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Abstract

While Generative Adversarial Networks (GANs) are fun-

damental to many generative modelling applications, they

suffer from numerous issues. In this work, we propose a prin-

cipled framework to simultaneously mitigate two fundamen-

tal issues in GANs: catastrophic forgetting of the discrimi-

nator and mode collapse of the generator. We achieve this

by employing for GANs a contrastive learning and mutual

information maximization approach, and perform extensive

analyses to understand sources of improvements. Our ap-

proach significantly stabilizes GAN training and improves

GAN performance for image synthesis across five datasets

under the same training and evaluation conditions against

state-of-the-art works. In particular, compared to the state-

of-the-art SSGAN, our approach does not suffer from poorer

performance on image domains such as faces, and instead

improves performance significantly. Our approach is simple

to implement and practical: it involves only one auxiliary

objective, has low computational cost, and performs robustly

across a wide range of training settings and datasets without

any hyperparameter tuning. For reproducibility, our code is

available in the open-source GAN library, Mimicry [34].

1. Introduction

The field of generative modelling has witnessed incredi-

ble successes since the advent of Generative Adversarial Net-

works (GANs) [16], a form of generative model known for

its sampling efficiency in generating high-fidelity data [45].

In its original formulation, a GAN is composed of two mod-

els - a generator and a discriminator - which together play

an adversarial minimax game that enables the generator to

model the true data distribution of some empirical data. This

adversarial game is encapsulated by the following equation:

min
G

max
D

V (D,G) = Ex∼pr(x)[logD(x)]

+ Ez∼p(z)[log(1−D(G(z)))]
(1)

where V is the value function, p(z) is a prior noise distri-

bution, pr(x) is the real data distribution, and G(z) is the

generated data from sampling some random noise z.

In this formulation, training the discriminator and gen-

erator with their respective minimax loss functions aims

to minimize the Jensen-Shannon (JS) divergence between

the real and generated data distributions [16] pr and pg re-

spectively. However, GAN training is notoriously difficult.

Firstly, such theoretical guarantees only come under the

assumption of the discriminator being trained to optimal-

ity [20], which may lead to saturating gradients in practice.

Even so, there is no guarantee for convergence in this mini-

max game as both generator and discriminator are simulta-

neously and independently finding a Nash equilibrium in a

high-dimensional space. Finally, GANs face the perennial

problem of mode collapse, where pg collapses to only cover

a few modes of pr, resulting in generated samples of limited

diversity. Consequently, recent years have seen concerted

efforts [15, 23, 46, 54, 59, 60, 62] to mitigate these issues.

A primary cause of GAN training instability is the non-

stationary nature of the training environment: as the gen-

erator learns, the modeled distribution pg the discriminator

faces is ever changing. As our GAN models are neural

networks, the discriminator is susceptible to catastrophic for-

getting [10, 25, 28, 40], a situation where the network learns

ad-hoc representations and forgets about prior tasks to focus

on the current one as the weights of the network updates,

which contributes to training instability. The state-of-the-art

Self-supervised GAN (SSGAN) [10] is the first to demon-

strate that a representation learning approach could mitigate

discriminator catastrophic forgetting, thus improving train-

ing stability. However, the approach still does not explicitly

mitigate mode collapse, and has a failure mode in image do-

mains such as faces [10]. Furthermore, [61] shows that while

SSGAN’s approach is helpful for discriminator forgetting, it

in fact promotes mode collapse for the generator.

To overcome these problems, we present an approach

to simultaneously mitigate both catastrophic forgetting and

mode collapse. On the discriminator side, we apply mutual

information maximization to improve long-term representa-

tion learning, thereby reducing catastrophic forgetting in the

non-stationary training environment. On the generator side,
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we employ contrastive learning to incentivize the generator

to produce diverse images that give easily distinguishable

positive/negative samples, hence reducing mode collapse.

Through mitigating both issues, we show a wide range of

practical improvements on natural image synthesis using

GANs. We summarize our contributions below:

• We present a GAN framework to improve natural im-

age synthesis through simultaneously mitigating two

key GAN issues using just one objective: catastrophic

forgetting of the discriminator (via information maxi-

mization) and mode collapse of the generator (via con-

trastive learning). Our approach mitigates issues in both

discriminator and generator, rather than either alone.

