DynaVSR: Dynamic Adaptive Blind Video Super-Resolution

Suyoung Lee* Myungsub Choi* Kyoung Mu Lee
ASRI, Department of ECE, Seoul National University
{esw0116, cms6539, kyoungmu}@snu.ac.kr

Abstract

Most conventional supervised super-resolution (SR) algorithms assume that low-resolution (LR) data is obtained by downscaling high-resolution (HR) data with a fixed known kernel, but such an assumption often does not hold in real scenarios. Some recent blind SR algorithms have been proposed to estimate different downscaling kernels for each input LR image. However, they suffer from heavy computational overhead, making them infeasible for direct application to videos. In this work, we present DynaVSR, a novel meta-learning-based framework for real-world video SR that enables efficient downscaling model estimation and adaptation to the current input. Specifically, we train a multi-frame downscaling module with various types of synthetic blur kernels, which is seamlessly combined with a video SR network for input-aware adaptation. Experimental results show that DynaVSR consistently improves the performance of the state-of-the-art video SR models by a large margin, with an order of magnitude faster inference time compared to the existing blind SR approaches.

1. Introduction

Widespread usage of high-resolution (HR) displays in our everyday life has led to increasing popularity of super-resolution (SR) technology, which allows for enhancing the resolution of visual contents from low-resolution (LR) inputs. Recent advances in deep-learning-based SR approaches for images [7, 8, 12, 18, 19, 20, 22, 27, 41] and videos [5, 16, 17, 31, 35] are driving this trend, showing excellent performance on public SR benchmarks [1, 4, 14, 24, 26, 38]. However, majority of the models are trained under the assumption that the LR images are downscaled from the ground truth HR images with a fixed known kernel, such as MATLAB bicubic. It has been shown in Shocher et al. [29] that SR performance of the existing models significantly deteriorates if test images do not match such training settings.

SR problem focusing on real-world scenarios with unknown downscaling kernels is called blind SR. Numerous methods have been proposed to accurately estimate image-specific kernels for each input [3, 11, 25]. These methods, however, require training the estimation network from scratch at inference time and typically run in minutes [3, 6], or sometimes up to an hour [25] to handle a single image. Such heavy computational overhead makes the existing approaches impractical to run on a frame-by-frame basis for video SR, as even a short video clip typically contains over hundreds of frames.

Note that real-world LR video frames contain various different types of degradations, including spatial downsampling and motion blurs. To solve this problem by learning, we need to collect enough training data for all kinds of degradations, which is computationally infeasible. However, it can be greatly alleviated if we could effectively estimate the characteristics of the current input video, and build an adaptive model that can adjust its parameters at test time.

In this work, we propose an efficient framework for blind video SR named DynaVSR that can flexibly adapt to dynamic input videos. Our proposed framework is based on novel downscaling kernel estimation and input-aware adaptation by meta-learning. It first estimates an approximate downscaling process given input LR video sequences, and generates further downscaled version of the LR frames, which we call Super LR, or SLR in short. Then, using the constructed SLR-LR pairs, the parameters of the video SR (VSR) network as well as the downscaling network are jointly updated. The final output HR video is obtained by inference through the VSR model with the parameters adapted to the input LR video. The HR output predicted by DynaVSR for a real-world example sequence is shown in Figure 1, compared to the recent blind SR methods [3, 11, 15]. We observe that DynaVSR greatly improves the output quality upon the VSR baselines that are trained with bicubic downsampled data, and shows more visually pleasing results than the existing approaches, even with significantly faster running time (see Sec. 5.3.1).

Overall, our contributions are summarized as follows:

- We propose DynaVSR, a novel adaptive framework for real-world VSR that combines the estimation of the
unknown downscaling process with test-time adaptation via meta-learning.

- We greatly reduce the computational complexity of estimating the real downscaling process, thereby enabling real-time execution of SR in videos.

- DynaVSR is generic and can be applied to any existing VSR model for consistently improved performance.

2. Related Works

While the field of super-resolution (SR) has a long history, in this section, we concentrate on more relevant deep-learning-based approaches and review recent adaptive methods applicable in real-world scenarios.

2.1. Single-Image SR (SISR)

Since Dong et al. [8] (SRCNN) have shown that a deep learning approach can substantially outperform previous optimization based approaches [4, 33, 34, 37, 38], great advances have been made in SISR including VDSR [18], EDSR [22], ESRGAN [21], and others [2, 7, 12, 19, 20, 27, 40, 41]. However, despite huge performance boost, many works are limited to only performing well on LR images downsampled by a fixed kernel such as bicubic, and otherwise produce undesirable artifacts.

