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Abstract

3D human pose and shape estimation plays a vital role

in many computer vision applications. There are many

deep learning based methods attempting to solve the prob-

lem only relying on single-view RGB images for training

the network. However, since some public datasets are cap-

tured from multi-view cameras system, we propose a novel

method to tackle the problem by putting optimization-based

multi-view model-fitting into a regression-based learning

loop from multi-view images. Firstly, a convolutional neu-

ral network (CNN) regresses the pose and shape of a para-

metric human body model (SMPL) from multi-view images.

Then, utilizing the regressed pose and shape as initial-

ization, we propose an improved multi-view optimization

method based on the SMPLify method (MV-SMPLify) to fit

the SMPL model to the multi-view images simultaneously.

Subsequently, the optimized parameters can be adopted to

supervise the training of the CNN model. This whole pro-

cess forms a self-supervising framework which can combine

the advantages of the CNN approach and the optimization-

based approach through a collaborative process. In addi-

tion, the multi-view images can provide more comprehen-

sive supervision for the training. Experiments on public

datasets qualitatively and quantitatively demonstrate that

our method outperforms previous approaches in a number

of ways.

1. Introduction

Human pose and shape estimation has many applications

in virtual/augmented reality and computer games. However,

this is a challenging problem since human bodies typically

exhibit various motions and shapes in real scenes. Aim-

ing at the problem, there are usually two routes to estimate

3D human pose and shape: optimization-based methods

and regression-based methods [18]. Both of the approaches

have achieved some success for the problem recently.

Traditionally, through defining a parametric human body

model [3, 32, 24, 6, 5] or pre-scanning a 3D model

as template [21, 10, 45, 44, 46], optimization-based ap-

proaches use some prior information including joint points

[6], skeleton[32], silhouettes [5] and RGB-D images [43]

to build an energy function. Some work adopt more than

one cues in order to achieve better results [12, 1, 44] or

propose novel optimization algorithms [21, 10]. By min-

imizing the energy function, the pre-defined human body

model will fit to the prior information, and then, the esti-

mated human pose and shape can be obtained. Although

optimization based methods can be used to estimate 3D hu-

man body models in many different situations, it is often

difficult to automatically extract accurate prior information

due to the complexity of real human bodies. In addition, the

optimization is often time-consuming.

On the other hand, regression-based methods for human

pose and shape estimation have attracted much research

with the significant achievements of deep neural networks

in many image processing problems [36, 42, 26, 38, 30, 35,

37]. Regression-based methods [15, 39, 31, 27, 4] use deep

neural networks that take all or subsets of pixels in the im-

ages and regresses the human body and shape parameters

based on training on large datasets. Many novel frame-

works have been proposed to improve on accuracy of 3D

human body estimation [13, 23, 29]. A dataset containing

a large number of images and corresponding annotations is

required for the methods to train the networks. Both the de-

velopment of datasets and the time for training are serious

drawbacks of regression-based methods. Recently, Kolo-

touros et al. [18] put an optimization-based method into the

loop of the regression-based framework and achieved good

performance. However, they only used one single-view im-

age during the training.

Considering that some public datasets are captured from

multi-view cameras, we propose a novel method for 3D hu-

man pose and shape estimation through a collaboration be-

tween learning and multi-view model fitting based on multi-

view images in this paper. Firstly, a convolutional neural
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network (CNN) is advocated to regress the pose and shape

parameters of a skinned multi-person linear model (SMPL)

from multi-view images. Then, we fit the regressed SMPL

model to all the multi-view images simultaneously through

optimizing an energy function which is defined according

to the joint points of the SMPL model and the ground-

truth joint points of the human body in the multi-view im-

ages. During the optimization, unlike the single view case

in which only pose and shape parameters are optimized, we

also optimize the orientation (i.e. the camera view) of the

SMPL model for different views to reflect the relation of

multi-view images. Finally, in addition to the typical 2D

joint points supervision for training, the optimized pose and

shape parameters as well as the optimized SMPL model are

also adopted to supervise the training of the CNN. There-

fore, the CNN can provide initialization of the SMPL model

for optimization, while the optimized results can supervise

the training process of the CNN, which builds a tight col-

laboration between the two parts. In addition to this, the

multi-view optimization considers the inner relations of the

given multi-view images, which can supply more accurate

and complete information for the estimation. An overview

of our method is shown in Figure 1.

