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Abstract

Robust and accurate visual localization is one of the

most fundamental elements in various technologies, such as

autonomous driving and augmented reality. While recent vi-

sual localization algorithms demonstrate promising results

in terms of accuracy and robustness, the associated high

computational cost requires running these algorithms on

server-sides rather than client devices. This paper proposes

a real time monocular visual localization system that com-

bines client-side visual odometry with server-side visual lo-

calization functionality. In particular, the proposed system

utilizes handcrafted features for real time visual odometry

while adopting learned features for robust visual localiza-

tion. To link the two components, the proposed system em-

ploys a map alignment mechanism that transforms the local

coordinates obtained using visual odometry to global coor-

dinates. The system achieves comparable accuracy to that

of the state-of-the-art structure-based methods and end-to-

end methods for the visual localization on both indoor and

outdoor datasets while operating in real time.

1. Introduction

The interest in visual localization (VL) has increased

due to its key role in the visual navigation systems of au-

tonomous cars, robots, and augmented reality (AR) appli-

cations. Recent VL algorithms have achieved centimeter-

level accuracy for small room-size scenes and sub-meter-

level accuracy in city-scale environments [5, 30, 39]. How-

ever, the majority of these algorithms measure the camera

pose of each input image independently, even for sequen-

tially correlated images, such as video frames. The lack of

the consideration of the sequential correlation among im-

ages results in poor spatial-temporal consistency [13, 29]

and non-smooth, or even jittered, camera poses, leading to

the significant degradation of the user experience of real-

world services, such as AR navigations [1, 2].

Many different deep learning-based VL methods

have been proposed recently [6, 14, 39, 42]. Among

Figure 1. Visual localization of the proposed system employing

only one monocular camera. The blue dots represent offline map

points, while the red dots represent map points generated from an

online map. The proposed system aligns the local online map to

the global offline map. The green line shows an estimated trajec-

tory on the online map.

them, structure-based methods, such as SuperPoint [9],

R2D2 [28], and D2Net [10], use learned features to enhance

local feature matching, and therefore, increase the robust-

ness of localization. On the other hand, pose-regression-

based methods use deep learning to approximate highly

non-linear functions mapping an input image to camera

poses [16, 17, 18]. There are also VL algorithms that

use sequential images as input [6, 14, 39, 42]. However,

the high computational cost of the existing learning-based

VL methods requires running them on servers rather than

client devices, such as mobile robots or smartphones. More-

over, some of the deep learning-based methods such as

PoseNet [18], require time-consuming pre-training of mod-

els before applying them to new scenes or locations. The

lack of the generalization ability of theses models makes

them inapplicable to large-scale localization services [31].

This paper proposes a real time monocular visual local-

ization system comprising two sub-systems responsible for

client-side visual odometry (VO) and server-side VL, re-

spectively. The VO sub-system generates local maps and

estimates the relative movements of image frames [25]. The

VO sub-systems can operate about 30 frames-per-second

(fps) on a laptop without any graphics processing units
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Method Heterogeneous feature Sensor Visual odometry Scale estimation Place recognition

[4] ✕ (SIFT’) Mono ✕ ✕ GPS/WiFi/user

[15] ✕ (SIFT’) Mono+IMU X IMU Mono

[22] ✕ (CONGAS) Mono+IMU X IMU GPS/WiFi

[24] X(BRISK+SIFT) Mono+IMU+GPS X IMU GPS

[40] ✕ (SIFT) Mono+GPS X Mono GPS

Ours X(ORB+SuperPoint) Mono X Mono Mono

Table 1. Comparison of various methods based on the server and client approach for structure-based sequential localization.

(GPUs) owing to the use of handcrafted features only. In

the VL sub-system, this paper adopts a hierarchical visual

localization method similar to [29]. This method utilizes

learned features to perform robust structure-based localiza-

tion, while adding the sequential information of consecutive

image frames generated by a probabilistic place recogni-

tion module. To bridge the gap between the heterogeneous

features of the two sub-systems, this paper proposes a new

structure, called SuperKeyFrame, to process the heteroge-

neous features for the overall process of the proposed sys-

tem. This approach reduces the computational cost of the

server-side VL sub-system, by reducing the repetition of re-

calling the learned features.