• With this multi-faceted approach, we significantly

improve GAN image synthesis across five different

datasets against state-of-the-art works under the same

training and evaluation conditions.

• Our framework is lightweight and practical: it intro-

duces just one auxiliary objective, has a low computa-

tional cost, and is robust against a wide range of training

settings without any tuning required.

• Our work is the first to demonstrate the effectiveness of

contrastive learning for significantly improving GAN

performance, and also the first to apply the InfoMax

principle in a GAN setting, which we hope would open

a new research direction in these areas.

2. Background

Mutual information and representation learning Mu-

tual information has deep connections with representation

learning [5], where we aim to learn an encoder function E

that ideally captures the most important features of the in-

put data X , often at a lower dimensional latent space. This

concept is encapsulated by the InfoMax objective [35]:

max
E∈E

I(X;E(X)) (2)

where E is some function class, and the objective is to find

some E that maximizes the mutual information between the

input data and its encoded representations E(X). To maxi-

mize on the InfoMax objective, one could alternatively max-

imize I(Cψ(X);Eψ(X)), where Cψ and Eψ are encoders

part of the same architecture parameterised by ψ. It is shown

in [63] maximizing I(Cψ(X);Eψ(X)) is maximizing on a

lower bound of the InfoMax objective:

I(Cψ(X);Eψ(X)) ≤ I(X; (Cψ(X), Eψ(X))) (3)

In practice, maximizing I(Cψ(X);Eψ(X)) has several

advantages: (a) Using different feature encodings allow us

to capture different views and modalities of the data for

flexibility of modelling [3,57]; (b) The encoded data lies in a

much lower dimensional latent space than that of the original

data, thus reducing computational constraints [51, 63].

Contrastive learning Recently, state-of-the-art works in

unsupervised representation learning [3,22,24,29,37,47,57]

lies in taking a contrastive approach to maximizing the mu-

tual information between encoded local and global features.

Yet, since directly maximizing mutual information is often

intractable in practice [49], these works often maximize on

the InfoNCE [47] lower bound instead, which involves a

contrastive loss minimized through having a critic find posi-

tive samples in contrast to a set of negative samples. Such

positive/negative samples are arbitrarily created by pairing

features [24], augmentation [9], or a combination of both [3].

Our work similarly maximizes on this InfoNCE bound, and

most closely follows the Deep InfoMax [24] approach of

obtaining local and global features for the maximization.

3. InfoMax-GAN

3.1. Approach

Figure 1 illustrates the InfoMax-GAN framework. Firstly,

to maximize on the lower bound of the InfoMax objective,

I(Cψ(X);Eψ(X)), we set Eψ to represent layers of the dis-

criminator leading to the global features, and Cψ as layers

leading to the local features. Here, Cψ = Cψ,1 ◦ ... ◦Cψ,n is

a series of n intermediate discriminator layers leading to the

last local feature map Cψ(x) and fψ is the subsequent layer

transforming Cψ(x) to a global feature vector Eψ(x), which

is ultimately used for computing the GAN objective Lgan.

We set the local and global feature as the penultimate and fi-

nal feature outputs of the discriminator encoder respectively,

and we study its ablation impact in Appendix A.5.

Next, the local/global features Cψ(x) and Eψ(x) ex-

tracted from the discriminator are passed to the critic net-

works φθ and φω to be projected to a higher dimension

Reproducing Kernel Hilbert Space (RKHS) [2], which ex-

ploits the value of linear evaluation in capturing similarities

between the global and local features. These projected fea-

tures then undergo a Contrastive Pairing phase to create posi-

tive/negative samples, where given some image x, a positive

sample is created by pairing the (projected) global feature

vector φω(Eψ(x)) with a (projected) local spatial vector

φθ(C
(i)
ψ (x)) from the image’s own (projected) local feature

map φθ(Cψ(x)), where i ∈ A = {0, 1, ...,M2 − 1} is an

index to the M ×M local feature map. Doing so, we repre-

sent a positive sample as the pair (φθ(C
(i)
ψ (x)), φω(Eψ(x)))

for some i. For each of such positive sample, negative

samples are obtained by sampling local spatial vectors

from the projected local feature map of another image x′

in the same mini-batch, and are represented as the pairs

(φθ(C
(i)
ψ (x′)), φω(Eψ(x))). Intuitively, this step constrains

the discriminator to produce global features of some image

that maximizes mutual information with the local features

of the same image, rather than those from other images.

