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Abstract

Extracting local descriptors or features is an essential

step in solving image matching problems. Recent methods

in the literature mainly focus on extracting effective descrip-

tors, without much attention to the size of the descriptors.

In this work, we study how to learn a compact yet effec-

tive local descriptor. The proposed method distills multi-

ple intermediate features of a pretrained convolutional neu-

ral network to encode different levels of visual information

from local textures to non-local semantics, resulting in lo-

cal descriptors with a designated dimension. Experiments

on standard benchmarks for semantic correspondence show

that it achieves significantly improved performance over ex-

isting models, with up to a 100 times smaller size of descrip-

tors. Furthermore, while trained on a small-sized dataset

for semantic correspondence, the proposed method also

generalizes well to other image matching tasks, performing

comparable result to the state of the art on wide-baseline

matching and visual localization benchmarks.

1. Introduction

Extracting reliable local features is a fundamental part

of computer vision problems, including Simultaneous Lo-

calization and Mapping (SLAM), Structure-from-Motion

(SfM), and 3D reconstruction [13, 18]. The process of ex-

tracting local feature representations can be divided into two

steps: keypoint localization and descriptor extraction. It has

been observed in the literature that local descriptors learned

in neural networks [11, 44, 52] can be more effective than

traditional, hand-crafted representations [8, 37, 57].

Convolutional neural networks (CNN) are the most

prominent amongst such deep neural networks, yielding

cutting-edge results for different tasks such as pose esti-

mation [67] and object detection [20, 35]. A common ap-

proach to improving local descriptors [11, 30, 41] is to in-

crease the capacity of the descriptors, resulting in an in-
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Figure 1. Descriptor size vs. matching accuracy (PCK) on PF-

PASCAL. The proposed descriptor method, COLD, outperforms

other methods with significantly smaller descriptors. Note that it

performs best even with the size of 128. See Table 1 for the detail.

creased size, albeit enhanced performances. The compact-

ness of descriptors, however, is also important in practice.

For example, in SfM pipelines [60], heavy descriptors from

many images may hinder multi-view matching and triangu-

lation [18, 19, 27].

In this work, we propose to learn a compact local de-

scription method, dubbed COLD, that distills intermediate

features of pretrained convolutional networks using multi-

layer feature transformation and fusion. Leveraging the

compositional feature hierarchy of CNNs [21] pretrained

on ImageNet [9], the proposed method extracts multiple

intermediate features to encode hierarchical information of

the images and learn to compress them into a single com-

pact feature map containing, which contains descriptors for

the entire input image. The resultant descriptors show im-

pressive performance on the task of semantic correspon-

dence while being up to 100 times smaller than descrip-

tors obtained from preceding methods [5, 17, 24, 28, 30,

41, 53, 54, 55, 61], suggesting a successful compromise

to the effectiveness-compactness trade-off. Figure 1 shows
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the trade-off of COLD compared to existing semantic corre-

spondence models. The efficacy our model can also be ob-

served outside the training domain of semantic correspon-

dence; it performs comparably to state-of-the-art descrip-

tors extraction models [11, 52] trained specifically on the

target domain of wide-baseline matching or long-term vi-

sual localization. Experiments demonstrate the effective-

ness of COLD not only on semantic correspondence bench-

marks - PF-PASCAL [16], PF-WILLOW [15], and SPair-

71k [42] - but also on wide-baseline matching and visual lo-

calization benchmarks, including HPatches [1] dataset and

Aachen day-night [58] dataset.

2. Related work

Traditional local descriptors. The most well-known

traditional local descriptor extraction approaches include

SIFT [37], SURF [3], HOG [8, 37] and BRIEF [31]. How-

ever, traditional methods have shown limitations in captur-

ing high-level semantics of target images.