Furthermore, this paper presents a map alignment (MA)

sub-system to transform the local maps generated by the

VO sub-system to the globally localized positions obtained

from the VL sub-system. The proposed system uses the

Kalman Filter to estimate a scale factor, which is necessary

for a monocular camera-based system. To refine the robust-

ness of the scale factor estimation, this paper re-trains the

learned features by guiding the positions of the handcrafted

features to improve the spatial consistency among all the

heterogeneous features. Figure 1 shows the localized online

maps on the global coordinates by using the proposed sys-

tem.

The proposed system is demonstrated to perform on par

with state-of-the-art structure-based VL methods while op-

erating in real time performance. Such promising results es-

tablish the system’s real time applicability to embedded de-

vices in estimating monocular camera poses on global coor-

dinates, and suggest the system’s appropriateness for real-

world VL applications.

The rest of this paper is organized as follows. Related

work is discussed in Section 2, while the proposed system

is presented in Section 3. The experimental setup and results

are reported in Section 4. Section 5 concludes the paper.

2. Related Work

2.1. Structure­based visual localization

Structure-based VL methods compute camera

poses using the Perspective-n-Point (PnP) solver with

RANSAC [20]. In many cases, 3D-2D correspondences,

called 3D-2D data association, between the query image

and a given 3D model must be found to define the PnP

problem. The 3D structures, which consist of key points

with global 3D coordinates and their descriptors, are

often built using visual simultaneous localization and

mapping (SLAM) [11, 12, 19, 25, 26] or the structure from

motion (SfM) algorithm [7, 32]. Active Search [30] was

proposed for prioritized matching method to find accurate

corresponding features. HF-Net [29] shows the state-of-

the-art performance on the localization tasks by using

learned features, NetVLAD [19] and SuperPoint [9] for the

robust image retrieval and feature matching, respectively.

Structure-based methods usually achieve better accuracy

compared to learning-based end-to-end methods. However,

their procedure of feature extraction is computationally

expensive [42]. Furthermore, both approaches suffer from

frequent jitters and inaccurate poses in image sequences

since they have originally been proposed for single-image

localization.

Existing methods for structure-based localization using

image sequences use the server-client architecture, where

the VL pipeline is executed on the server-side, while the

VO pipeline is executed on the client-side [4, 15, 22, 24,

40]. The majority of these methods utilize sensors such as

inertial measurement units (IMUs) or the global positioning

system (GPS) to solve the complexity of place recognition

and scale ambiguity.

This paper presents a low-cost system that requires

a monocular camera without any extra sensors. Since a

monocular camera cannot easily infer the scale factor with-

out using IMUs or GPS, the novelty of the proposed system

is the employment of a robust scale factor estimator utiliz-

ing the heterogeneous features. Table 1 highlights the dif-

ferences between the proposed system and other structure-

based localization methods.

2.2. Learning­based visual localization

Learning-based VL methods infer camera poses using on

deep neural networks. PoseNet and its variations directly

regress 6-DoF camera poses using CNNs [16, 17, 18] in an

end-to-end fashion. DSAC [5] incorporates a deep learning

model into the RANSAC scheme by adapting learnable pa-

rameters. However, as discussed in [31], data-driven learn-

ing methods lack the generalization ability and thus perform

poorly in unseen locations.
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Figure 2. Overview of the proposed system.

Among the learning-based methods, the methods using

image sequences are proposed to enhance the performance

of localization [6, 14, 39, 42]. For example, vLocNet [39]

employs consecutive two images to predict global poses

and relative poses between them. Map-Net [6] learns ge-

ometric constraints using a 3D structure with odometry in-

formation obtained from a visual SLAM system. However,

learning-based VL methods are typically less accurate than

the structure-based methods and have many limitations as

discussed in [31].