To overcome this issue, several approaches train SR networks which are applicable to multiple types of degradations, assuming that we already know the degradation kernel (a.k.a. non-blind SR). SRMD [39] used the LR image and its corresponding degradation kernel as the model inputs to generate high-quality HR images. ZSSR [29] instead apply the same kernel used to generate the LR image to make a smaller LR image, then train an image-specific network. Park et al. [28] and Soh et al. [30] greatly reduce the time required for input-aware adaptation by incorporating meta-learning. All methods, however, cannot perform well unless we know the exact downscaling kernel, which is unavailable in real-world cases. To this end, numerous blind SR methods have been proposed.

Blind SR methods first estimate the unknown kernels in a self-supervised manner, and then apply the predicted kernels to the non-blind SR models. Existing kernel estimation approaches either exploit self-similarity [10, 14, 42] (with the hypothesis that similar patterns and structures across different scales appear in natural images) or design an iterative self-correction scheme [11, 15]. Michaeli and Irani [25] first propose to estimate the downsampling kernel by exploiting the patch-recurrence property of a single image, which is further improved in KernelGAN [3] by utilizing the Internal-GAN [29]. IKC [11] introduce an iterative correction scheme and successfully generates high-quality SR images. Hussein et al. [15] also correct the downscaling kernel for many iterations, and use the final kernel in the same way as their non-blind settings.

Since most of the aforementioned methods require training the model from scratch to estimate an unknown kernel, they suffer from heavy computational overhead at test time. IKC does not need training at inference, but still requires many iterations for refining its initial output. On the other hand, our proposed framework directly integrates the input-aware kernel estimation process with video SR models and achieves better results with faster running time, enabling practical application of blind SR techniques to videos.

2.2. Video SR (VSR)

Video SR is different from SISR in that the input frames contain temporal information. Kappeler et al. [17] first propose a convolutional neural network (CNN) based VSR method by allowing the network input to be a sequence of frames. Caballero et al. [5] and Tao et al. [31] incorporate optical flow estimation models to explicitly account for the motion between neighboring frames. TOFlow [36] introduce task-oriented flow, a computationally lighter flow estimation module that is applicable to various video processing tasks. Since the flow-based methods are highly dependent on the motion estimation accuracy, DUF [16] propose the dynamic upsampling filter network, avoiding explicit calculation of the motion information. EDVR [35] also handles motion implicitly with a unified framework, including the Pyramid, Cascading and Deformable convolution (PCD) alignment and the Temporal and Spatial Attention (TSA) fusion processes. In this work, we use TOFlow,
Figure 2: Overall training procedure for the proposed DynaVSR framework. (a) Both MFDN and VSR network are jointly updated with a few gradient updates to the parameters. For MAML, the adaptation process is mod-

4. Preliminary on MAML

Before diving into our main framework, we briefly sum-

3. Preliminary on MAML

Before diving into our main framework, we briefly sum-

DUF, and EDVR as the baseline VSR models and show how DynaVSR can consistently improve the performance of those models.

4. Dynamic Adaptive Blind VSR Framework

In this section, we first summarize the overall framework and the problem formulation, and describe in detail how meta-learning is integrated for efficient adaptation.

4.1. Overall Framework

For blind VSR application, we define a task as super-

LR frames are available at test time, we further downscale the input to form super-low-resolution (SLR) frames. Then, we can update the model by making it predict the LR frames well given the SLR frames. The resulting adapted parameters perform especially well on the current inputs, generating high-quality HR frames given the LR inputs.

In the blind SR setting, each LR input may have come through a different downscaling process, therefore test-time adaptation is crucial. For video application, real-time execution of estimating the downscaling process is also critical. Thus, we introduce an efficient Multi-Frame Downscaling Network (MFDN), and combine it with the VSR network. The proposed framework is named as DynaVSR, as it can adapt well to each of the dynamically-varying input videos.

Figure 2 illustrates the overall training process of DynaVSR, which consists of three stages: 1) estimation of the unknown downscaling process with MFDN, 2) joint adaptation of MFDN and VSR network parameters w.r.t. each input video, and 3) meta-updating the base parameters for MFDN and VSR network. At test time, only 1) and 2) are processed, and the updated parameters of the VSR network is used to generate the final super-resolved images. The detailed training and test processes are described in Sec. 4.4.