Deep-learned local descriptors. Local descriptors ob-

tained using convolutional neural networks have been able

to capture high-level semantics of images. In semantic cor-

respondence tasks, Choy et al. [5] make use of correspon-

dence contrastive loss, Rocco et al. [55] propose a weakly-

supervised trainable network detecting spatially consistent

matches, and Lee et al. [30] use binary foreground masks

with synthetic geometric deformation as supervisory signals

for training. Other methods [24, 28, 29, 41, 47, 48] also ad-

dress local descriptor extraction in the semantic correspon-

dence domain, with various novelties targeted at different

aspects.

Local descriptor extraction in wide-baseline matching

can be divided into learning patch-based descriptors from

predefined patches (detect-then-describe), and learning key-

points and their corresponding descriptors together (detect-

and-describe). Mishchuk et al. [44] use triplet loss inspired

by Lowe’s matching criterion [37] to learn the descrip-

tors. Other key methods to learn patch-based descriptors

include [38, 39, 66]. Methods learning both keypoints and

descriptors together have also been effective. [49, 62] pro-

pose an end-to-end method to extract patch-based descrip-

tors. The above methods make use of detect-then-describe

approach, which sample the patches on the image.

The following methods obtain the corresponding de-

scriptors of keypoints in a detect-and-describe manner, in-

stead of sampling patches explicitly. Noh et al. [46] in-

tegrate an attention mechanism for local feature selection

on image retrieval. DeTone et al. [10] introduce a self-

supervised framework to train keypoints detector and dense

descriptors. Dusmanu et al. [11] increase the stability of

the extracted features by postponing keypoint selection. Re-

vaud et al. [52] show that reliability and repeatability should

also be considered for better descriptors.

Unlike those methods, which does not take into account

the size of descriptors, we propose a multi-layer feature fu-

sion method, which directly outputs compact and robust

descriptors - cutting on keypoint detection overhead and

showing descriptor generalizability.

Methods using multiple layers. Long et al. [36] integrate

a portion of its deeper intermediate layers for the task of se-

mantic segmentation. The following methods [33, 34] also

exploit a subset of layers along a backbone convolutional

neural network. More recently, Tan et al. [64] propose a

bidirectional feature pyramid network for easier and faster

feature fusion. Min et al. [41] leverage intermediate fea-

tures along its backbone network to represent images by

hyperpixels. Min et al. [43] which is a post work of [41]

learn to compose the intermediate features by continuous

relaxation using Gumbel-softmax [25, 40].

In contrast to the mentioned approaches, our model is

as simple as [33, 36] yet effective. Our model exploits

all intermediate layers of the backbone network, but out-

puts more compact representation. Despite this compact-

ness, our approach yields strong results in semantic corre-

spondence and comparable performance on wide-baseline

matching and long-term visual localization.

Knowledge distillation. Note that in the literature, knowl-

edge distillation or transfer [23, 56, 50] refers to the pro-

cess of transferring learned knowledge from a larger teacher

model to a smaller student model. In contrast, the term

of feature distillation in our context is used for the process

of transferring knowledge from a large set of convolutional

features to a compact and small local descriptor.

Comparison to most related methods [41, 14]. We adopt

HPF [41] as a baseline model and also obtains the base fea-

tures in the same manner. While our model parameters are

trained by backpropagation using the correspondence su-

pervision directly, HPF [41] does not train the network pa-

rameters, but instead carries out heuristic beam-search algo-

rithm using PCK values. Unlike [41], we do not use any ad-

ditional spatial matching, i.e., probabilistic Hough match-

ing (PHM) [4]. S2DHM [14] also leverages hypercolumn

local descriptors on CNN. While S2DHM [14] only targets

visual localization tasks, we concentrate on generally ex-

tracting local descriptors, which can be applied to various

benchmarks, not limited to visual localization. The usage

of element-wise summation as our feature aggregation op-

eration – which reduces the output descriptor channel size –

and feature fusion operation are also the unique contribution

of ours - S2DHM uses feature concatenation instead.