3. Method

3.1. System overview

Figure 2 shows the overview of the proposed system.

In the offline phase, global and local features of database

images are extracted in the feature extractor module using

the SuperPoint method [9], that learns local features. Global

image descriptors are extracted using the NetVLAD archi-

tecture [3]. Then, the 3D structure is reconstructed by us-

ing the SfM algorithm using the extracted local features as

a offline map, and all the reconstructed views in the 3D

structure become SuperKeyFrames. As a result, each Su-

perKeyFrame contains a global image descriptor, learned

local features that correspond to 3D points in the 3D struc-

ture, and the camera pose of the frame.

In the online phase, the proposed system performs server

and client-side operations. On the server-side, the structure-

based VL sub-system learns features using a model running

on GPUs. The proposed VL algorithm is similar to the HF-

Net [29], except that it utilizes not only the global descrip-

tor of the current input image, but also the place recogni-

tion results of the previous input images. On the client-side,

the VO sub-system process sequential images on the local

coordinate. An extra thread is involved to run the MA sub-

system responsible for aligning the local frames on the local

map obtained by the VO sub-system to the global coordi-

nates.

Some KeyFrames generated by the VO sub-system that

contain information useful for MA from the local to global

coordinates are selected as the SuperKeyFrames. The Su-

perKeyFrame comprises two different types of local fea-

tures: features learned on the server-side, called Super-

Point features, and ORB features generated on the client-

side. The SuperKeyFrame becomes the query of the VL

pipeline; thus, its 6-DoF global pose and 3D key points are

returned from the server. As soon as the client module re-

ceives responses from the server and finishes the MA pro-

cess, the proposed system selects a next KeyFrame as the

SuperKeyFrame.

A relative scale factor is required to align the local map

generated by the VO sub-system with the global coordinates

provided by the VL sub-system based on the 6-DoF global

pose. This is because the VO sub-system generates the lo-

cal map up to the scale. This relative scale factor is com-

puted by utilizing both the learned and ORB features on the

selected SuperKeyFrame and updated over time using the

Kalman Filter. Finally, the obtained 7-DoF global pose can

help align the local map with the global coordinates.

In the base of ORB-SLAM, the number of KeyFrames is

less than the number of frames. Similarly, narrowing down

SuperKeyFrames to fewer than KeyFrames helps improve
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Figure 3. Timeline of the proposed system. The red, green, and

blue boxes represent frames, KeyFrames, and SuperKeyFrames as

the time sequence, respectively. Each solid line denotes the depen-

dency of inheritance in the arrow direction, while each dashed line

indicates that a started node provides estimated poses in the arrow

direction.

the system performance by reducing the overhead of local-

ization when using learned features. We illustrate the time-

line of each kind of frame in Figure 3.

3.2. Data association

The proposed system requires two types of data asso-

ciation: 3D-2D (offline-online) data association used for

6-DoF VL, and 3D-3D (offline-online) data association

mainly used for the scale factor estimation as described in

Section 3.4.

First, 3D-2D correspondences are obtained using the fol-

lowing procedure. Given a pair of SuperKeyFrames be-

tween offline and online maps, 2D matching pairs of learned

features are estimated using geometric verification [38].

Then, we can obtain the 3D points corresponding to the

2D points of the offline SuperKeyFrame from the 3D struc-

ture that has already been built. Further details on acquiring

pairs of SuperKeyFrames are provided in Section 3.3.

3D-3D correspondences can be obtained by taking 3D

points for the 2D points of the online SuperKeyFrame.

However, these 3D points can only be acquired from the on-

line map generated using VO. Since the VO sub-system cre-

ates the online map using handcrafted features, it requires

the 2D-2D data association between the handcrafted fea-

tures and learned features.

For the 2D-2D data association, the proposed system di-

vides each SuperKeyFrame into multiple grid cells on the

image plane and assigns ORB features to each of the clos-

est grid cells. Then, based on the learned-feature position,

it finds the closest ORB feature in grid cells within a cer-

tain radius. Using grid cells is more efficient than finding

the closest ORB feature using brute-force algorithm.