Taking this further, consider for each positive sample, the

3943



ᴢ ~ pz 𝑥 ~ pg

𝑥 ~ pr

G

Cψ,1 Cψ,n fψ  

𝜙𝜃 𝜙ω

 

Contrastive�Pairing
 

Local�Features
𝜙𝜃(Cψ(𝑥′))

Local�Features�
𝜙𝜃(Cψ(𝑥))

Global�Features
𝜙ω(Eψ(𝑥))

Cψ(𝑥) Eψ(𝑥)

Lgan

Lnce

Generator

Discriminator

Positive�Sample

Negative�Sample

Figure 1: Illustration of the InfoMax-GAN framework. An image x is sampled from the real data distribution pr or fake

data distribution pg as modeled by the generator G. Image x passes through a discriminator encoder Eψ = fψ ◦ Cψ, where

Cψ = Cψ,1 ◦ ... ◦ Cψ,n is a series of n intermediate discriminator layers leading to the last local feature map Cψ(x) and fψ
transforms Cψ(x) to a global feature vector Eψ(x), which is subsequently used to compute the GAN objective Lgan. The local

and global features Cψ(x) and Eψ(x) are then projected to a higher dimension by the spectral normalized critic networks φθ
and φω respectively. Finally, the resulting features undergo a Contrastive Pairing phase involving local features from another

image x′, to produce positive and negative samples for computing the contrastive loss Lnce.

pairs (φθ(C
(j)
ψ (x)), φω(Eψ(x))), j ∈ A, j 6= i as negative

samples. That is, using spatial vectors from the same local

feature map to create negative samples. Doing so, we reg-

ularize the learnt representations to avoid trivial solutions

to the mutual information maximization objective, since the

global features are constrained to have consistently high

mutual information with all spatial vectors of its own local

feature map, rather than from only some. This effectively

aggregates all local information of the image to represent it.

Thus, for N images in a mini-batch, we produce posi-

tive/negative samples to perform an NM2 way classifica-

tion for each positive sample. Through this approach, it is

shown in [47] one maximizes the InfoNCE lower bound

of the mutual information I(Cψ(X);Eψ(X)). Formally,

for a set of N random images X = {x1, ..., xN} and set

A = {0, 1, ...,M2 − 1} representing indices of a M ×M

spatial sized local feature map, the contrastive loss is:

Lnce(X) = −Ex∈XEi∈A

[

log p(C
(i)
ψ (x), Eψ(x) | X)

]

= −Ex∈XEi∈A [∆]

∆ = log
exp(gθ,ω(C

(i)
ψ (x), Eψ(x)))

∑

(x′,i)∈X×A
exp(gθ,ω(C

(i)
ψ (x′), Eψ(x)))

(4)

where gθ,ω : R1×1×K × R
1×1×K → R is a critic mapping

the local/global features with K dimensions to a scalar score.

Formally, we define gθ,ω to be:

gθ,ω(C
(i)
ψ (x), Eψ(x)) = φθ(C

(i)
ψ (x))Tφω(Eψ(x)) (5)

where φθ : R
M×M×K → R

M×M×R and φω : R1×1×K →
R

1×1×R are the critic networks parameterized by θ and ω

respectively, projecting the local and global features to the

higher RKHS. In practice, φθ and φω are defined as shallow

networks with only 1 hidden layer following [24], but with

spectral normalized weights as well. These shallow networks

serve to only project the feature dimensions of the input

features, and preserve their original spatial sizes.