4.2. Blind VSR Problem Formulation

The goal of VSR is to accurately predict the HR frames \( \{ \hat{I}_t^{HR} \} \) given the input LR frames \( \{ I_t^{LR} \} \), where \( t \) denotes the time step. In practice, many recent models such as [16, 32, 35] estimate the center HR frame \( \hat{I}_t^{HR} \) given the surrounding \( 2N + 1 \) LR frames \( I_{t-N}^{LR} \) to \( I_{t+N}^{LR} \), where \( T = \{ t - N, \cdots , t + N \} \), and generate the HR sequence in a sliding window fashion. Thus, VSR problem for a single time step \( t \) can be formulated as:

\[
\hat{I}_t^{HR} = S_{\theta} (I_{t}^{LR}),
\]
by applying the designated downscaling kernel to \( \{ I_t^{HR} \} \). When tackling blind SR, however, the downscaling process is unknown and acquiring a large training set becomes impractical. As previously studied in KernelGAN [3], correct estimation of the downscaling process is crucial to the SR performance. This can be formalized as:

\[
\hat{I}_t^{LR} = D_\phi (I_t^{HR}),
\]

where \( D_\phi \) denotes a downscaling model parameterized by \( \phi \). Existing blind SR approaches typically find a good \( D_\phi \) by learning \( \phi \) in a self-supervised manner. Then, using \( D_\phi \) that is optimized to the current inputs, the final SR results are obtained in the same way as a non-blind SR setting.

When it comes to blind video SR, efficiency becomes the key issue, since videos may contain several hundreds and thousands of frames. Existing blind image SR techniques require long processing time for finding the downscaling model \( D_\phi \), and are therefore computationally infeasible (see Sec. 5.3.1 for runtime comparison). To this end, we design a new light-weight model, named Multi-Frame Downscaling Network (MFDN), for effective estimation of the downscaling process in real-time.

### 4.3. Multi-Frame Downscaling Network (MFDN)

Though video clips at different time steps can be affected by various different types of degradations (e.g. motion blurs, noises), in this work, we primarily focus on the downscaling process. Consequently, we assume that each LR frame \( I_t^{LR} \) is generated from the corresponding HR frame \( I_t^{HR} \) following the same but unknown downscaling process within a single video sequence.

To model \( D_\phi \) in Eq. 4, we propose MFDN that receives a multi-frame LR inputs and produces the corresponding further downscaled multi-frame outputs. This process is formulated as:

\[
\hat{I}_t^{SLR} = D_\phi (I_t^{LR}),
\]

where \( I_t^{LR} \in \mathbb{R}^{H \times W \times C} \) is an input LR sequence, and \( \hat{I}_t^{SLR} \) denotes an estimated Super LR (SLR) sequence which is a further downscaled version. To model various kernels w.r.t. different inputs while maintaining efficiency, we model MFDN with a 7-layer CNN including non-linearities. For handling multi-frame information, 3-D convolutions are used for the first and the last layers of MFDN, and 2-D convolution layers for the rest. Contrary to the existing methods [3, 15], MFDN does not require additional training at test time. This greatly improves the efficiency in estimating the unknown downscaling process and thereby enables application to computation-heavy problems like VSR.

To accurately predict the SLR frames for diverse cases with a single discriminative model, MFDN is first pre-trained with various synthetic kernels and later employed to our meta-learning framework for further adaptation to each input. The training LR-SLR pairs are generated by random sampling of the anisotropic Gaussian kernels. Note that, the LR frames \( I_t^{LR} \) are themselves generated from the ground truth HR frames \( I_t^{HR} \) by applying randomly selected kernel in the synthetic kernel set. The corresponding SLR frames \( I_t^{SLR} \) are then generated from LR with the same kernel. Pre-training MFDN is done by minimizing the pixel-wise loss between \( I_t^{SLR} \) and the estimated output \( \hat{I}_t^{SLR} \).

After pretraining MFDN, it is further fine-tuned during the meta-training process to be readily adaptable to each input. Though we only use synthetic kernels for training MFDN, it can generalize to the real inputs reasonably well, as we show in the experiments (see Sec. 5.4). Further analysis on the effects of MFDN is shown in Sec. 5.5.1, where we compare it to the other downscaling methods.