The main contributions of our work have three parts.

Firstly, a novel multi-view image based training strategy is

used for the training of network, which better exploits the

information of the multi-view datasets. Besides, we pro-

pose a multi-view model-fitting, merged into a multi-view

learning loop to form a novel framework for 3D human

pose and shape estimation. Since multi-view model-fitting

has better performance than single-view fitting, this pro-

vides reliable supervision for training the CNN and the re-

sults of our method surpass several recent methods. Finally,

our framework can be used for 3D human pose and shape

estimation from both single-view images and multi-view

images after training the network with multi-view images.

The experiments on some public datasets show that our

method can better estimate 3D human pose and shape than

some previous methods. The code is available at: https:

//github.com/leezhongguo/MVSPIN_NEW.

2. Related work

There are many previous studies on the problem of hu-

man pose and shape estimation aiming at different tasks like

joint points estimation, silhouette segmentation, part seg-

mentation and so on. Here we mainly describe those rele-

vant approaches for 3D human pose and shape estimation.

Parametric human body models have been widely used

in the estimation of pose and shape. Anguelov et al. pro-

posed a data-driven method called SCAPE to generate a de-

formable human body model [3]. It contained two mod-

els which were functions of pose and shape, respectively.

They could be combined to create a 3D mesh with realistic

Figure 1. Overview of the proposed method. The CNN regresses

the parameters Θreg from multi-view images. Then, using Θreg

as initialization, multi-view SMPLify optimizes the parameters to

obtain Θopt. The optimized parameters Θopt of the multi-view

images are used to supervise the training of the CNN.

muscle deformation. Some improvements based on SCAPE

were proposed over the next several years [43, 41]. A new

parametric human body was proposed by Loper et al. [24],

skinned multi-person linear model (SMPL). It can model

various body shapes with natural human poses by defin-

ing a function of pose and shape parameters, which made

the model be widely used in human pose and shape estima-

tion tasks. Pavlakos et al. extended SMPL to SMPL-X by

adding more key points on the face, hands and feet [28]. In

[33], a dynamic human body model was proposed for mod-

eling human body motion. The above human body models

were all learned from a large human body dataset.

Optimization-based methods have traditionally been

used to estimate human pose and shape parameters. In [32],

a 3D human body model was estimated by fitting SCAPE

to the manually acquired joint points and silhouettes. With

the development of depth sensors, range data acquired by

Kinect was used as prior information and an improved

SCAPE model was fitted to the range data in [5, 43]. In ad-

dition to the use of prior cues, novel optimization methods

were also explored by many researchers [21, 10, 45, 46]. It

was also popular to use several different cues to estimates

the 3D human body [44, 11]. With the success of human

pose estimation by deep neural networks, an automatic ap-

proach called SMPLify was proposed to estimate the pa-

rameters of the SMPL by using 2D joint points predicted

by deep neural networks [6]. Inspired by the method, some

approaches based on multi-view images [12, 22] and video

[1] were proposed to improve the estimation.

Regression-based methods have also been developed and

achieved significant success on 2D [36, 42, 7] and 3D hu-
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man pose estimation [30, 38, 9, 37, 35]. Most regression-

based work use deep neural networks as encoders to esti-

mate the pose and shape parameters directly from images.