3. Compact local descriptor networks

In this section we demonstrate our approach in three

parts: feature extraction, feature distillation, and the train-

ing objective. First, we extract feature maps from interme-
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Figure 2. Overall architecture. Extracted features f from the multiple layers on ImageNet pretrained networks are transformed by MLPs Φ.

The outputs g become the same size features h by bilinear interpolation. The final results F obtained by element-wise addition are learned

by matching loss L.

diate layers of feature extraction network pretrained on a

classification task. Second, each intermediate feature map

is then passed to its corresponding transformation module

that compactly distills each feature map by projecting onto

a subspace RC shared across the multi-level features. Third,

we train our model using semantically related keypoint cor-

respondences as a supervisory signal. Figure 2 shows the

overall architecture of our model.

3.1. Model architecture

Feature extraction. We adopt ResNet [21] as our feature

extraction network. Given an input image, our feature ex-

traction network extracts a series of intermediate feature

maps {f l}Ll=1. The extracted features are then passed to

a learnable module to generate compact local descriptors

which is detailed in the next subsection.

Feature transformation. The feature transformation mod-

ule Φ
l at each layer l consists of two convolutional lay-

ers. The first convolutional layer carries out 1x1 convolu-

tion on the input features map f l, reducing their channel di-

mensions to one eighth of their original dimensions. This

operation is followed by batch normalization and ReLU.

Each resultant feature is then passed to another 1x1 con-

volutional layer which performs a linear transformation on

each spatial position of the feature map. This convolutional

layer projects each feature vector on the same subspace RC :

gl = Φ
l(f l) 2 R

C⇥Hl
⇥W l

where l 2 {1, 2, ..., L} denotes

the index of an intermediate layer of the backbone network.

Feature fusion. The raw output feature maps of the trans-

formation {gl}Ll=1 have different numbers of local descrip-

tors on their spatial dimension H l ⇥W l. To generate com-

pact local descriptors on a dense grid for fine-grained key-

point localisation, we upsample each feature map: hl =

ζ(gl) where ζ denotes a function that bilinearly interpo-

lates to spatial size of features to H ⇥ W . We then ag-

gregate information from multiple visual aspects by simple

addition and obtain compact feature map: F =
P

l2L hl.
Despite its simplicity, our proposed method shows high re-

liability in establishing correspondences on semantic cor-

respondence [15, 16, 42] and even generalize effectively

when evaluated on different domains [1, 58], e.g., the task of

wide-baseline matching and long-term visual localization.

Both upsampling and adding outputs of different layers

{f l}Ll=1 capture spatial position information of the original

image because we consider strides and paddings of convo-

lutions; the center coordinate cl of receptive field for each

feature vector f l:ij is defined as cl = cl�1+
�

kl�1
2 �pl

�

·jl�1,

where kl and pl are kernel and padding sizes of the l-th conv

layer and j is pixel-level distance between two adjacent fea-

ture vectors in input image space; initially, k0 = 1 and

j0 = 1 and c0 is a pixel coordinate. Standard CNNs [21, 63]

use kernel size of kl = 2pl + 1, leading to cl = cl�1 as

ours does. Thus, the outputs {gl}Ll=1 of simple bilinear up-

sampling can align different feature maps so that the resul-

tant compact local descriptors F:ij retain their relative lo-

cation information of the original image. Aggregating these

position-aligned feature maps using a simple addition oper-

ation thus results in compact local representation F:ij which

describes semantics of multi-scale receptive fields. The ef-

fects of the multi-level fusion will be detailed in Sec. 4.4.