3.3. Place recognition using sequential information

This section defines a probabilistic model for the place

recognition using sequential information. The proposed

model is similar to FABMAP [8] but is more suitable for

scenarios with exceedingly sparse locations. Furthermore, it

uses the NetVLAD model for image representation, rather

than the BoW model [21].

Let L = {L1, L2, ..., Ll} denote a set of the discrete

and disjoint l locations of SuperKeyFrames on the of-

fline map. Each location in L is obtained from VL sub-

system by solving the PnP problem [20] using the asso-

ciated 3D-2D data. Since each SuperKeyFrame on the of-

fline map has a NetVLAD descriptor, traditional image re-

trieval methods [27] searches the Top N candidate loca-

tions Ck = {ck
1
, ck

2
, ..., ckN} ∈ L having similarity scores

Sk = {sk
1
, sk

2
, ..., skN} given a query at time k. These scores

are re-ranked using geometric verification [38].

The proposed model uses relative trajectories obtained

between the VO and VL sub-modules to detect the true-

positive places. This is because these relative trajectories

should have the same tendency in terms of the temporal

consistency when the places are true-positives. To this end,

this paper assumes that the belief about the estimation of

the current location depends on the previous location; the

probabilistic model can then be represented by the recursive

Bayesian estimation [37] as

p(Ck|qk, S1:k) = ηp(Sk|Ck)p(Ck|qk, S1:k−1), (1)

where p(Ck|qk, S1:k−1) is a prediction term for the belief

probability, p(Sk|Ck) is a correction term, η is a normaliza-

tion term, and qk denotes the 6-DoF location with regard to

the query at k; qk can be obtained from the VO sub-system

since it is consecutively tracked.

In the correction term, the normalized similarity scores

can be obtained given Ck for the measurement update as

p(si ∈ Sk|Ck) = ω
∑

j∈|Ck|

ρ(i, j)si (2)

where ω is a normalization term divided by the sum of all

elements in Sk, while the function ρ(i, j) returns one if i

and j are the same to enforce the constraint that the mea-

surement si is only given for the corresponding candidate

cj only.

The prediction term for the belief probability can be

p(Ck|qk, S1:k−1)

=
∑

Ck−1

p(Ck|qk, Ck−1)p(Ck−1|qk−1, S1:k−1), (3)

expressed as

p(ci ∈ Ck|qk, cj ∈ Ck−1) =

{

γ, ν(ci, q
k, cj) < τ

0, else,
(4)

where γ is the ratio between the number of inlier features

obtained from geometric verification and the number of all

matching features, while ν(a, b, c) is a function that com-

pares two relative transformations given the locations from
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Figure 4. Place recognition using the proposed model. The circles

represent the locations corresponding to SuperKeyFrames. The or-

ange circles indicate the locations of consecutive queries. The yel-

low circles denote true-positive places in contrast to the green cir-

cles. The red arrows represent the trajectories that have the same

tendency as the locations of the queries, while the blue arrows rep-

resent the false-positive trajectories. The black dashed arrows in-

dicate wrong places that should be neglected.

a to b and a to c. The function determines whether both the

differential angle and distance are under the threshold τ .

Note that the motion model returns not the errors between

relative trajectories but the image domain consistency be-

tween a query and a database image. This is because the

latter is more important when the error of the relative pose

is within the tolerated range, given that there can be differ-

ent perspectives even at the same place.

Finally, a candidate location in Ck that maximizes the be-

lief probability is detected as a true-positive location. Note

that comparing relative trajectories in Equation (4) influ-

ences key impacts as shown in Fig 4. In the figure, the model

for place recognition detects sequential candidate locations

that follow the tendency temporally consist w.r.t. the loca-

tions of the sequential queries as true-positive locations.

The proposed place recognition model can be executed

after the initial MA as described in Section 3.6. In other

words, the initial place is detected by using only Equation

(2), and then the model updates true-positive places using

Equation (4). The place recognition module then sends the

offline SuperKeyFrame according to the found places to the

next processes.