To stabilize training, we constrain the discriminator to

learn from only the contrastive loss of real image features,

and similarly for the generator, from only the contrastive

loss of fake image features. We formulate the losses for

discriminator and generator LD and LG as such:

LG = Lgan(D̂,G) + αLnce(Xg) (6)

LD = Lgan(D, Ĝ) + βLnce(Xr) (7)

where α and β are hyperparameters; D̂ and Ĝ represent a

fixed discriminator and generator respectively; Xr and Xg
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Figure 2: Accuracy of a classifier when trained on the one-

vs-all CIFAR-10 classification task. Regularized with the

InfoMax objective by minimizing (4), the classifier success-

fully predicts classes trained from previous iterations even

when the underlying class distribution changes.

represent sets of real and generated images respectively; and

Lgan is the hinge loss for GANs [42]:

Lgan(D, Ĝ) = Ex∼pr [min(0, 1−D(x))]

+ Ez∼pz [min(0, 1 +D(Ĝ(z)))]
(8)

Lgan(D̂,G) = −Ez∼pz [D̂(G(z))] (9)

In practice, we set α = β = 0.2 for all experiments for

simplicity, with ablation studies to show our approach is

robust across a wide range of α and β values.

3.2. Mitigating Catastrophic Forgetting

Our approach mitigates a key issue in GANs: catastrophic

forgetting of the discriminator, a situation where due to the

non-stationary GAN training environment, the discriminator

learns only ad-hoc representations and forget about prior

tasks it was trained on. For instance, while the discriminator

may learn to penalize flaws in global structures early in GAN

training [10], it may later forget these relevant representa-

tions in order to learn those for finding detailed flaws in local

structures, which overall contributes to training instability.

Inspired by [10], we examine the ability of our approach

in mitigating catastrophic forgetting: we train a discrimina-

tor classifier on the one-vs-all CIFAR-10 classification task

where the underlying class distribution changes every 1K it-

erations, and the cycle repeats every 10K iterations. As seen

in Figure 2, without the InfoMax objective, the classifier

overfits to a certain class distribution and produces very low

accuracy when the class distribution is changed. When train-

ing is regularized with the InfoMax objective, the classifier

successfully remembers all prior classes it was trained on.

Thus, the InfoMax objective helps the discriminator to re-

duce catastrophic forgetting and adapt to the non-stationary

nature of the generated image distribution, which ultimately

stabilizes GAN training.
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Figure 3: Contrastive task accuracy when simulating gener-

ators exhibiting a range of mode collapse behaviours using

CIFAR-10 data. (a) We show that the less mode collapsed

a generator is, the better the accuracy for contrastive task.

(b) The contrastive task accuracy is consistently lower when

the generator has partially mode collapsed to any individual

class, compared to when there is no mode collapse.

3.3. Mitigating Mode Collapse

Our approach also mitigates a persistent problem of the

generator: mode collapse. For a fully mode collapsed gen-

erator, we have x = x′ ∀x, x′ ∼ Xg, where Xg is a set

of randomly generated images, such that Cψ(x) = Cψ(x
′).

This means the term p(C
(i)
ψ (x), Eψ(x) | Xg) approaches 0

in the limit, rather than the optimal value 1, as the critics

cannot distinguish apart the multiple identical feature pairs

from individual images.

To validate this, we show there is a direct correlation

between the diversity of generated images and the contrastive

learning task accuracy p(C
(i)
ψ (x), Eψ(x) | X). We train the

discriminator to solve the contrastive task using CIFAR-10

training data, and simulate 3 different kinds of generators

using CIFAR-10 test data: (a) a perfect generator with no

mode collapse that generates all classes of images; (b) a

partially mode collapsed generator that only generates one

class of images and (c) a totally mode collapsed generator

that only generates one image.
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From Figure 3a, we observe a perfect generator with no

mode collapse best solves the contrastive task, and a par-

tially mode collapsed generator has a consistently poorer

accuracy in the contrastive task than the perfect generator.

This concurs with our expectation: images from only one

class exhibit a much lower diversity than images from all

classes, and so distinguishing positive samples amongst sim-

ilar and harder negative samples makes the contrastive task

much harder. Furthermore, for a totally mode collapsed

generator which only generates one image, the accuracy is

near zero, which confirms our initial hypothesis. For any N

images, there areNM2 samples to classify in the contrastive

task, with NM2 − 1 negative samples for each positive sam-

ple. However, if all N images are identical due to total mode

collapse, then there exists N − 1 negative samples identical

to each positive sample, which makes the contrastive task

nearly impossible to solve. Thus, to solve the contrastive

task well, the generator is highly encouraged to generate

images with greater diversity, which reduces mode collapse.