3.2. Training objective

To optimize parameters of the proposed network, we

train our network on pairs of semantically related im-

ages.Given a pair of compact feature maps F 2 R
C⇥H⇥W

and F0 2 R
C⇥H0

⇥W 0

, we first compute a variant of cosine
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similarity:

Ĉijkl = ReLU
⇣ F:ij · F

0
:kl

�

�F:ij

�

�

�

�F0
:kl

�

�

⌘2

, (1)

where the ReLU non-linearity clamps scores of dissimi-

lar feature pairs to zero and the exponent suppresses noisy

match scores. We then normalize each (one) source to

(many) target correlation scores Ĉij:: using softmax as fol-

lows:

Cijkl =
exp (Ĉijkl)

P

(y,x) exp (Ĉijyx)
. (2)

such that
P

(y,x) Cijyx = 1. Given semantically paired

keypoint correspondences {(ki,k
0
i)}

K
i=1 2 K, our training

objective is formulated as follows:

L = �
1

|K|

X

(k,k0)2K

λ(k,k0) logCijkl, (3)

where (i, j) and (k, l) are spatial positions of features near-

est to the given source and target ground-truth keypoints, k

and k0, respectively and λ is a weighting function defined

as

λ(k,k0) =

(

(kT (k)� k0k/η)2 if kT (k)� k0k < η,

1 otherwise

(4)

where T (·) is a function that transfers given keypoint using

nearest-neighbour assignment based on the predicted cor-

relation matrix C [41]. The weighting term λ outputs a

value proportional to the distance between the ground truth

k0 and the prediction T (k) if the distance is below a cer-

tain threshold η, thus helping the network focus on the in-

correct matches during training. We set the threshold η to

0.1 ·max(h,w), where h and w are respectively the height

and weight of the bounding box. Our training objective is

to minimize the negative log likelihood of true correspon-

dences with a dynamic weighting term.

4. Experiments

In section 4.1, 4.2 and 4.3, we report the results on var-

ious visual correspondence benchmarks [1, 15, 16, 26, 41,

58] and the evaluation setting. In section 4.4, we show the

ablation of our proposed model and additional experiments.

4.1. Implementation details

We use the ResNet [21] architecture pre-trained on Im-

ageNet [9] as the backbone network. All the outputs from

the bottleneck units of the backbone preceding the final av-

erage pooling layers are extracted. We freeze the parame-

ters of the backbone network during training. Our network

is trained for 30 epochs using a SGD optimizer with a uni-

form learning rate of 0.03 and batch size of 8. The training

time under these conditions takes approximately 5 hours on

a NVIDIA Titan-XP GPU. We resize the spatial size of in-

put images to 240 ⇥ 240, which results in output features

of size F 2 R
C⇥60⇥60, and therefore correlation matrix

of size C 2 R
60⇥60⇥60⇥60. We use the training split of

PF-PASCAL [16] with sparse ground-truth keypoints cor-

respondences.

Processing output. We set the output spatial size of our

model according to the characteristics of target task. Se-

mantic correspondence is important to capture the high-

level semantics. Wide-baseline matching is important to

capture the low-level geometry.

The output descriptor sizes are R
C⇥60⇥60 for semantic

correspondence. After construction of correlation matrix C,

we transfer the source image keypoints to target image by

T . To transfer source keypoints, we aggregate the displace-

ment vectors from the center points covered by receptive

fields of features, as in [41].

The output descriptor sizes are R
C⇥160⇥160 for wide-

baseline matching [1] and long-term visual localiza-

tion [58]. Here, we use the grid points strategy where all

points of the descriptor are regarded as keypoints. There ex-

ists a receptive field on the original input image which each

pixel on F represents. We use center points of the receptive

fields as keypoints, and designate the output descriptors of

the corresponding pixels to the newly declared keypoints.

Consequently, these dense grid keypoints may slightly devi-

ate from corners or edges of the input image, but have been

verified to include the high majority of sparse keypoints ac-

quired from off-the-shelf keypoint detectors. This approach

is a simple baseline to evaluate (quasi-)dense descriptors.

The trained network is then run on different resolutions

of the input image in the form of multi-scale inference,

yielding better descriptors. We scale the input image with

values ranging from 0.25 to 2.5 at an interval of 0.25. The

output of multi-scale images are fused into a single out-

put feature descriptor by also using bilinear interpolation

and element-wise addition, maintaining the same output de-

scriptor size. We therefore obtain more semantically dense

descriptors with a wider diversity of information.