The training of the networks often relies on the annotation

of 2D/3D joint points [18, 15], dense pose [20], multi-view

images [23], silhouettes [8, 31], texture [29, 2] and part seg-

mentation [27]. In [8], silhouettes were used to train a net-

work to estimate the shape of a human body in a simple

pose. For human bodies with complicated poses, Kanazawa

et al. proposed an end-to-end framework using 2D joint

locations [15]. In this method, the pose and shape param-

eters of the SMPL model were learned by the deep neural

networks, using the reprojection loss which was defined by

ground truth of 2D joint points and the projection of skele-

ton joints from the SMPL model. Inspired by this frame-

work, many approaches were proposed by designing new

routes to acquire various information to better supervise the

network. Even for multiple people in images, Zanfir et al.

[47] proposed a regression-based method to solve the prob-

lem. In addition to 2D CNN, some papers use 3D CNN

to regress a volume and use a signed distance function to

represent a detailed 3D model [13, 34]. In the above meth-

ods, Kolotouros et al. incorporated SMPLify into the train-

ing loop of the CNN, which was the first attempt to com-

bine optimized-based method and regression-based method

[18]. This made the training of the CNN self-supervised

and achieved competitive performance.

3. Method

The details of our method are presented in this section.

We will first introduce the learning-based parametric human

body model used in our method. Then, the regression part

and the optimization part of our approach are presented, re-

spectively. Based on these two parts, we define the collab-

oration of them to complete our whole method. Finally, we

present the implementation details of our method.

3.1. The SMPL model

The SMPL model is a parametric human body model

learned from a very large number of aligned human body

shapes. It is a triangulated mesh with N = 6890 vertices

and the position of each vertex is a linear function M(θ, β)
of the pose parameters θ ∈ R

72 and the shape parameters

β ∈ R
10. The pose θ encodes the rotation angle of each

skeleton joint point in terms of the root point. The shape

β contains the coefficients of the ten most significant PCA

vectors of the human body models extracted from the hu-

man body shape space. In addition, the skeleton joint points

J of the SMPL model are also a linear function of pose θ

and shape β. Since it is a linear model, a CNN is expected to

perform well, when estimating a regression function to infer

the pose and shape parameters. The skeleton joint points of

the SMPL model can also be used for the optimization on

joint points in order to estimate the pose and shape param-

eters. Therefore, the SMPL model can be used for both

regression and optimization.

3.2. The architecture of our regression CNN

In this section the architecture of the CNN to regress the

human body parameters from images is introduced. The

design of the network is based on the structure in [18]. In-

stead of using single view image for one training loop as

in [18], we propose to form the multi-view images as a

small batch and fed the small batch into the network for

one training loop. Given the multi-view images, the net-

work encodes the body in each single view image as a

R
85 vector containing the pose θ, shape β of the SMPL

model and the camera Π as shown in Figure 1. The cam-

era Π is a weak perspective model and is represented by a

3 × 1 vector (s, tx, ty) where s denotes the scale parame-

ter and it can be converted to camera translation. This can

be done because the rotation of the camera is assumed to

be the identity. Then, the relative rotation between the hu-

man body and the camera is coded in the root orientation of

the body model. Suppose we have several images from dif-

ferent view-points, denoted Ii, i = 1, ..., N along with the

corresponding camera parameters Πi ∈ R
3×1. Since the

multi-view images are from the same human body (pose

and shape) from different view-points, the multi-view im-

ages have the same ground truth for the pose and shape

parameters Θ = {θ, β}. For the i-th image Ii passing

through the networks, the regressed parameters are defined

as Θ
(i)
reg = {θ

(i)
reg, β

(i)
reg} and Π

(i)
reg . Then, the predicted 2D

joint points can be obtained by projecting the skeleton joint

points of the SMPL model through the estimated cameras,

i.e., J
(i)
reg = Π

(i)
reg(J (Θ

(i)
reg)), where J (Θ

(i)
reg) are the skele-

ton joint points of the regressed SMPL model. In addition,

the predicted mesh of the SMPL model can also be gener-

ated by M
(i)
reg(Θ

(i)
reg). Therefore, the loss function of the 2D

joint points on the multi-view images can be defined as:

L2D =

N∑

i=1

||J (i)
reg − J

(i)
gt || , (1)

where J
(i)
gt denotes the ground truth of 2D joint points of

the i-th input image Ii. Compared to [18], this loss function

considers the 2D joint points from all of the views, which

can reduce the ambiguity of 2D joint points from a single-

view image and provide stronger supervision of the CNN

model. In addition to the loss function on 2D joint points,

loss function for pose and shape will be discussed in the

following sections.