Furthermore, in Figure 3b, the performance of any class

demonstrating partial mode collapse is consistently worse

than the case of no mode collapse, where all classes of im-

ages are used. Thus, the generator is incentivized to not

collapse to producing just any one class that fools the dis-

criminator easily, since producing all classes of images natu-

rally leads to the best performance in the contrastive task.

4. Experiments

4.1. Experimental Settings

GAN architectures We compare our model with the base-

line Spectral Normalization GAN (SNGAN) [42] and the

state-of-the-art Self-supervised GAN (SSGAN) [10]. For

clarity, we highlight InfoMax-GAN is equivalent to SNGAN

with our proposed objective, and SSGAN is equivalent to

SNGAN with the rotation task objective. We show InfoMax-

GAN alone performs highly competitively, with significant

improvements over SSGAN. We detail the exact architec-

tures used for all models and datasets in Appendix C.

Datasets We experiment on five different datasets at mul-

tiple resolutions: ImageNet (128 × 128) [13], CelebA

(128×128) [36], CIFAR-10 (32×32) [30], STL-10 (48×48)

[12], and CIFAR-100 (32× 32) [30]. The details for these

datasets can be found in Appendix A.1.

Training We train all models using the same Residual

Network [21] backbone, under the exact same settings for

each dataset, and using the same code base, for fairness

in comparisons. For details, refer to Appendix A.2. For

all models and datasets, we set α = β = 0.2, to balance

the contrastive loss to be on the same scale as the GAN loss

initially. This scaling principle is similar to what is applied in

[11], and we later show in our ablation study our framework

is highly robust to changes in these hyperparameters.

Evaluation To assess the generated images quality, we

employ three different metrics: Fréchet Inception Distance

(FID) [23], Kernel Inception Distance (KID) [7], and Incep-

tion Score (IS) [54]. In general, FID and KID measure the

diversity of generated images, and IS measures the quality

of generated images. Here, we emphasize we use the exact

same number of real and fake samples for evaluation, so

that we can compare the scores fairly. This is crucial, es-

pecially since metrics like FID can produce highly biased

estimates [7], where using a larger sample size leads to a

significantly lower score. Finally, for all our scores, we

compute them using 3 different random seeds to report their

mean and standard deviation. A detailed explanation of all

three metrics and the sample sizes used can be found in

Appendix A.3

4.2. Results

Improved image synthesis As seen in Table 1, InfoMax-

GAN improves FID consistently and significantly across

many datasets over SNGAN and SSGAN. On the challenging

high resolution ImageNet dataset, InfoMax-GAN improves

by 6.8 points over SNGAN, and 3.6 points over SSGAN.

On the high resolution CelebA, while SSGAN could not

improve over the baseline SNGAN, as similarly noted in

[10], InfoMax-GAN improves by 3.4 points over SNGAN,

and 5.8 points over SSGAN. This suggests our approach is

versatile and can generalise across multiple data domains.

On STL-10, InfoMax-GAN achieves an improvement

of 3.0 points over SNGAN and 1.5 points over SSGAN.

Interestingly, while InfoMax-GAN performs similarly as

SSGAN on CIFAR-10 with around 0.5 points difference, it

improves FID by 3.4 points on CIFAR-100 when the number

of classes increase. We conjecture this is due to the tendency

for SSGAN to generate easily rotated images [61], which

sacrifices diversity and reduces FID when there are more

classes. This observation also supports InfoMax-GAN’s

larger improvements on ImageNet, which has 1000 classes.

Similarly, for alternative metrics like KID and IS,

InfoMax-GAN achieves a highly competitive performance

and improves over the state-of-the-art works. On IS,

InfoMax-GAN improves from 0.2 to 0.4 points over SS-

GAN for all datasets except CIFAR-10, where the margin is

less than 0.1 points and within the standard deviation, indi-

cating a similar performance. Similar to its FID performance

on CelebA, SSGAN also performs worse in terms of IS com-

pared to the baseline SNGAN, suggesting its failure mode

on faces is not just due to a limited diversity, but also due to

poorer quality. In contrast, InfoMax-GAN improves on IS

over SNGAN and SSGAN significantly. Finally, on KID, we

confirm our result on FID: where FID is better, KID is also
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Metric Dataset Resolution
Models