4.2. Datasets and evaluation metrics

To verify the effectiveness of the proposed local descrip-

tors, we evaluate them on two different types of bench-

marks: semantic correspondence [15, 16, 42] and wide-

baseline matching [1, 58].

PF-PASCAL [16] is composed of 1,351 image pairs and

20 object categories. Each image pair contains distinct ob-

ject instances with varying appearances. Manually anno-

tated keypoints exist for every pair of images. Following

the settings of [54], we use 2,941 training pairs, 309 valida-
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Methods Backbone
Size of

desc.

PF-PASCAL PF-WILLOW SPair-71k

τimg τbbox τbbox τbbox

0.05 0.1 0.15 0.1 0.05 0.1 0.15 0.1

UCN [5] GoogLeNet 64 29.9 55.6 74.0 - 24.1 54.0 66.5 -

PF [15] HOG - 31.4 62.5 79.5 45.0 28.4 56.8 68.2 -

SCNet [17] VGG-16 2048 36.2 72.2 82.0 48.2 38.6 70.4 85.3 -

A2Net [61] ResNet-101 512 42.8 70.8 83.3 67.0 36.3 68.8 84.4 20.1

Cnngeo [53, 54] ResNet-101 1024 49.0 74.8 84.0 72.0 37.0 70.2 79.9 21.1

RTNs [28] ResNet-101 1024 55.2 75.9 85.2 - 41.3 71.9 86.2 -

NC-Net [55] ResNet-101 1024 54.3 78.9 86.0 70.0 33.8 67.0 83.7 26.4

SF-Net [30] ResNet-101 3072 53.6 81.9 90.6 78.7 46.3 74.0 84.2 -

DCC-Net [24] ResNet-101 1024 55.6 82.3 90.5 - 43.6 73.8 86.5 -

HPF [41] ResNet-101 6400 60.1 84.8 92.7 78.5 45.9 74.4 85.6 28.2

COLD

ResNet-101 64 67.8 84.2 90.5 81.1 42.4 67.6 80.7 -

ResNet-101 128 71.2 86.8 92.1 84.2 46.0 70.9 82.4 28.4

ResNet-101 512 73.3 88.2 92.9 85.1 49.0 73.5 85.6 30.2

ResNet-152 512 76.6 88.8 93.3 86.3 51.4 75.8 87.0 31.6

Table 1. Performance on standard semantic correspondence benchmarks [15, 16] with PCK as the evaluation metric.

tion pairs, and 300 test pairs. Training pairs are augmented

by flip operation and source-target inversion. The validation

split is used to apply early stopping. The probability of cor-

rect keypoints (PCK) of an image pair given ground-truth

keypoint correspondences K is defined as follows:

PCK(K) =
1

|K|

X

(k,k0)2K

[kT (k)�k0k < τα max(hα, wα)]

(5)

where is a general indicator function and τα is tolerance

factor with α 2 {bbox, img}.

PF-WILLOW [15] is composed of 900 image pairs from

100 images. Image pairs have four subset categories: car,

duck, motorbike, and wine bottle. Upon semantic corre-

spondence evaluation, there are 10 semantic keypoints per

image. Each image has background clutter and intra-class

variation. We measure PCK with τbbox 2 {0.05, 0.1, 0.15}.

SPair-71k [42] test split is composed of 12,234 image

pairs. This dataset contains more challenging pairs of im-

ages with higher viewpoint and scale changes, with more

truncation and occlusion compared to PF-PASCAL [16]

and PF-WILLOW [15]. We use PCK threshold τ to 0.1

at bounding-box-level.

HPatches [1] is a wide-baseline image matching bench-

mark composed of 648 images from 108 scenes which have

6 images each. It has two main scene categories: 52 scenes

with illumination variation and 56 scenes with viewpoint

variation. 5 image pairs are for each scene containing six

images - the first image against all other images. This re-

sults in a total of 540 pairs of images to be evaluated. The

mean matching accuracy (MMA) is used as the metric, as

in [11].

