33.39

KernelGAN [3] 40.84 31.99 33.31 33.48

SFDN 45.36 32.34 33.41 33.63

MFDN 45.71 32.45 33.41 33.67

GT 1 32.87 33.84 34.27

requires only a single gradient update to the model parame-

ters and successfully reduces the preprocessing time to less

than a second (more than ⇥60 faster than KG, and ⇥100
faster than CF). Note that, the preprocessing time for Dy-

naVSR is highly dependent on the architecture of the base

VSR network, and the efficiency can be further improved

by using more light-weight VSR models. IKC reports the

shortest runtime among the other previous methods, but

it still needs multiple iterations for kernel correction, and

EDVR+DynaVSR shows more than 40% shorter runtime.

5.4. Visual Comparison

The qualitative results for REDS-val dataset using ran-

dom synthetic downscaling kernels are shown in Figure 3.

DynaVSR greatly improves the visual quality over all base-

lines by well adapting to the input frames. Notably, blurry

edges from the bicubic baselines are sharpened, and texture

details become much clearer. Outputs of DynaVSR also

show visually more pleasing results compared to three re-

cent blind SISR models, which are shown in the left part

of Figure 3. Results for real-world low-quality videos from

YouTube, where ground truth frames are unavailable, are

illustrated in Figure 1, 4. Although these videos contain

various types of unknown degradations, DynaVSR is robust

in producing visually pleasing outputs. For results on Vid4

dataset, additional results on REDS-val, and more exten-

sive qualitative analysis on many real-world videos, please

check our supplementary materials.

5.5. Analysis

5.5.1 Varying Downscaling Models

To analyze the effects of end-to-end training of VSR model

with a downscaling network, we substitute the MFDN part
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Input Image EDVR Baseline IKC EDVR + DynaVSRKG + ZSSR CF + CARN

Figure 4: Qualitative results on real-world videos from YouTube where no ground truth HR frames exist. We use EDVR

as the base VSR network. DynaVSR generates cleaner results while the other blind SISR methods show severe artifacts or

blurry outputs. Note that, in the second row, all blind SR methods except DynaVSR generate additional boundaries near the

corner due to strong ringing artifacts, which does not exist in the original LR frames.

of DynaVSR with four different downscaling models: bicu-

bic downscaling, KernelGAN [3], single-frame variant of

MFDN (SFDN, Single Frame Downscaling Network), and

the ground truth SLR frame downscaled from the LR frame

with the correct kernel. We also evaluate the performance of

SLR frame estimation, and report the average PSNR values

of VSR network for same settings. The results are summa-

rized in Table 2.

For generating the SLR frames, we first pretrain MFDN

and SFDN until convergence. SFDN is a single-frame vari-

ant of MFDN with the same number of parameters, which

regards the temporal dimension as the same as batch di-

mension, using only 2-D convolutions. As shown in the

leftmost column of Table 2, the MFDN achieves the best

performance as a stand-alone downscaler. We believe that

it is due to the multi-frame nature of MFDN, since multiple

input frames with similar kernels can be observed to make

it easier to recognize the actual downscaling patterns.

The final SR performance after jointly training with the

VSR model is also more favorable to MFDN, achieving

the closest performance to the ideal case of adapting VSR

model with GT SLR frames.

5.5.2 Varying the Number of Inner Loop Updates

We also modify the number of inner loop updates and com-

pare the results. Table 3 shows the performance while

changing the number of iterations within 1, 3, and 5 steps.

The best performance is achieved when we set the number

of updates to 1, and more inner loop iterations led to di-

minishing results on average. We believe this phenomenon

is because of overfitting to the input video sequence and

forgetting the general super-resolution capability. Although

the adaptation to each specific input is a crucial step in blind

Table 3: Effect of the number of inner loop iterations.

We evaluate on REDS-val using EDVR. Just 1 inner loop

update yields the best performance in general.

# Isotropic Anisotropic Mixed

1 32.45 33.41 33.67

3 32.75 32.38 32.96

5 32.17 32.23 32.57

SR problems, it is only beneficial when the model maintains

its generalization performance. Our results show that adap-

tation with too many inner loop updates drive the model to

fall into local optima. How to regularize the inner loop op-

timization well to circumvent this issue is beyond the scope

of this paper and can be an interesting future direction.

6. Conclusions

In this paper, we propose DynaVSR, a novel adaptive

blind video SR framework which seamlessly combines the

downscaling kernel estimation model into meta-learning-

based test-time adaptation scheme in an end-to-end manner.

Compared to existing kernel estimation models for blind

SISR, our MFDN extremely improves the computational ef-

ficiency and better estimates the downscaling process. Also,

the excessive computation needed for input-aware adapta-

tion of network parameters is minimized to a single gra-

dient update by incorporating meta-learning. We demon-

strate that DynaVSR gives substantial performance gain re-

gardless of the VSR network architecture in various exper-

imental settings including isotropic and anisotropic Gaus-

sian blur kernels. Furthermore, we empirically show that

DynaVSR can be readily applied to real-world videos with

unknown downscaling kernels even though it is only trained

with synthetic kernels.
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