SNGAN SSGAN InfoMax-GAN

FID

ImageNet 128× 128 65.74± 0.31 62.48± 0.31 58.91± 0.14

CelebA 128× 128 14.04± 0.02 16.39± 0.09 10.63± 0.04

STL-10 48× 48 40.48± 0.07 38.97± 0.23 37.49± 0.05

CIFAR-100 32× 32 24.76± 0.16 24.64± 0.16 21.22± 0.26

CIFAR-10 32× 32 18.63± 0.22 16.59± 0.13 17.14± 0.20

KID

ImageNet 128× 128 0.0663± 0.0004 0.0616± 0.0004 0.0579± 0.0004

CelebA 128× 128 0.0076± 0.0001 0.0101± 0.0001 0.0063± 0.0001

STL-10 48× 48 0.0369± 0.0002 0.0332± 0.0004 0.0326± 0.0002

CIFAR-100 32× 32 0.0156± 0.0003 0.0161± 0.0002 0.0135± 0.0004

CIFAR-10 32× 32 0.0125± 0.0001 0.0101± 0.0002 0.0112± 0.0001

IS

ImageNet 128× 128 13.05± 0.05 13.30± 0.03 13.68± 0.06

CelebA 128× 128 2.72± 0.01 2.63± 0.01 2.84± 0.01

STL-10 48× 48 8.04± 0.07 8.25± 0.06 8.54± 0.12

CIFAR-100 32× 32 7.57± 0.11 7.56± 0.07 7.86± 0.10

CIFAR-10 32× 32 7.97± 0.06 8.17± 0.06 8.08± 0.08

Table 1: Mean FID, KID and IS scores of all models across different datasets, computed across 3 different seeds. FID and

KID: lower is better. IS: higher is better.

Dataset Resolution
Models

SSGAN SSGAN + IM

ImageNet 128× 128 62.48± 0.31 56.45± 0.29

CelebA 128× 128 16.39± 0.09 11.93± 0.14

STL-10 48× 48 38.97± 0.23 37.73± 0.06

CIFAR-100 32× 32 24.64± 0.16 21.40± 0.20

CIFAR-10 32× 32 16.59± 0.13 15.42± 0.08

Table 2: Mean FID scores (lower is better) of SSGAN before

and after applying our method: “+ IM” refers to adding our

proposed InfoMax-GAN objective.

better. This further substantiates our FID results and how

InfoMax-GAN generates more diverse images across these

datasets, with no obvious failure modes unlike in SSGAN.

Orthogonal improvements In Table 2, we show our im-

provements are orthogonal to those in SSGAN: when adding

our objective into SSGAN, FID improves across all datasets

significantly, achieving even larger improvements of approx-

imately 2.5 points for the challenging ImageNet dataset.

Thus, our method is flexible and can be easily integrated into

existing state-of-the-art works like SSGAN.

Improved training stability Similar to [10], we test train-

ing stability through evaluating the sensitivity of model per-

formance when hyperparameters are varied across a range

of popular settings for training GANs, such as the Adam

parameters (β1, β2) and number of discriminator steps per

generator step, ndis, all chosen from well-tested settings in

seminal GAN works [10, 20, 42, 52, 64]. As seen in Table 3,

in comparison to SNGAN at the same architectural capac-

ity, InfoMax-GAN consistently improves FID for different

datasets even in instances where GAN training does not

converge (e.g. when ndis = 1). The FID score variability

for InfoMax-GAN is much lower than SNGAN, showing

its robustness to changes in training hyperparameters. Fi-

nally, while different sets of (β1, β2) work better for each

dataset, our method stabilizes training and obtain significant

improvements in all these settings, without any hyperparam-

eter tuning. This can be useful in practice when training new

GANs or on novel datasets, where training can be highly

unstable when other hyperparameters are not well-tuned.

In Figure 4, we show our method stabilizes GAN training

by allowing GAN training to converge faster and consistently

improve performance throughout training. We attribute this

to an additional constraint where the global features are con-

strained to have high mutual information with all their local

features [24], thereby constraining the space of generated

data distribution and causing pg to change less radically and

ultimately stabilizing the GAN training environment. This

is a practical benefit when training GANs given a fixed com-

putational budget, since significant improvements can be

gained early during training.