3.3. Multi­view SMPLify

In this section we apply an improved SMPLify method

based on multi-view images in order to perform the opti-
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Figure 2. Illustration of the cameras, body orientations and pro-

jected SMPL models on the image planes. The four images share

the same pose and shape parameters, while the camera translations

and body orientations are different.

mization. SMPLify was proposed in [6] and it fitted the

SMPL model to a set of 2D joint points predicted by a deep

neural network from a single image. In order to extend SM-

PLify from a single-view image to multi-view images, an

improved method was described in [22]. However, the re-

sults of [22] are often not robust enough since they initial-

ize the camera rotation as the identity matrix, which may

result in the optimization process ending in local optima.

In our method, we optimize the body orientation instead of

camera rotation because we have assumed that the camera

is oriented to human body. According to the definition of

the pose θ of the SMPL, the first three elements represent

the body orientation denoted by ζ ∈ R
3. Then, we define

θ̃ = θ \ ζ as the pose of the rest joint points. Since the

multi-view images share the same pose and shape, we ini-

tialize θ̃ as the mean of θ̃
(i)
reg and β as the mean of β

(i)
reg ,

over all images i = 1, . . . , N . The body orientations ζ(i)

for different views are initialized as ζ
(i)
reg . We convert the

weakly perspective camera Π
(i)
reg to the camera translation

T
(i)
reg and define the camera rotation as the identity matrix.

Then, the camera matrix for the projection can be repre-

sented as P
(i)
reg = {I, T

(i)
reg}. Using this camera matrix, the

reprojected 2D joint points of the regressed SMPL model

can be obtained as P (i)(J (i)). Figure 2 illustrates an exam-

ple of the cameras, body orientations and the correspond-

ing projected regressed SMPL models on the image planes.

Based on the above definition, the energy function of the

multi-view SMPLify is defined as:

E(θ̃, β, ζ(i)) =EJ(J
(i)
gt , P

(i)(J (i)))+

λθEθ̃(θ̃) + λβEβ(β) ,
(2)

where EJ measures the errors between Jgt and P (i)(J (i))
on all views. Eθ(θ) and Eβ(β) are the regularization terms

for pose and shape parameters, respectively. For a detailed

description of these regularization terms, see [22]. For the

energy function above, the minimization is an important

step to get the optimized parameters. Similar to [18], fix-

ing the pose and shape parameters, the camera translations

of all the images and the orientation of the SMPL model

were estimated first. This is implemented by using similar

triangles defined by the torso length of regressed SMPL and

the ground truth. The initialization of the camera translation

T and the body model orientation ζ were obtained from the

output of the CNN model. Then, fixing the camera transla-

tion, we minimize (2) to obtain the optimized pose θ̃opt,

shape βopt and multi-view body orientation ζ
(i)
opt. Adam

[17] with 0.01 learning rate is used for the optimization

and the maximum number of iterations is 100 in our ex-

periments. Therefore, the complete optimized pose for the

i-th image is θ
(i)
opt = {ζ

(i)
opt, θ̃opt}.

3.4. Collaborative learning

In this section we combine the CNN and the multi-view

SMPLify into one route in a new training loop. As shown

in Figure 1, the regressed pose and shape parameters Θ
(i)
reg

and camera translation T
(i)
reg are obtained after the images

have passed through the networks. The loss function based

on the 2D joint points is defined as in (1), and we use the

regressed parameters to initialize the multi-view SMPLify.