### 4.4. Meta-Learning for Blind VSR

#### 4.4.1 Meta-training

For the inner loop update, we first generate \( \hat{I}_t^{SLR} \) with MFDN using Eq. (5). The generated SLR sequence is then fed into the VSR network as the input:

\[
\hat{I}_t^{LR} = S_\theta (\hat{I}_t^{SLR}) = S_\theta (D_\phi (I_t^{LR})).
\]

We introduce two loss terms to update \( \phi \) and \( \theta \): LR fidelity loss \( (L_{SR}^\text{in}) \) and SLR guidance loss \( (L_{SLR}^\text{in}) \). The LR fidelity loss \( (L_{SR}^\text{in}) \) indicates the difference between \( I_t^{LR} \) and \( \hat{I}_t^{LR} \), and we match the type of loss function used for each backbone VSR network (denoted as \( L_{VSR} \)). However, \( L_{SR} \) alone cannot guarantee that the updated MFDN would produce the correct SLR frames. Inaccurate downscaling estimation can generate erroneous SLR frames, and can also give wrong update signals to the VSR network. To cope with this issue, SLR guidance loss \( (L_{SLR}^\text{in}) \) is proposed to make sure that MFDN outputs do not move far away from the actual SLR frames. In practice, \( L_{SLR} \) is calculated as the \( \ell_1 \) distance between generated SLR frames \( \hat{I}_t^{SLR} \) and the ground truth \( I_t^{SLR} \). The total loss for the inner loop update is computed as a sum of the two terms:

\[
L^\text{in} = L_{SR}^\text{in} + L_{SLR}^\text{in},
\]

\[
\text{subject to } \| I_t^{LR} - \hat{I}_t^{LR} \|_1 < \text{max allowed distance}.
\]

This process corresponds to the left part of Figure 2.

For the outer loop, the base parameter values of \( \phi \) and \( \theta \) (before inner loop updates) are adjusted to make the models more adaptive to new inputs. Given the input LR sequence \( I_t^{LR} \), VSR network and MFDN generate the HR and SLR predictions, correspondingly, as follows:

\[
\hat{I}_t^{HR} = S_\theta (I_t^{LR}), \quad \hat{I}_t^{SLR} = D_\phi (I_t^{LR}).
\]
From the two predictions, we can define the two loss terms:

\[ L_{\text{HR}} = L_{\text{VSR}}(\hat{i}_{t}^{\text{HR}}, i_{t}^{\text{HR}}), \tag{10} \]

\[ L_{\text{SLR}} = \| \hat{i}_{t}^{\text{SLR}} - i_{t}^{\text{SLR}} \|_1, \tag{11} \]

where each loss is used to update the parameters in corresponding networks. Note that the loss is calculated with updated parameters, \( D_{\theta'} \) and \( S_{\phi'} \), but the gradient is calculated w.r.t. \( \phi \) and \( \theta \), respectively. The right part of Figure 2 depicts the outer update mechanism.

Algorithm 1 summarizes the full procedure for training DynaVSR. Compared to the existing blind SISR approaches, the proposed algorithm has multiple advantages: 1) DynaVSR does not require a necessary number of iterations as a hyperparameter, achieving maximum performance with only a single gradient update, leading to improved computational efficiency compared to IVC [11] or CorrectionFilter [15]; 2) DynaVSR is generic and can be applied to any existing VSR models, while the other methods need specific SR network architectures; 3) DynaVSR can handle multiple frames as inputs for video application.

### 4.4.2 Meta-test

At test time, only the inner loop update is performed to adapt the MFDN and VSR network parameters to the test input frame sequence. Since there are no ground truth (GT) SLR frames, we replace it with the SLR frames predicted by our pretrained MFDN. Although we do not use the real GT SLR frames, we show in experiments that the pseudo GT frames generated by MFDN are still valid (see Sec. 5.3). The final output HR frame \( \hat{i}_{t}^{\text{HR}} \) can then be generated using the updated VSR network.