Low computational cost In practice, our method takes

only a fraction of the training time. Similar to [42], we

profile the training time for 100 generator update steps. In

Figure 5, we see our approach takes minimal time at less

than 0.1% of training time per update, across all ndis for

both CIFAR-10 and STL-10. This is since in practice, only

2 shallow (1 hidden layer) MLP networks are needed to

3947



β1 β2 ndis
CIFAR-10 STL-10

SNGAN InfoMax-GAN SNGAN InfoMax-GAN

0.0 0.9 1 164.74± 0.42 24.42± 0.18 267.10± 0.20 54.29± 0.13

0.0 0.9 2 20.87± 0.19 18.08± 0.27 46.65± 0.18 38.96± 0.31

0.0 0.9 5 18.63± 0.22 17.14± 0.20 40.48± 0.07 37.49± 0.05

0.5 0.999 1 73.07± 0.20 20.58± 0.10 134.51± 0.37 62.28± 0.07

0.5 0.999 2 18.74± 0.24 17.19± 0.32 40.67± 0.29 40.54± 0.20

0.5 0.999 5 21.10± 0.89 18.39± 0.04 84.20± 0.67 75.72± 0.19

Table 3: Mean FID scores (lower is better) across a range of hyperparameter settings. (β1, β2) represents the hyperparameters

of the Adam optimizer, and ndis represents the number of discriminator steps per generator step. Our method performs robustly

in a wide range of training settings without any tuning.

100000 200000 300000 400000
Iterations

60

70

80

90

100

FI
D

SNGAN
InfoMax-GAN

20000 40000 60000 80000 100000
Iterations

10

20

30

40

50

60

70

FI
D

SNGAN
InfoMax-GAN

20000 40000 60000 80000 100000
Iterations

20

25

30

35

40

FI
D

SNGAN
InfoMax-GAN

20000 40000 60000 80000 100000
Iterations

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

FI
D

SNGAN
InfoMax-GAN

20000 40000 60000 80000 100000
Iterations

40

50

60

70

80

FI
D

SNGAN
InfoMax-GAN

Figure 4: Our approach stabilizes GAN training significantly, converges faster and consistently improves FID for all models

across all datasets. Left to right: ImageNet, CelebA, CIFAR-10, CIFAR-100, STL-10.
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Figure 5: Training time for 100 generator update steps across

different ndis values for CIFAR-10 and STL-10, using the

same hardware. In general, our proposed framework incurs

significantly less time than the overall training cost.

compute the contrastive loss. Furthermore, from Table 3,

at ndis = 2, InfoMax-GAN has a consistently better FID

than SNGAN at ndis = 5 at approximately half the training

time, since a large ndis is a significant bottleneck in training

time. Thus, our approach is practical for training GANs at a

fixed computational budget, and has minimal computational

overhead.

Improved mode recovery In Appendix A.4, we demon-

strate our approach helps to significantly recover more modes

in the Stacked MNIST dataset [41].

Qualitative comparisons In Appendix A.6, we show gen-

erated images with improved image quality against those

R Relative Size FID Score

256 2 17.07± 0.25

512 4 17.21± 0.15
1024 8 17.14± 0.20
2048 16 17.80± 0.05
4096 32 17.38± 0.11

Table 4: Mean FID scores (lower is better) for InfoMax-

GAN on CIFAR-10 when the RKHS dimension R is varied.

Relative size here refers to how much larger R is relative

to the discriminator feature map depth of 128, in terms of

multiplicative factor.

from other models for all datasets.

4.3. Ablation Studies

RKHS dimensions As seen in Table 4, our proposed

framework is robust to the choice of R, with the FID re-

maining consistent in their range of values. We attribute

this to how the InfoMax critics are simple MLP networks

with only 1 hidden layer, which is sufficient for achieving

good representations in practice [63]. We note for all our

experiments in Tables 1, 2, and 3, we used R = 1024.

Sensitivity of α and β hyperparameters In Figure 6a,

we performed a large sweep of α and β from 0.0 to 1.0,

and see α = β = 0.2 obtains the best performance for our

method. From Figure 6b, we see our InfoMax objective for
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Figure 6: (a) CIFAR-10 FID curves for InfoMax-GAN

across a large sweep of α and β hyperparameters, show-

ing α = β = 0.2 performs the best. (b) We perform a small

sweep around the chosen hyperparameters α = β = 0.2.

the discriminator is important for improving GAN perfor-

mance: as β is decreased, keeping α = 0.2, FID deteriorates.