3.4. Scale estimation

The proposed place recognition model detected an of-

fline SuperKeyFrame according to the current online Su-

perKeyFrame in Section 3.3. 3D-3D correspondences be-

tween the two SuperKeyFrames are associated as described

in Section 3.2. Then, the following poses transform such 3D

point pairs, respectively; the 6-DoF poses estimated by the

VL sub-system with regard to the offline SuperKeyFrame,

the 6-DoF poses of the KeyFrames under the online Su-

perKeyFrames. In this way, the 3D points of the two Su-

perKeyFrames are exposed to the same features in the same

place. Therefore, the scale factor can be calculated using the

depth value of the 3D points.

The scale estimator computes the initial scale factor us-

ing the RANSAC scheme based on the Euclidean distance

errors among scaled correspondences. Throughout the ex-

ecution, it is updated over time using the Kalman Filter as

suggested in [36]. Note that the scale factor is estimated rel-

atively to the scale factor applied at the previous time point.

To ensure that the scale factor is consistently updated, it is

calculated after returning 3D points to the initial state. The

more detailed formula for this process is provided in the

supplemental document.

3.5. SuperORB

Finding a sufficient number of 3D-3D correspondences

between offline and online maps is important for robust

scale estimation. However, as the detectors for the Super-

Point and ORB features are different, precise correspon-

dences cannot be found. To bridge the gap between two

different local features in the VO and VL sub-systems, Su-

perORB is employed to produce points of common interest

in the ORB detector for the same input image. The idea of

SuperORB was inspired by SuperPoint [9], which performs

homography adaptation considering different scaling. Sim-

ilar to SuperPoint, SuperORB performs the homography

adaptation process from the location of the extracted fea-

tures. In other words, SuperORB is retrained considering

different scaling while following the position of the ORB

feature detector. Unlike SuperPoint that uses synthetic im-

ages for generating a pseudo-ground truth, SuperORB is

trained to detect ORB features. The proposed keypoint de-

tector and descriptor can be trained jointly.

Table 2 lists the recall values obtgained for detecting

local map, i.e., ORB key points, when utilizing the Su-

perPoint and SuperORB detectors over the in 7-Scenes

dataset [34]. Here, we define recall as the number of in-

tersecting ORB features divided by the number of ORB

features. Compared to the handcrafted ORB feature, Super-

ORB is more robust against the viewpoint and illumination

changes because homographic and photometric data aug-

mentation is applied as discussed in [25]. The supplemental

document presents the evaluation of SuperORB.

SuperPoint SuperORB

Recall 0.651 0.780

Table 2. Recall of SuperPoint and SuperORB on the 7-scenes

dataset [34].

3.6. Map alignment

So far, we demonstrated how to obtain the 6-DoF pose

and the scale factor using the proposed modules. The mean
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(a) 7-Scenes dataset. (b) RobotCar dataset.

Figure 5. Examples of map alignment. Each left image shows the local map before map alignment, while each right image indicates the

local map after the map alignment. Note that the blue points represent offline map points, while the red points represent online map points.

The blue KeyFrames are obtained from visual odometry, the red Key Frames are obtained from visual localization, and the green Key

Frames are the current Key Frames on visual odometry.

of the re-projection error from 3D-2D correspondences was

used as a weight to compare the accuracy of the 6-DoF

poses returned by the VO and VL sub-modules. This ap-

proach estimates a more smooth pose. The detailed expres-

sions are provided in the supplemental document.

The MA sub-module calculates the relative 7-DoF simi-

larity from a 6-DoF pose of current KeyFrame with the es-

timated scale factor obtained as the VO sub-system to the

weighted 6-DoF pose with a scale set to 1 obtained as the

VL sub-system. Finally, the similarity transformation aligns

the local maps on the local coordinates to the global coor-

dinates optimizing using 3D similarity constraints [35]. At

this time, SuperKeyFrames are fixed to relax the accumu-

lated errors in surrounding KeyFrames following the tra-

jectory of SuperKeyFrames. Figure 5 shows an example of

MA.