Aachen day-night [58, 59] is a long-term visual localiza-

tion benchmark composed of 98 night-time queries with up

to 20 relevant day-time images with known camera poses.

The night-time images are created using software HDR to

obtain high-quality, well-illuminated images. To evaluate

the pose accuracy of night-time queries, we follow the eval-

uation protocol proposed in [58] using SfM pipeline [60].

Three thresholds were used for evaluation: high-precision

(0.25m, 2°), mid-precision (0.5m, 5°), and coarse-precision

(5m, 10°). All the scores in Table 2 are taken from official

benchmark website 1.

4.3. Results

We evaluate our model on semantic correspondence [15,

16, 41], wide-baseline matching [1], and long-term visual

localization [58]. Table 1 shows the comparison of recent

methods in terms of matching accuracy (PCK) on the stan-

dard semantic correspondence benchmarks [15, 16]. The

results show that despite having the smallest descriptor size,

our model performs the best as illustrated in Table 1 on both

datasets for all evaluation criteria. In particular, our model

outperforms our baseline model, HPF [41], by up to 16.5%p

with 12.5 times fewer size of descriptors on PF-PASCAL

high-precision (τimg = 0.05). This indicates that our de-

scriptors are robust to semantic changes, yet requires min-

imal memory requirements. Last column of Table 1 shows

the PCK achieved by various models compared against ours

on the SPair-71k [42] dataset. As SPair-71k is a challeng-

ing dataset where feature robustness is crucial to achieve

high performances, it can be concluded that our method ex-

1https://www.visuallocalization.net/benchmark/
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# Features # Matches

Hes. Det. RootSIFT 6.7K 2.8K

HAN + HN++ 3.9K 2.0K

DELF 4.6K 1.9K

Superpoint 1.7K 0.9K

LF-Net 0.5K 0.2K

D2-Net Trained MS 8.3K 2.8K

R2D2 5.0K 1.8K

COLD (ours) 25.6K 9.9K

Method

Figure 3. Evaluation on the image pairs of HPatches [1]. The mean matching accuracy (MMA) by the matching threshold in pixels is used

as the evaluation metric. The right table denotes the mean number of local features and the mean number of mutual nearest neighbour

matches.

Method 0.5m, 2° 1m, 5° 5m, 10°

RootSIFT [37] 54.1 66.3 75.5

HAN+HN [45] 58.2 72.4 83.7

Superpoint [10] 73.5 79.6 88.8

DELF [46] 54.1 75.5 96.9

D2-Net [11] 74.5 86.7 100.0

R2D2 [52] 74.5 83.7 100.0

COLD (ours) 72.4 87.8 100.0

Table 2. Evaluation on the visual localization benchmark [58]. We

only evaluate on night time queries. The evaluation metric is lo-

calization accuracy by ground-truth camera pose.

tracts highly robust descriptors compared to other methods.

We took all the SPair-71k scores from transferred models

trained on PF-PASCAL as well.

Table 2 shows the localization accuracy achieved by var-

ious long-term visual localization models compared against

ours on the Aachen day-night [58] dataset. While we ex-

hibit on-par performance on the fine-precision (0.5m, 2°)

and coarse precision (5m, 10°) thresholds, our model out-

performs other models on the medium-precision (1m, 5°)

threshold. While our model performs better than R2D2

by 3.1%p on the medium precision threshold, it exhibits a

slight drop in performance in the high-precision threshold

in comparison. This observation proves that due to the large

receptive fields of represented descriptors in our model, our

model can well interpret contexts of images - but has weak-

nesses in precise localization processes.

