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Abstract

We present a compositional embedding framework that

infers not just a single class per input image, but a set of

classes, in the setting of one-shot learning. Specifically, we

propose and evaluate several novel models consisting of (1)

an embedding function f trained jointly with a “composi-

tion” function g that computes set union operations between

the classes encoded in two embedding vectors; and (2) em-

bedding f trained jointly with a “query” function h that

computes whether the classes encoded in one embedding

subsume the classes encoded in another embedding. In con-

trast to prior work, these models must both perceive the

classes associated with the input examples and encode the

relationships between different class label sets, and they are

trained using only weak one-shot supervision consisting of

the label-set relationships among training examples. Experi-

ments on the OmniGlot, Open Images, and COCO datasets

show that the proposed compositional embedding models

outperform existing embedding methods. Our compositional

embedding models have applications to multi-label object

recognition for both one-shot and supervised learning.

1. Introduction

Embeddings, especially as enabled by advances in deep

learning, have found widespread use in natural language

processing, object recognition, face identification and ver-

ification, speaker verification and diarization, i.e., who is

speaking when [28], and other areas. What embedding func-

tions have in common is that they map their input into a fixed-

length distributed representation (i.e., continuous space) that

facilitates more efficient and accurate [27] downstream anal-

ysis than simplistic representations such as one-of-k (one-

hot). Moreover, they are amenable to one-shot and few-shot

learning since the set of classes that can be represented does

not depend directly on the dimensionality of the embedding

space.

The focus of most previous research on embeddings has

been on cases where each example is associated with just

one class (e.g., the image contains only one person’s face).

In contrast, we investigate the case where each example is

associated with not just one, but a subset of classes from a

universe S. Given 3 examples xa, xb and xc, the goal is to

embed each example so that questions of two types can be

answered (see Fig. 1): (1) Is the set of classes in example

xa equal to the union of the classes in examples xb and xc?

(2) Does the set of classes in example xa subsume the set of

classes in example xb? For both these questions, we focus

on settings in which the classes present in the example must

be perceived automatically.

We approach this problem using compositional embed-

dings. Like traditional embeddings, we train a function f

that maps each example x ∈ R
n into an embedding space

R
m so that examples with the same classes are mapped close

together and examples with different classes are mapped

far apart. Unlike traditional embeddings, our function f

is trained to represent the set of classes that is associated

with each example, so that questions about set union and

subsumption can be answered by comparing vectors in the

embedding space. We do not assume that the mechanism by

which examples are rendered from multiple classes is known.

Rather, the rendering process must be learned from training

data. We propose two models for one-shot learning, whereby

f is trained jointly with either a “composition” function g

that answers questions about set union, or a “query” function

h that answers question about subsumption (see Figure 1).

This work has applications to multi-object recognition in im-

ages: Given the embedding of an image xa, answer whether

xa contains the object(s) in another image xb, where the

latter could contain classes that were never observed during

training (i.e., one-shot learning). Storing just the embed-

dings but not the pixels could be more space-efficient and

provide a form of image compression.

Contributions: To our best knowledge, our model is

the first to perform multi-class one-shot learning using

only weak supervision consisting of label-set relationships

between training examples (in contrast to the strongly-

supervised training approach in [1]; see the last section in

Related Work). We explore how embedding functions can

be trained both to perceive multiple objects that are possi-

bly entangled (overlapping in space) and to represent them
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Figure 1: Overview: embedding function f is trained jointly

with either a composition function g or a query function

h. In particular, g’s goal is to “compose” the embeddings

of two examples, containing classes T and U respectively,

to approximate the embedding of an example containing

classes T ∪ U .

so that set operations can be conducted among embedded

vectors. We instantiate this idea in two ways – Model I for

set union (f&g) and Model II for set containment (f&h) –

and evaluate our models on visual domain. Our experiments

show promising results that compositional embeddings can

perceive and compute set relationships in highly challenging

perceptual contexts. Since one-shot learning for multi-label

classification is a new problem domain, we devise baseline

methods based on traditional (non-compositional) embed-

dings, and our experiments provide evidence that compo-

sitional embeddings offer significant accuracy advantages.

Finally, we explore applications of compositional embed-

dings to multi-label image classification for supervised (not

one-shot) learning settings (Model III).

Supp. Material includes appendix and code is available

in 1.

2. Related Work

Embeddings: We distinguish two types of embeddings:

(1) “Perceptual” embeddings such as for vision (Facenet

[26]) and speech (x-vector [29]), where each class (e.g., per-

son whose voice was recorded or face was photographed)

may contain widely varying examples across emotion, light-

ing, background noise, etc. (2) Item embeddings for words

(word2vec [19], GloVe [22]), or for items & users in rec-

ommendation systems [5]; here, each class contains only

one exemplar by definition. Within the former, the task of

the embedding function is to map examples from the same

1https://drive.google.com/drive/folders/

1zjsK9DP3CUqwcVSNwDPshIxOV5hQwFxt?usp=sharing

class close together and examples from other classes far

apart. This often requires deep, non-linear transformations

to be successful. With item embeddings, the class of each

example does not need to be inferred; instead, the goal is

to give the embedded vectors geometric structure to reflect

co-occurrence, similarity in meaning, etc.