### 5. Experiments

#### 5.1. Dataset

We use three popular VSR datasets for our experiments: REDS [26], Vimeo-90K [36], and Vid4 [23]. Also, many low-resolution videos are gathered from YouTube to demonstrate the performance of DynaVSR on real-world scenarios. REDS dataset is composed of 270 videos each consisting of 100 frames, and each frame has \( 1280 \times 720 \) spatial resolution. Out of 270 train-validation videos, we use 266 sequences for training and the other 4 sequences (REDS-val) for testing, following the experimental settings in Wang et al. [35] (EDVR). Videos from REDS dataset typically contain large and irregular motion, which makes it challenging for VSR. Vimeo-90K dataset contains 91,707 short video clips, each containing 7 frames. We use Vimeo-90K only for training, using the training split of 64,612 clips. Although the resolution of each frame is low (448 \times 256), Vimeo-90K is one of the most frequently used dataset for training VSR models. Vid4 dataset is widely used for evaluation purposes only; many previous works [13, 32, 35] train their models with Vimeo-90K and report their performance on Vid4 dataset, and we follow the same setting.

#### 5.2. Implementation Details

DynaVSR can be applied to any deep-learning-based VSR model, and we show its effectiveness using EDVR [35], DUF [16], and TOFlow [36] as backbone VSR networks. All models are initialized with pretrained parameters for scale factor \( s = 2 \), with a known downsampling process, MATLAB bicubic downsampling with anti-aliasing. Separate models are trained for each training dataset, Vimeo-90K and REDS. We denote these pretrained models as (bicubic) Baseline, and report their performance to show how existing approaches using this ideal downsampling kernel fail in synthetic and real-world settings.

When pretraining MFDN and meta-training DynaVSR, diverse kinds of downsampling kernels are used to generate the HR-LR-SLR patches for each iteration. Specifically, we select \( \sigma_1, \sigma_2 \in [0.2, 2.0] \), and \( \theta \in [-\pi, \pi] \) independently for randomly generating many anisotropic Gaussian kernels. More details are described in supplementary slides. The source code along with our pretrained models is made public to facilitate reproduction and further research.\(^1\)

#### 5.3. Quantitative Results

We thoroughly evaluate the performance improvements of DynaVSR w.r.t. the bicubic baselines in three different kinds of synthetic blur kernels: isotropic Gaussian, isotropic Gaussian, and anisotropic Gaussian.
Table 1: Quantitative results, running time comparison for meta-training with recent VSR models and blind SISR methods. We evaluate the benefits of DynaVSR algorithm on Vid4 [23] and REDS-val [26] dataset. Performance is measured in PSNR (dB). Red denotes the best performance, and blue denotes the second best. The right part indicates the running time to make a single HD frame. DynaVSR shows the shortest time among the existing algorithms on all three VSR baselines.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Blind SISR</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KG [3] + ZSSR [29]</td>
<td>25.92</td>
<td>24.36</td>
<td>22.62</td>
<td>29.05</td>
<td>27.30</td>
<td>25.23</td>
<td>58.96</td>
<td>92.07</td>
<td>151.03</td>
</tr>
<tr>
<td>CF [15] + DBPN [12]</td>
<td>27.30</td>
<td>25.61</td>
<td>24.03</td>
<td>30.37</td>
<td>29.30</td>
<td>28.02</td>
<td>664.77</td>
<td>0.03</td>
<td>664.78</td>
</tr>
<tr>
<td>IKC [11]</td>
<td><strong>29.46</strong></td>
<td>26.19</td>
<td>27.82</td>
<td><strong>34.10</strong></td>
<td>30.11</td>
<td>31.41</td>
<td>-</td>
<td>2.21</td>
<td>2.21</td>
</tr>
<tr>
<td><strong>Video SR</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDVR [35] Baseline</td>
<td>25.35</td>
<td>25.84</td>
<td>26.27</td>
<td>29.14</td>
<td>29.66</td>
<td>30.21</td>
<td>-</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>DynaVSR</td>
<td><strong>28.72</strong></td>
<td><strong>28.81</strong></td>
<td><strong>29.25</strong></td>
<td><strong>32.45</strong></td>
<td><strong>33.41</strong></td>
<td><strong>33.67</strong></td>
<td>0.88</td>
<td>0.40</td>
<td><strong>1.28</strong></td>
</tr>
<tr>
<td>DUF [16] Baseline</td>
<td>25.26</td>
<td>25.70</td>
<td>26.47</td>
<td>29.01</td>
<td>29.38</td>
<td>30.14</td>
<td>-</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DynaVSR</td>
<td><strong>27.43</strong></td>
<td><strong>27.54</strong></td>
<td><strong>27.77</strong></td>
<td><strong>31.23</strong></td>
<td><strong>31.29</strong></td>
<td><strong>31.36</strong></td>
<td><strong>0.30</strong></td>
<td>1.00</td>
<td><strong>1.30</strong></td>
</tr>
<tr>
<td>TOFlow [36] Baseline</td>
<td>25.27</td>
<td>25.66</td>
<td>26.48</td>
<td>29.04</td>
<td>29.46</td>
<td>30.40</td>
<td>-</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>DynaVSR</td>
<td><strong>27.16</strong></td>
<td><strong>27.07</strong></td>
<td><strong>27.69</strong></td>
<td><strong>31.50</strong></td>
<td><strong>31.56</strong></td>
<td><strong>31.87</strong></td>
<td>0.96</td>
<td>0.98</td>
<td><strong>1.94</strong></td>
</tr>
<tr>
<td><strong>Average PSNR gain</strong></td>
<td>+2.48</td>
<td>+2.07</td>
<td>+1.83</td>
<td>+2.66</td>
<td>+2.59</td>
<td>+2.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