4. Experiment

Implementation details. The client-side of the proposed

system was implemented in C++ using an i-9 CPU, and

32G RAM. All parameters were set as proposed in [25].

For the server-side, NetVLAD and SuperPoint architec-

tures were implemented using the TensorFlow. Note that

learning-based features were extracted using NVIDIA 1080

Ti GPUs. All parameters were set as suggested in [3, 9].

The remaining parameters of the proposed system was

set as N=10, τ=1(m/°) for small-scale environments, and

τ=10(m/°) for large-scale environments.

Datasets. To enable the evaluation, datasets are selected

based on the following conditions: 1) a reference map is

provided and 2) the dataset should be large enough to en-

able VO. The following two popular datasets were found

to satisfy the conditions: 7-Scenes dataset [34], and Oxford

RobotCar dataset [23]. The 7-Scenes dataset consist of in-

door scenes in small-scale environments, whereas Robot-

Car consist of outdoor scenes in large-scale environments,

which include a large amount of illumination and appear-

ance changes. The reference maps by utilizing the provided

depth information with poses for the 7-Scenes dataset and

COLMAP [32] with GPS and inertial navigation system

data provided for the RobotCar dataset.

Ablation study. The proposed system was tested from the

following three perspectives: place recognition, scale esti-

mation, and local feature generation. Two tests were con-

ducted for place recognition, namely, with and without ap-

plying sequential information. For scale estimation, two dif-

ferent scale estimation methods were tested, namely, the

proposed scale estimation method using the Kalman Filter

and a method employing Dynamic Time Warping (DTW)

proposed for cooperative SLAM [33]. Finally, SuperPoint

and SuperORB were tested for local feature generation.

Comparison with other methods. The proposed system,

which achieves the best performance in the ablation study,

was compared to several existing structure-based and end-

to-end methods. Note that we excepted comparison of other

methods which use extra sensors such as IMU and GPS for

fair comparisons.

4.1. Evaluation on the 7­Scenes dataset

Ablation study. Table 3 shows the results of the abla-

tion study. The system employing sequential information

demonstrated a better performance in place recognition than

the system without sequential information. In addition, the

system employing the proposed scale estimation method

demonstrated a better performance than the one employ-

ing the DTW-based method, while the system employing

SuperORB demonstrated a better performance than the one

employing SuperPoint. Figure 6 shows the output trajecto-

ries of the version that achieves the best performance em-

ploying sequential information and the proposed scale esti-

mation with SuperORB.

Comparison with other methods. Tables 4 and 5 list the

results achieved by the proposed system and other consid-

ered methods. The proposed system outperformed the state-

of-the-art vLocNet end-to-end method and achieved similar
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(a) (b) (c) (d) (e) (f) (g)

Figure 6. Trajectories output by the proposed system for the 7-Scenes dataset. The red dots indicate the ground truth camera positions

of KeyFrames, while the green dots indicate the estimated camera positions of KeyFrames. (a) Chess, (b) Fire, (c) Heads, (d) Office, (e)

Pumpkin, (f) Redkitchen, (g) Stairs.

P. R. w/o seq. w/ seq.

S. E. K. F. DTW [33] K. F.

Feature S. P. S. P. S. P. S. O.

Chess 0.04/2.81 0.14/5.26 0.02/2.45 0.02/2.34

Fire 0.04/3.40 0.05/2.99 0.04/3.01 0.02/2.25

Heads 0.012/3.83 0.02/3.29 0.01/2.51 0.01/2.61

Office 0.05/3.40 0.16/6.18 0.04/4.16 0.04/1.16

Pump. 0.07/3.89 0.13/6.15 0.05/3.94 0.04/3.92

RedK. 0.05/5.05 0.24/25.83 0.05/4.49 0.03/4.34

Stairs 0.13/10.1 0.19/7.43 0.10/6.72 0.03/2.93

Table 3. Median translation and rotation errors for the ablation

study on the 7-Scenes dataset (m/°). P.R., S.E., K.F., S.P., and S.O

stand for Place Recognition, Scale Estimation, Kalman Filter, Su-

perPoint, and SuperORB, respectively.