Compositional embeddings: Most prior work on com-

positionality in embedding models has focused on word

embeddings [23, 21, 14, 10]. More recent work has explored

“perceptual” embeddings: [6] combined embeddings from

different sources in multimodal training. [12] proposed a

model to infer the relative pose from embeddings of objects

in the same scene. [32] proposed a method to decompose

the attributes of one object into multiple representations. [2]

introduced a method for generating judgments about com-

positional structure in embeddings. [31] showed that com-

positional information was deeply related to generalization

in zero-shot learning. [30] proposed a way to train CNNs

to learn features that had compositional property so that ob-

jects could be separated better from their surroundings and

each other. [18] used compositional network embeddings

to predict whether two new nodes in a graph, which were

not observed during training, are adjacent, using node-based

features as predictors.

Multi-label few-shot learning: The last few years have

seen some emerging interest in the field of multi-label few-

shot and zero-shot learning. [25] proposed a network to

learn basic visual concepts and used compositional concepts

to represent singleton objects not seen during training. Liu

et al. [17] introduced an approach to infer compositional

language descriptions of video activities and achieved zero-

shot learning by composing seen descriptions. Huynh and

Elhamifar [9] proposed a visual attention-based method for

multi-label image classification that can generalize to classes

not seen during training, but it requires auxiliary semantic

vectors (e.g., attributes or word embeddings) associated with

the unseen classes. The most similar work to ours is by

Alfassy et al. [1]. Their model also tackles the problem

of generating latent representations that reflect the set of

labels associated with each input, and it also uses trained

set operations (union, intersection, difference) that operate

on pairs of examples. Algorithmically, our work differs

from Alfassy’s in several ways: Their method depends on

strong supervision whereby the embedding and composition

functions are trained using a fixed set of classes (they train

on 64 classes from COCO), such that each image in the

training set must be labeled w.r.t. all the classes in the entire

training set. Their method also requires an extra multi-label

classifier, and as a result they have 4 separate losses that

are applied at different points during training. In contrast,

our model requires only weak supervision: Each training

episode has its own subset of classes, and each image in

the episode must be labeled only w.r.t. that subset – there
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is no need for it to be labeled w.r.t. all classes in the entire

training set, or even for the set of training classes to be finite.

Also, each of our models is trained using just 1 loss function.

To emphasize, their approach requires class-labeled data

for a fixed set of classes, whereas our approach requires

merely sets of examples that possess certain compositional

relationships.

3. Model I: Embedding f and Composition g

Assumptions and notation: For generality, we refer to

the data to be embedded (images, videos, etc.) simply as

“examples”. Let the universe of classes be S . From any sub-

set T ⊆ S, a ground-truth rendering function r : 2S → R
n

“renders” an example, i.e., r(T ) = x. Inversely, there is

also a ground-truth classification function c : R
n → 2S

that identifies the label set from the rendered example, i.e.,

c(x) = T . Neither r nor c is observed. We let eT repre-

sent the embedding (i.e., output of f ) associated with some

example containing classes T .

Model: Given two examples xa and xb that are associated

with singleton sets {s} and {t}, respectively, the hope is that,

for some third example xc associated with both classes {s, t},

we have

g(f(xa), f(xb)) ≈ f(xc) (1)

Moreover, we hope that g can generalize to any number of

classes within the set S . For example, if example xd is associ-

ated with a singleton set {u} and xe is an example associated

with {s, t, u}, then we hope g(g(f(xa), f(xb)), f(xd)) ≈
f(xe).

There are two challenging tasks that f and g must solve

cooperatively: (1) f has to learn to perceive multiple objects

that appear simultaneously and are possibly non-linearly en-

tangled with each other – all without knowing the rendering

process r of how examples are formed or how classes are

combined. (2) g has to define geometrical structure in the

embedding space to support set unions. One way to under-

stand our computational problem is the following: If f is

invertible, then ideally we would want g to compute

g(eT , eU ) = f(r(c(f−1(eT )) ∪ c(f−1(eU )))). (2)

In other words, one way that g can perform well is to learn

(without knowing r or c) to do the following: (1) invert each

of the two input embeddings; (2) classify the two correspond-

ing label sets; (3) render an example with the union of the

two inferred label sets; and (4) embed the result. Training

f and g jointly may also ensure systematicity of the em-

bedding space such that any combination of objects can be

embedded.

One-shot learning: Model I can be used for one-shot

learning on a set of classes N ⊂ S not seen during train-

ing in the following way: We obtain k labeled examples

x1, . . . , xk from the user, where each {si} = c(xi) is the

singleton set formed from the ith element of N and |N | = k.