Interestingly, when α = 0 and β = 0.2, having the InfoMax

objective for the discriminator alone is sufficient in gaining

FID improvements. This confirms our intuition of the role of

information maximization in mitigating discriminator catas-

trophic forgetting to stabilize the GAN training environment

and improve FID. However, the performance improves when

the generator is also trained on the InfoMax objective, at

α ∈ {0.1, 0.2} and β = 0.2, which affirms our prior intu-

ition that the contrastive nature of the objective helps the

generator reduce mode collapse and improve FID. We note

apart from this ablation study, we used α = β = 0.2 for all

experiments reported in this paper.

Further studies We include three further ablation studies

on our design choices in Appendix A.5 to demonstrate the

strength of our approach and justify our design choices.

5. Related Work

Mode collapse and catastrophic forgetting Early works

in reducing mode collapse include Unrolled GAN [41],

which restructures the generator objective with respect to

unrolled discriminator optimization updates. These works

often focused on assessing the number of modes recovered

by a GAN based on synthetic datasets [8,41,55]. Subsequent

works include MSGAN [38], which introduces a regulariza-

tion encouraging conditional GANs to seek out minor modes

often missed when training. These works instead focus on

direct metrics [7,19,23,32,53,54] for assessing the diversity

and quality of generated images. In our work, we utilized

both types of metrics for assessment. Previous approaches to

mitigate catastrophic forgetting in GANs include using forms

of memory [18, 26, 54], such as checkpoint averaging. [10]

demonstrates the mitigation of catastrophic forgetting using

a representation learning approach, which we built upon.

Representation learning and GANs To the best of our

knowledge, the closest work in methodology to ours is the

state-of-the-art SSGAN, which demonstrates the use of a

representation learning approach of predicting rotations [14]

to mitigate GAN forgetting and hence improve GAN perfor-

mance. In contrast to SSGAN, our work uses a contrastive

learning and information maximization task instead, which

we demonstrate to simultaneously mitigate both GAN forget-

ting and mode collapse. Furthermore, our work overcomes

failure modes demonstrated in SSGAN, such as in datasets

involving faces [10]. For fair and accurate comparisons, our

work compared with SSGAN using the exact same architec-

tural capacity, training and evaluation settings.

Information theory and GANs The most prominent

work in utilizing mutual information maximization for

GANs is InfoGAN, but we emphasize here that our work

has a different focus: while InfoGAN focuses on learning

disentangled representations, our goal is to improve image

synthesis. For clarity, we illustrate the specific differences

with InfoGAN in Appendix B. Other approaches employing

information-theoretic principles include Variational GAN

(VGAN) [50], which uses an information bottleneck [58] to

regularize the discriminator representations; with [6, 39, 44]

extending to minimise divergences apart from the original JS

divergence. In contrast to these works, our work employs the

InfoMax principle to improve discriminator learning and pro-

vides a clear connection to how this improves GAN training

via the mitigation of catastrophic forgetting.

6. Conclusion and Future Work

In this paper, we presented the InfoMax-GAN framework

for improving natural image synthesis through simultane-

ously alleviating two key issues in GANs: catastrophic for-

getting of the discriminator (via information maximization),

and mode collapse of the generator (via contrastive learning).

Our approach significantly improves on the natural image

synthesis task for five widely used datasets, and further over-

come failure modes in state-of-the-art models like SSGAN.

Our approach is simple and practical: it has only one auxil-

iary objective, performs robustly in a wide range of training

settings without any hyperparameter tuning, has a low com-

putational cost, and demonstrated improvements even when

integrated to existing state-of-the-art models like SSGAN.

As future work, it would be interesting to explore this frame-

work for different tasks, such as in 3D view synthesis, where

one could formulate objectives involving mutual information

and adjacent views. To the best of our knowledge, our work

is the first to investigate using information maximization and

contrastive learning to improve GAN image synthesis per-

formance, and we hope our work opens up new possibilities

in this direction.
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