For **isotropic** Gaussians, we adapt the Gaussian8 setting from Gu et al. [11], which consists of eight isotropic Gaussian kernels of $\sigma \in [0.8, 1.6]$ for scale factor 2, originally proposed for evaluating blind image SR methods. The HR image is first blurred by the Gaussian kernel and then down-sampled by bicubic interpolation. Since it is unclear from Gu et al. [11] how to handle the boundary $\sigma$-s, we evaluate on nine different kernel widths including both $\sigma = 0.8$ and $\sigma = 1.6$ with step size 0.1. However, isotropic Gaussian kernels are insufficient to represent various types of degradations in the real world. Thus, we also evaluate DynaVSR on **anisotropic** Gaussian settings, where we fix the Gaussian kernel widths to the boundary values of Gaussian8 so that $(\sigma_x, \sigma_y) = (0.8, 1.6)$. Evaluation is done on 4 cases with different rotations ($0^\circ, 45^\circ, 90^\circ, \text{and } 135^\circ$), and the average performance is reported. Lastly, we introduce a **mixed** setting which consists of randomly generated kernels. Each sequence is individually downsampled by random Gaussian kernels with $\sigma_1, \sigma_2 \in U[0.2, 2.0]$ and $\theta \in U[-\pi, \pi]$ with direct downsampling. Note that the sampled downsampling kernel is kept same for the entire sequence.

Table 1 compares the results of DynaVSR with its baselines and other blind SR methods. Compared to the bicubic baseline, DynaVSR consistently improves the performance over all evaluation settings by a large margin (over 2dB on average). This proves the effectiveness of adaptation via meta-training, since we use the same architecture without introducing any additional parameters. Compared to blind SISR models, DynaVSR with any baseline VSR network performs favorably against existing methods in general. IKC performs well in isotropic Gaussian settings, but DynaVSR with EDVR ranks the second while greatly outperforming IKC for the other evaluation settings. Note that, while IKC is specifically optimized with isotropic Gaussian kernels only, the reported performance for DynaVSR is from our final model trained also with various other kernels including anisotropic and rotated Gaussians.

5.3.1 Time Complexity Analysis

The right part of Table 1 demonstrates the running time for generating a single HD resolution ($1280 \times 720$) frame from a $\times 2$ downsampled LR frame sequence w.r.t. each blind SR method. **Preprocessing** indicates the steps required to prepare the input LR frames for putting through the SR network, which may include kernel estimation (KG [3]) or iterative correction of the inputs to modify their characteristics (CF [15]). For IKC [11], it is difficult to explicitly separate each step, so we include the runtime for iterative correction to **Super-Resolution** category, which reports the inference time for each SR network.

Since MFDN is highly efficient, DynaVSR shows much faster preprocessing time compared to existing blind SISR models. Recent approaches, KG [3] and CF [15], require minutes of preprocessing time because both models need to train from scratch at test time, which is very expensive even with a small network. On the other hand, DynaVSR

Since CF require too much time for preprocessing, we report the performance for random 10% of the validation set. For fair comparison, we show the results of the other models on the same 10% validation set in the supplementary document. We can observe that the overall trend in performance is almost same as the full evaluation.
Figure 3: Qualitative results on REDS-val [26] dataset. DynaVSR consistently improves the visual details upon all baseline VSR models, and also produces visually more pleasing outputs compared to recent blind SR approaches.

Table 2: Quantitative comparison w.r.t. different downscaling models. We evaluate on REDS-val using EDVR baseline. The right 3 columns indicate the SR performance for each downscaling model in our framework, where the joint training with MFDN shows the best results.