Through minimizing (2), the optimized parameters can be

obtained as Θ
(i)
opt = {θ

(i)
opt, βopt}. Then, using the optimized

Θ
(i)
opt, the optimized SMPL models and the corresponding

skeleton joint points with different body orientations can be

generated as M
(i)
opt and J

(i)
opt.

Now we can define additional contributing losses to train

the CNN by using the above results. The loss for the pose

and shape parameters is defined as

LΘ =
N∑

i=1

||Θ(i)
reg −Θopt|| . (3)

Further, the loss function for the mesh of the SMPL model

is defined as

LM =

N∑

i=1

||M (i)
reg −Mopt|| . (4)

In the training dataset, we can also define the loss function

of the 3D joint points as

L3D =

N∑

i=1

||J
(i)
3D − J

(i)
opt|| , (5)

where J
(i)
opt denotes the skeleton joint points of the i-th opti-

mized SMPL model. Therefore, the complete loss function

for training the network is defined as:

L = ω1L2D + ω2L3D + ω3LΘ + ω4LM , (6)
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where (ω1, . . . , ω4) is the weighting of the terms. The loss

is defined by mean squared loss function.

Intuitively, our proposed approach has some advantages

compared to other methods. Firstly, multi-view images re-

duce the ambiguity of inferring 3D human pose from 2D

joint points. Both in the regression and optimization pro-

cess, multi-view images can obtain better results than a sin-

gle view image. Besides, the CNN and the multi-view SM-

PLify form a tight collaboration during the training loop.

The output of the CNN model can initialize the optimiza-

tion problem, while the optimized results could supervise

the training of the CNN model through the loss function

defined by optimized parameters.

3.5. Implementation details

Training. In terms of the number of view points, we

use four views in our experiments because the training pub-

lic datasets that we used were acquired from four or eight

views. For each training batch, the real number of images

is 4 × N where N is the batch-size used in the code. The

CNN in our model is trained by Adam with 3× 10−5 learn-

ing rate for 20 epochs. In the total loss function of Equa-

tion 6, the weights of each sub-loss (ω1, ω2, ω3, ω4) are

(5.0, 5.0, 1.0, 0.001). We train our model on two datasets:

Human3.6M [14] and MPI-INF-3DHP [25]. In each batch,

we use 90% images from Human3.6M and 10% images

from MPI-INF-3DHP. All of the images are cropped to

224 × 224. The network is trained on an NVIDIA TITAN

X (Pascal) GPU with 12 GB. The batch-size is set to 16 and

each batch takes about 5.5 seconds for one iteration. The to-

tal number of iteration is 2441 for one epoch and the whole

training takes about 3 days.

Inference. For the inference, we use only a single-view

image to evaluate our method. Note that the optimization

part is not used in the inference because 2D joint points

should be unknown for the inference in practice. More

specifically, three datasets are used for inference includ-

ing the S1 and S9 of Human3.6M, the validation dataset of

MPI-INF-3DHP and the test set of 3DPW [40]. These test-

ing images contain various poses and shapes in both indoor

and outdoor scenarios.

4. Experiments

In this section some experiments are described to eval-

uate the performance of our method. We will briefly in-

troduce the datasets used in the experiments for training

and evaluation. Then, quantitative and qualitative results

are demonstrated to compare the previous methods based

on both single-view image and multi-view images, respec-

tively. Finally, an ablation study is given to show the advan-

tage of our method comparing to a method only relying on

deep learning.

The metric for quantitative comparison in our experi-

ments contains the reconstruction error, Mean Per Joint Po-

sition Error (MPJPE), Percentage of Correct Keypoints with

threshold 150 mm (PCK@150 mm) and Area Under Curve

(AUC) of 3D joint points. Lower values of the first two met-

rics means better results, while the higher values of the last

two metrics means better results. The reconstruction error is

the MPJPE after Procrustes post-processing to remove scale

ambiguity. For PCK and AUC, we use the same definition

as [26].