Figure 3 shows the wide-baseline matching results eval-

uated on the HPatches [1] dataset, using D2-Net [11] eval-

uation protocol. The left plot shows that our descriptors are

especially robust to illumination changes on all thresholds,

and also exhibits high robustness to viewpoint changes - just

slightly behind R2D2 [52] on lower thresholds. In the view-

point variation, our model performs better than the existing

dense descriptors matching approaches, DELF [46] and D2-

Net [11] at all thresholds. The weakness compared to the

sparse matching model is viewpoint variation on high pre-

cision, but our model performs best after 9 pixel threshold

at viewpoint variation. The table on the right shows that our

grid keypoints strategy yields a lot of features and matches.

With outlier rejection methods, e.g., RANSAC [12] and its

variations [2, 6, 7], our model expect to detect more inlier

matches than the other models.

Although our model is trained using only the ground-

truth correspondences obtained from this small semantic

correspondence dataset [16], our descriptors yield highly

competitive results on different domains as well, e.g., vi-

sual localization benchmark [58] using a SfM pipeline [60].

The most comparable dense-feature extraction methods in-

clude D2-Net [11], which is trained on 327,036 image pairs

from MegaDepth [32], and R2D2 [52], which is trained on

approximately 12,000 synthetic image pairs from various

sources [51, 58, 59]. On the contrary, with only 1,300 image

pairs of PF-PASCAL [16], our model achieves comparable

performance to D2-Net and R2D2 on both HPatches [1] and

Aachen day-night [58].

Figure 4 shows selected qualitative results on [1, 58].

Our model can find image correspondences under strong

variation in day-night (row 1) and rotation (row 2). Fig-

ure 5 shows selected qualitative comparison on [16, 42].

The correctness threshold is set to 20 pixels. Previous meth-

ods [24, 41, 55] fail in cases of large semantic variation, but

our model finds correct keypoint matching results. More

qualitative results are provided in the supplementary mate-

rial.

4.4. Discussion

Generalizability. The datasets used in Table 2 and Fig-

ure 3, which are Aachen day-night benchmark [58] and

HPatches [1] respectively, are on different domains from

PF-PASCAL [16], our training data. Even so, our model

performs comparably on both datasets [1, 58]. Table 2
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Figure 4. Visualization of selected examples. Day/night variation

and large viewpoint variation case in HPatches. Best viewed in

electronic form.

FT. FF. Layers
Size of

desc.

PF-PASCAL HPatches

τimg = 0.1 MMA=5px

N 2048 27.8 0.51

1 64 6.6 0.35

X N 128 20.4 0.41

X 1 128 3.5 0.19

X 1 : N 2048 57.5 0.69

X X 1 : N
2 128 31.1 0.75

X X
N
2
: N 128 85.2 0.75

X X 1 : N 128 86.8 0.77

Table 3. Ablation study of feature transformation (FT) and feature

fusion (FF). Third column shows the layers used in feature fusion,

where 1 : N denotes all layers, 1 :
N

2
denotes first half layers (in

this case, 1 to 17), N

2
: N denotes last half layers (in this case, 17

to 34), N denotes only the last layer, and 1 denotes only the first

layer.

shows that our descriptors perform well on long-term visual

localization [58] with integrated SfM pipeline [60], and par-

tially outperform the previous dense descriptors extraction

models [11, 52]. The last column of Table 3 displays the

improvement in generalizability of our final proposed mod-

ule against different ablations. The MMA scores at Table 3

are measured on 5 pixel threshold. These results show that

our final proposed model yields compact local descriptors

with high generalizability.

Ablation study of proposed modules. Table 3 shows the

effect of each component in our model. The output of in-

termediate layers from the backbone network differ in de-

scriptor size, and they cannot be fused by element-wise ad-

dition without feature transformation. Therefore, in those

cases, we concatenate the smaller-channel layers to them-

sum mul max concat

PF-PASCAL 86.8 25.0 48.1 76.5

PF-WILLOW 70.9 0.0 44.2 70.3

SPair-71k 28.4 0.1 12.7 30.4

Inference time 35.2 35.5 76.8 91.4

Table 4. PCK comparison (τ = 0.1) of different aggregation on

semantic correspondence. The unit of time is millisecond by per-

pair inference time.

selves to match the layer with the highest descriptor size to

enable feature fusion. The fifth row of Table 3 shows an ex-

ample: the resultant descriptor size is 2048, which was the

largest descriptor size among the layers from the backbone

network.