Structure-based method

DSO [12] A.S. [30] DSAC++ [5] Ours

Chess 0.17/8.13 0.04/1.96 0.02/0.5 0.02/2.34

Fire 0.19/65.0 0.03/1.53 0.02/0.9 0.02/2.25

Heads 0.61/68.2 0.02/1.45 0.01/0.8 0.01/2.92

Office 1.51/16.8 0.09/3.61 0.03/0.7 0.04/1.16

Pump. 0.61/15.8 0.08/3.10 0.04/1.1 0.04/3.92

RedK. 0.23/10.9 0.07/3.37 0.04/1.1 0.03/4.34

Stairs 0.26/21.3 0.03/2.22 0.09/2.6 0.03/2.93

Table 4. Median translation and rotation errors of the proposed and

existing structure-based methods on the 7-Scenes dataset (m/°).

results to the state-of-the-art DSAC structure-based method.

Note that DSAC is not suitable for real time VL as discussed

in [5]. Furthermore, this method doesn’t work well on large-

scale scenes, as discussed in [41]. In contrast, the proposed

system achieves robust and accurate localization in real time

(25 fps) even on large-scale scenes, as discussed below.

4.2. Evaluation on the RobotCar dataset

The Full and Loop sequences evaluated in [6] were used

for the RobotCar dataset. The Full sequence comprises a

long sequence of 9,562 m capturing a complex road envi-

ronment. The Loop sequence is 1,120 m long and contains

many eco-environments.

First, the performances of the VL and VO sub-systems

were compared when the proposed method system was ap-

plied to the Full sequence of the RobotCar dataset. As

shown in Table 6, the VL sub-system processed 1,163 Su-

perKeyFrames on the server-side, resulting in 1.37 fps. If

End-to-end method

PoseNet

[18]

MapNet

[6]

vLocNet

[39]
Ours

Chess 0.13/4.48 0.08/3.25 0.04/1.71 0.02/2.34

Fire 0.27/11.30 0.27/11.69 0.04/5.33 0.02/2.25

Heads 0.17/13.00 0.18/13.25 0.05/6.65 0.01/2.92

Office 0.19/5.55 0.17/5.15 0.04/1.95 0.04/1.16

Pump. 0.26/4.75 0.22/4.02 0.04/2.28 0.04/3.92

RedK. 0.23/5.35 0.23/4.93 0.04/2.21 0.03/4.34

Stairs 0.35/12.40 0.30/12.08 0.10/6.48 0.03/2.93

Table 5. Median translation and rotation errors of the proposed

system and end-to-end methods on the 7-Scenes dataset (m/°).

Pipeline VL VO
client-side

(VO+MA)

Number of frames 1163 33665 33665

Frame per second(fps) 1.37 25 25

Accuracy(m/°) 4.887/0.411 N/A 4.754/0.585

Table 6. Decomposition of the proposed system and performance

analysis for the Full sequence of RobotCar Dataset.

the VL sub-system was used solely as a localization service

for real-world applications, it would result in non-smooth

camera movement because camera poses were obtained ev-

ery 0.73 seconds. In contrast, the ORB-SLAM based VO

sub-system processed 33,665 frames from the given 34K

frames running on 25 fps on the client-side. The entire

pipeline ran at up to 25 fps, achieving comparable accu-

racy to that of the VL sub-system. Hence, we argue that

the client-side of the proposed system can be used for real-

world applications because it operates in real time and pro-

vides camera poses using global coordinates.

Ablation study. Table 7 lists the results of the ablation

study as the same setting for 7-Scenes dataset. For the in-

door scenes, the system using place recognition with se-

quential information, Kalman Filter-based scale estimation,

and SuperORB demonstrated the best performance.