4.1. Dataset

Human3.6M. The first dataset in our experiments is the

Human3.6M [14]. It contains 11 different subjects and each

subject performs 15 different actions indoors. All of the

data is acquired from four views and the corresponding

2D/3D joint points and part segmentation are also captured.

Similar to previous work [15] which used the protocol 1,

the video of the S1, S5, S6, S7 and S8 are used as training

dataset, while video S9 and S11 are used for evaluation. For

the training set, we extract images from the video every ten

frames, while evaluation images are extracted from S9 and

S11 every five frames as in [18]. The training set contains

39066×4 images and the evaluation set has 109867 images.

MPI-INF-3DHP. The second dataset is the MPI-INF-

3DHP [25]. It contains eight subjects for training and

two subjects for testing. For each subjects, eight videos

from different views are captured and we choose video 0,

video 2, video 7 and video 8 as training data. Only those

images with a complete human body in all views are ex-

tracted from the videos every ten frames. The testing dataset

can be used directly. Totally, the training set has 9452 × 4
images and the testing set has 2929 images.

3DPW. Since the above datasets are indoor scenarios,

we use the test set of 3DPW to evaluate our method on the

outdoor scenario case. 3DPW is captured mostly in out-

door conditions using IMU which can provide ground truth

3D pose in the wild. There are 25 test image sequences in

3DPW. After removing some invaild frames, we can obtain

totally 35515 images which are used for evaluation.

4.2. Comparison to single­view methods

We compare to the some previous approaches which

train the network using single-view images to estimate 3D

pose and shape of the human body. Table 1, Table 2 and Ta-

ble 3 show the quantitative results of some previous work

on the Human3.6M, 3DPW and MPI-INF-3DHP, respec-

tively. Note that we use the same testing dataset as the pre-

vious methods so that they are comparable. The results of

SPIN [18] are obtained through performing the SPIN us-

ing the trained model from the original paper, while the

results of the other methods come from the correspond-

ing references. We can see from the two tables that our
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method outperforms most previous approaches on the three

datasets. For the SPIN method which trains the network

using single-view images, our method achieved almost the

same performance on Human3.6M. This is because SPIN

uses four different datasets to train the network, which

makes their network more general. However, since we train

the network based on multi-view images, the results of our

method outperforms SPIN on 3DPW and MPI-INF-3DHP

even though we only use Human3.6M and MPI-INF-3DHP

to train the network. Therefore, the two tables demon-

strate that our method achieves better performance than ap-

proaches trained from single-view images.

Methods Rec.Err. ↓ MPJPE ↓

Pavlakos et al. [31] 75.9 -

Omran et al. [27] 59.9 -

HMR [15] 56.8 87.97

Kolotouros et al. [19] 51.9 74.7

SPIN [18] 44.2 64.5

Our 43.8 64.8

Table 1. Quantitative comparison to previous work trained by

single-view images on Human3.6M.

Methods Rec.Err. ↓ MPJPE ↓

HMR [15] 76.7 130.0

Kanazawa et al. [16] 72.6 116.5

Arnab et al. [4] 72.2 -

Kolotouros et al. [19] 70.2 -

SPIN [18] 59.2 96.5

Our 58.6 93.4

Table 2. Quantitative comparison to previous work trained by

single-views image on 3DPW.

Methods PCK/AUC/Rec.Err. PCK/AUC/MPJPE

VNect [26] 83.9/47.3/98.0 76.6/40.4/124.7

HMR [15] 86.3/47.8/89.8 72.9/36.5/124.2

SPIN [18] 92.1/55.0/68.4 75.3/35.3/109.4

Our 92.9/56.1/65.6 79.2/39.3/98.7

Table 3. Quantitative comparison to previous work trained by

single-view images of MPI-INF-3DHP.