<table>
<thead>
<tr>
<th>Downscaling models</th>
<th>SLR</th>
<th>Isotropic</th>
<th>Anisotropic</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicubic</td>
<td>34.78</td>
<td>31.82</td>
<td>33.26</td>
<td>33.39</td>
</tr>
<tr>
<td>KernelGAN [3]</td>
<td>40.84</td>
<td>31.99</td>
<td>33.31</td>
<td>33.48</td>
</tr>
<tr>
<td>SFDN</td>
<td>45.36</td>
<td>32.34</td>
<td>33.41</td>
<td>33.63</td>
</tr>
<tr>
<td>MFDN</td>
<td>45.71</td>
<td>32.45</td>
<td>33.41</td>
<td>33.67</td>
</tr>
<tr>
<td>GT</td>
<td>∞</td>
<td>32.87</td>
<td>33.84</td>
<td>34.27</td>
</tr>
</tbody>
</table>

5.4. Visual Comparison

The qualitative results for REDS-val dataset using random synthetic downscaling kernels are shown in Figure 3. DynaVSR greatly improves the visual quality over all baselines by well adapting to the input frames. Notably, blurry edges from the bicubic baselines are sharpened, and texture details become much clearer. Outputs of DynaVSR also show visually more pleasing results compared to three recent blind SISR models, which are shown in the left part of Figure 3. Results for real-world low-quality videos from YouTube, where ground truth frames are unavailable, are illustrated in Figure 1, 4. Although these videos contain various types of unknown degradations, DynaVSR is robust in producing visually pleasing outputs. For results on Vid4 dataset, additional results on REDS-val, and more extensive qualitative analysis on many real-world videos, please check our supplementary materials.

5.5. Analysis

5.5.1 Varying Downscaling Models

To analyze the effects of end-to-end training of VSR model with a downscaling network, we substitute the MFDN part...
of DynaVSR with four different downscaling models: bicubic downscaling, KernelGAN [3], single-frame variant of MFDN (SFDN, Single Frame Downscaling Network), and the ground truth SLR frame downsampled from the LR frame with the correct kernel. We also evaluate the performance of SLR frame estimation, and report the average PSNR values of VSR network for same settings. The results are summarized in Table 2.

For generating the SLR frames, we first pretrain MFDN and SFDN until convergence. SFDN is a single-frame variant of MFDN with the same number of parameters, which regards the temporal dimension as the same as batch dimension, using only 2-D convolutions. As shown in the leftmost column of Table 2, the MFDN achieves the best performance as a stand-alone downscaler. We believe that it is due to the multi-frame nature of MFDN, since multiple input frames with similar kernels can be observed to make it easier to recognize the actual downscaling patterns.

The final SR performance after jointly training with the VSR model is also more favorable to MFDN, achieving the closest performance to the ideal case of adapting VSR model with GT SLR frames.

5.5.2 Varying the Number of Inner Loop Updates

We also modify the number of inner loop updates and compare the results. Table 3 shows the performance while changing the number of iterations within 1, 3, and 5 steps. The best performance is achieved when we set the number of updates to 1, and more inner loop iterations led to diminishing results on average. We believe this phenomenon is because of overfitting to the input video sequence and forgetting the general super-resolution capability. Although the adaptation to each specific input is a crucial step in blind SR problems, it is only beneficial when the model maintains its generalization performance. Our results show that adaptation with too many inner loop updates drive the model to fall into local optima. How to regularize the inner loop optimization well to circumvent this issue is beyond the scope of this paper and can be an interesting future direction.

6. Conclusions

In this paper, we propose DynaVSR, a novel adaptive blind video SR framework which seamlessly combines the downscaling kernel estimation model into meta-learning-based test-time adaptation scheme in an end-to-end manner. Compared to existing kernel estimation models for blind SISR, our MFDN extremely improves the computational efficiency and better estimates the downscaling process. Also, the excessive computation needed for input-aware adaptation of network parameters is minimized to a single gradient update by incorporating meta-learning. We demonstrate that DynaVSR gives substantial performance gain regardless of the VSR network architecture in various experimental settings including isotropic and anisotropic Gaussian blur kernels. Furthermore, we empirically show that DynaVSR can be readily applied to real-world videos with unknown downscaling kernels even though it is only trained with synthetic kernels.
References