SuperORB is more robust in the scale estimation. Fig-

ure 7 shows the result of scale estimation for the same place

during performing a U-turn. In the case of using SuperORB,

the map created before and after the U-turn coincides with

the reference map, whereas in the case of using SuperPoint,

there is a slight difference.
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(a) (b)

Figure 7. Aligned map after a U-turn: (a) SuperPoint-based system

and, (b) SuperORB-based system. The SuperORB-based system

shows better map alignment due to more accurate scale estimation.

P. R. w/o seq. w/ seq.

S. E. K. F. DTW [33] K. F.

Feature S. P. S. P. S. P. S. O.

Full seq. 9.04/1.52 15.17/1.78 5.52/1.01 4.75/0.58

Loop seq. 8.19/2.13 180.8/2.54 5.27/1.97 5.23/2.82

Table 7. Mean translation and rotation errors for the ablation study

on the RobotCar dataset(m/°). P.R., S.E., K.F., S.P., and S.O. stand

for Place Recognition, Scale Estimation, Kalman Filter, Super-

Point, and SuperORB, respectively.

Comparison with other methods. Table 8 and 9 list the

results achieved by the proposed system and other consid-

ered methods. It can be noticed from the tables that the

proposed system outperformed the other methods. Among

the structure-based methods, DSAC++ cannot be operated

in outdoor scenes, while ORB-SLAM loses tracked poses.

Note that all other methods use all frames for the VL

pipeline, whereas the proposed system uses only 1K frames,

as reported in Table 6. Some of the structure-based methods

can perform only in non-real time with high computational

overhead, whereas the proposed system can operate in real

time with low computational overhead.

Furthermore, the proposed system outperformed the end-

to-end methods with a large margin. The lowest perfor-

mance of mean translation error among the other meth-

ods was over 13 m, whereas the proposed method proved

a mean translation error of under 6 m. Figure 8 shows the

results when applying the proposed and other methods.

The results of the experiment suggest that the proposed

system performs successful VL in both small-scale and

large-scale environments. The efficiency and accuracy of

the system is especially impressive given that the experi-

ment is done on a monocular camera system without any

extra sensors.

5. Conclusion

This paper presented a real time monocular VL system

that uses heterogeneous features obtained using client-side

VO and a server-side probabilistic model for place recogni-

tion. To handle these heterogeneous features, the concept

of SuperKeyFrame is introduced to link handcrafted and

(a) Full sequence (9562 m long)

(b) Loop sequence (1120 m long)

Figure 8. Resulting trajectories on the RobotCar dataset for the

proposed system and other methods: (a) Full sequence and (b)

Loop sequence. In both (a) and (b), the first image is for PoseNet,

the second image is for MapNet, and the third image is for the

proposed system.

Structure-based method

DSAC++

[5]

ORB-SLAM

[25]

Stereo VO

[23]
Ours

Full N/A N/A 80.32/13.73 4.75/0.58

Loop N/A N/A 22.42/45.50 5.23/2.82

Table 8. Mean translation and rotation errors for the proposed and

structure-based methods on the RobotCar dataset (m/°).

End-to-end method

PoseNet

[18]

MapNet

[6]

AD-MapNet

[14]
Ours

Full 46.6/10.5 44.6/10.4 19.2/4.60 4.75/0.58

Loop 7.90/3.53 9.29/3.34 6.45/2.98 5.23/2.82

Table 9. Mean translation and rotation errors for the proposed and

end-to-end methods on the RobotCar dataset (m/°).

learned features while ensuring their spatial consistency. To

align the coordinates between the two sub-systems, the sys-

tem further employs a MA sub-system with a scale factor

estimator that uses the heterogeneous features. According

to the experimental results, the proposed system can achieve

high efficiency with low computational cost and accuracy

comparable to that of the state-of-the-art structure-based

and end-to-end VL methods. The proposed system can

be integrated into ORB-SLAM and any other SLAM/VO-

based systems. Hence, we expect that the proposed system

will be utilized in various industries as a useful low-cost

localization module.
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