4.3. Comparison to multi­view methods

There are some approaches which also use multi-view

images to train the network to regress human pose and

shape. Table 6 gives the results of some previous methods

based on multi-view images on the test data of Human3.6M.

Note that the first three methods did not rely on paramet-

ric model to estimate the 3D human pose. They assumed

that the cameras were known so that the 2D joint points

can be reprojected to 3D space. Therefore, the MPJPE of

the three methods was calculated without any ambiguity

with the ground truth on the scale or rotation. However, for

Liang et al. and our method, the 3D poses are the deformed

SMPL model and they generally have different scale than

the ground truth due to the unknown cameras, so the MPJPE

of the two methods are worse. After Procrustes Alignment

on the 3D pose of the deformed SMPL model, the effects

of ambiguity can be removed and the reconstruction error

is more suitable to compare with the MPJPE of the other

methods. We can see from the Table 6 that our method

achieved the smallest reconstruction error, which demon-

strates that our method outperforms the previous methods

based on multi-view images on the Human3.6M. Since both

Liang et al. and our method rely on the SMPL model, we

also compare to Liang et al. on the 3DPW and MPI-INF-

3DHP which contain the images in the outdoor scene in Ta-

ble 4 and Table 5. Although the method in [23] also uses

multi-view images to regress the pose and shape parameters

of SMPL, our method still outperforms the method because

the MV-SMPLify fully explores the relations between the

multi-view images and provides better supervision on the

training of the CNN. Therefore, our method achieves satis-

fying performance on the three datasets even comparing to

methods based on multi-view images for training.

Methods Rec.Err. ↓ MPJPE ↓

Liang et al. [23] - 96.86

Our 58.6 93.4

Table 4. Quantitative comparison to previous work based on multi-

view images on 3DPW.

Methods PCK/AUC/Rec.Err. PCK/AUC/MPJPE

Liang et al.

[23]
86.0/49.0/89.0 66.0/29.0/137.0

Our 92.9/56.1/65.6 79.2/39.3/98.7

Table 5. Quantitative comparison to previous work based on multi-

view images on MPI-INF-3DHP.

4.4. Qualitative results

In this section, we give some qualitative results of

SPIN [18], Liang et al. [23] and our method on the datasets

of Human3.6M, MPI-INF-3DHP and 3DPW. SPIN com-

bines optimization and regression, but it is a method based

on single-view images for training, while Liang et al. [23]

is the method based on multi-view images for training. Fig-

ure 3, Figure 4 and Figure 5 demonstrate several exam-

ples from Human3.6M, MPI-INF-3DHP and 3DPW, re-

spectively. In each figure the results of SPIN [18], Liang
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Methods Rec.Err. ↓ MPJPE ↓ Known Camera? Parametric Model?

PVH-TSP [38] - 87.3 Yes No

Trumble et al. [37] - 62.5 Yes No

Pavlakos et al. [30] - 56.89 Yes No

Tome et al. [35] - 52.8 Yes No

Liang et al. [23] 45.13 79.85 No Yes

Our 43.8 64.8 No Yes

Table 6. Quantitative comparison to previous work based on multi-view images on S9 and S11 of Human3.6M.

et al. [23] and our method are shown from the second col-

umn to fourth column. The examples shown in the three

figures contain various human poses and are captured both

in indoor and outdoor scenes.

(a) Images (b) SPIN [18] (c) Liang et

al. [23]

(d) Our

Figure 3. The qualitative results from Human3.6M. From left to

right: The original images, the results of SPIN [18], Liang et

al. [23] and the results of our method.