The sixth and seventh rows show the results of evalu-

ation with partial layers. When we use shallower half of

the layers (row 6), the results of semantic correspondence

is detrimental, but the results of wide-baseline matching is

quite comparable. When we use the deeper half of the lay-

ers (row 7), the results on both datasets are slightly lower

than our proposed model. This is because high-level seman-

tics, which come from deeper layers with larger receptive

fields is important in semantic correspondence benchmark,

PF-PASCAL. Interestingly, low-level geometric informa-

tion from shallower layers with smaller receptive fields

performs similarly on wide-baseline matching benchmark,

HPatches, following to last column of sixth and seventh

rows. Our final proposed design with feature transformation

and feature fusion exhibits the best performance on both,

PF-PASCAL [16] and HPatches [1] benchmark, with the

small descriptor size of 128.

Ablation study of feature aggregation. Table 4 supports

our choice of element-wise summation for feature aggrega-

tion through an ablation study on several semantic corre-

spondence benchmarks, using ResNet-101 backbone with

34 bottleneck layers. Element-wise multiplication and max

pooling demonstrate incomparably poor results. Feature

concatenation shows competent performance, but it is ap-

proximately 3 times slower and results in descriptors which

are 34 times bigger in size.

Integration with Superpoint keypoints detector [10]. Ta-

ble 5 shows the results of integrating SuperPoint [10] key-

points detector. In this case, we upsampled our local de-

scriptors using bilinear interpolation to match the spatial di-

mensions of the original input image. This was because

we aimed to obtain pixel-level spatial precision to integrate

the extracted keypoints directly. Thanks to [26], we could

easily evaluate on the Phototourism [26, 22, 65] validation

set. Compared to Superpoint [10] with their own proposed

descriptors, our descriptors show improved performance on

both stereo and multiview matching tasks.
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(c) NCNet (d) DCCNet (e) HPF (f) Ours(b) Target(a) Source

Figure 5. Qualitative comparison of semantic correspondence benchmarks. Correct matches are colored as green and incorrect matches

as red. o denotes target image keypoints and x denotes source image transferred keypoints. Our model finds correct matches under large

intra-class variations such as illumination change (row 1), large deformation (row 2), scale change (row 3), and partial occlusion (row 4).

Best viewed in electronic form.

Method
Dim

of desc
Stereo Multiview

mAA(10°)

SP [10] 256 0.3054 0.5316

SP + COLD 128 0.3361 0.5705

Table 5. Integration effect with Superpoint keypoints detector [10]

under 2048 keypoints on Phototourism benchmark [26].

5. Conclusion

We have presented a multi-layer feature distillation net-

work architecture to extract highly compact and robust local

descriptors of 2D images. Our proposed model exploits

intermediate layers of ImageNet pre-trained convolutional

neural networks to encode the hierarchical features of

the intermediate layers. The aggregation of these layers

through element-wise addition yields our compact local

descriptors, which can be used for various target tasks,

namely semantic correspondence, wide-baseline matching,

and visual localization. We demonstrate through our ex-

periments that (1) we could find a successful compromise

to the robustness-compactness trade-off, obtaining both

compact and robust descriptors that outperform popular

existing models, (2) the choice of element-wise summation

in place of the conventional concatenation as our choice of

feature aggregation improves our descriptors’ robustness

while resulting in a shorter inference time and higher

compactness, and (3) our proposed feature transformation

and multi-layer fusion cause our descriptors to exhibit

notable generalizability - especially on matching tasks -

demonstrating performances on semantic correspondence,

wide-baseline matching, and visual localization tasks.
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