We can see that the human bodies in the images shown

in the Figure 3−5 have complicated poses and shapes with

different backgrounds. The figures demonstrate that our

method can recover the 3D human body models with bet-

ter pose and shape estimation than the other two meth-

ods. The results of SPIN [18] are also better than the re-

sults of Liang et al. [23], which shows that putting opti-

mization in the training loop is more useful for the estima-

tion. For the images in the indoor condition, our method

achieved almost the same performance as the SPIN [18] on

the most examples, especially for the Human3.6M. How-

ever, for the images with outdoor condition, our method

clearly outperforms SPIN. For example, the last row in Fig-

(a) Images (b) SPIN [18] (c) Liang et

al. [23]

(d) Our

Figure 4. The qualitative results from MPI-INF-3DHP. From left

to right: The original images, the results of SPIN [18], Liang et

al. [23] and the results of our method.

ure 5, SPIN [18] has the errors on the left and right of the

body estimation and the results of [23] are also false. For

some complicated scenes and poses in 3DPW, for exam-

ple, the third row in Figure 5, our method also has errors

but it still looks better than the two other methods. Since

our method uses multi-view images and optimization in the

training loop, the results on the fencing of our method are

correct. The figures are also consistent with the quantitative

results.

4.5. Comparison to training without optimization

We discuss the effect of multi-view SMPLify on the

final estimation on the three datasets. The network was

trained with multi-view SMPLify and without multi-view

SMPLify, respectively. Table 7 shows the reconstruction

error and MPJPE of the two cases. Our method with

L2D + L3D stands for the results without multi-view SM-
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Human3.6M MPI-INF-3DHP 3DPW

Rec.Err. ↓ MPJPE ↓ Rec.Err. ↓ MPJPE ↓ Rec.Err. ↓ MPJPE ↓

Our(L2D + L3D) 46.4 65.8 66.8 100.8 61.7 99.0

Our(Full) 43.8 64.8 65.1 97.6 58.6 93.4

Table 7. The evaluation of the effect of multi-view SMPLify on our method for the three datasets.

(a) Images (b) SPIN [18] (c) Liang et

al. [23]

(d) Our

Figure 5. The qualitative results from 3DPW. From left to right:

The original images, the results of SPIN [18], Liang et al. [23] and

the results of our method.

PLify in the training loop. They only rely on the 2D and

3D joint points losses for training the network. It shows

that the accuracy is improved after multi-view SMPLify is

used in our training loop. Since the training datasets in

our method are Human3.6M and MPI-INF-3DHP, the im-

provements are not significant. By contrast, the results on

3DPW shows that our full method achieves more clear im-

provements. Figure 6 shows the qualitative results of our

method without and with multi-view SMPLify from the

three datasets, respectively. We can see that the results with-

out multi-view SMPLify are worse, especially for the exam-

ple from 3DPW (the last row in Figure 6). From the results

from Human3.6M (the first row in Figure 6), we can see

that the final 3D human body is not natural even though the

pose is accurate. The wrist and the arm of the 3D model

have unnatural blend and rotation. Therefore, only using

the 2D and 3D joint points supervision cannot ensure the

correct shape of the 3D model. After adding the supervi-

sion of multi-view SMPLify, our method can achieve better

estimation on the poses and the natural 3D bodies.

(a) Original images (b) Our(L2D +

L3D)

(c) Our(Full)

Figure 6. Qualitative results of our method without and with multi-

view SMPLify in training loop from the three datasets.

5. Conclusion

In this paper we propose a method to estimate 3D hu-

man pose and shape from multi-view images by collabo-

ration between a regression model, a CNN, and an opti-

mization model, multi-view SMPLify. Instead of training

the network only from single-view images, multi-view im-

ages from some public datasets are utilized for training.

The multi-view images are firstly processed by a CNN to

regress the pose and shape parameters of the SMPL model

as well as the camera parameters. Then, the multi-view

SMPLify takes the output of the CNN as initialization to

fit the SMPL model to the multi-view images. Multi-view

SMPLify achieves better optimized results than SMPLify,

which provides stronger supervision of the training. On

one hand, our approach sufficiently explores the relations

of multi-view images for the network training. On the other

hand, the CNN and multi-view SMPLify form a tight self-

supervised framework. We validate our method on public

datasets and the results of our method indicates the advan-

tage of using multiple views in the training process.
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