We call these examples the reference examples. (Note that

N typically changes during each episode; hence, these ref-

erence examples provide only a weak form of supervision

about the class labels.) We then infer which set of classes is

represented by a new example x′ using the following proce-

dure: (1) Compute the embedding of x′, i.e., f(x′). (2) Use

f to compute the embedding of each singleton example xi,

i.e., e{i} = f(xi). (3) From e{1}, . . . , e{k}, estimate the em-

bedding of every subset T = {s1, . . . , sl} ⊆ N according

to the recurrence relation:

e{s1,...,sl} = g(e{s1,...,sl−1}, e{sl}) (3)

Finally, (4) estimate the label of x′ as

argmin
T ⊆N

|f(x′)− eT |
2
2 (4)

3.1. Training Procedure

Functions f and g are trained jointly: For each example x

associated with classes T , we compute eT from the singleton

reference examples according to Eq. 3. (To decide the order

in which we apply the recursion, we define an arbitrary

ordering over the elements of N and iterate accordingly.)

We then compute a triplet loss

max(0, ||f(x)− eT ||2 − ||f(x)− eT ′ ||2 + ǫ) (5)

for every T ′ 6= T ⊆ N , where ǫ is a small positive real

number [33, 26]. In practice, for each example x, we ran-

domly pick some T ′ ∈ 2N for comparison. Both f and g

are optimized jointly in backpropagation because the loss

function is applied to embeddings generated from both.

Note that we also tried another method of training f and

g with the explicit goal of encouraging g to map eT and

eU to be close to eT ∪U . This can be done by training f

and g alternately, or by training them jointly in the same

backpropagation. However, this approach yielded very poor

results. A possible explanation is that g could fulfill its goal

by mapping all vectors to the same location (e.g., 0). Hence,

with this training method, a trade-off arose between g’s goal

and f ’s goal (separating examples with distinct label sets).

3.2. Experiment 1: OmniGlot

We first evaluated our method on the OmniGlot dataset

[15]. OmniGlot contains handwritten characters from 50

different alphabets; in total it comprises 1623 symbols, each

of which was drawn by 20 people and rendered as a 64×64

image. OmniGlot has been widely used in one-shot learning

research (e.g., [24, 3]).

In our experiment, the model is provided with one refer-

ence image for each singleton test class (5 classes in total).

Then, f and g are used to select the subset of classes that

most closely match the embedding of each test example
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(Eq. 4). The goal is to train f and g so that, on classes not

seen during training, the exact set of classes contained in

each test example can be inferred.

We assessed to what extent the proposed model can cap-

ture set union operations. To create each example with label

set T , the rendering function r randomly picks one of the

20 exemplars from each class s ∈ T and then randomly

shifts, scales, and rotates it. Then, r computes the pixel-wise

minimum across all the constituent images (one for each

element of T ). Finally, r adds Gaussian noise. See Fig. 2

and Supp. Material. Due to the complexity of each character

and the overlapping pen strokes in composite images, rec-

ognizing the class label sets is challenging even for humans,

especially for |T | = 3.

In this experiment, we let the total number of possible

symbols in each episode be k = 5. We trained f&g such

that the maximum class label set size was 3 (i.e., |T | ≤ 3).

There are 25 such (non-empty) sets in total (5 singletons,
(

5
2

)

= 10 2-sets, and
(

5
3

)

= 10 3-sets).

Architecture: For f , we used ResNet-18 [7] that was

modified to have 1 input channel and a 32-dimensional out-

put. For g, we tested several architectures. First, define

Symm(a, b; k) = W1a+W1b+W2(a⊙ b) to be a symmet-

ric function2 (with parameter matrices W1,W2) of its two

examples a, b ∈ R
n that produces a vector in R

k. We then

defined four possible architectures for g:

• Mean (gMean):
(a+b)

2 → L2Norm.

• Bi-linear (gLin): Symm(a, b; 32) → L2Norm.

• Bi-linear + FC (gLin+FC): Symm(a, b; 32) → BN →
ReLU → FC(32) → L2Norm.

• DNN (gDNN): Symm(a, b; 32) → BN → ReLU →
FC(32) → BN → ReLU → FC(32) → BN →
ReLU → FC(32) → L2Norm.

BN is batch normalization, and FC(n) is a fully-connected

layer with n neurons. We note that gMean is similar to the

implicit compositionality found in word embedding models

[19].

Training: For each mini-batch, N was created by ran-

domly choosing 5 classes from the universe S (where

|S| = 944 in training set). Images from these classes are ren-

dered using function r from either singleton, 2-set class label

sets, or 3-set class label sets. In other words, 1 ≤ |T | ≤ 3
for all examples. See Supp. Material for details.

Testing: Testing data are generated similar to training

data, but none of the classes were seen during training. We

optimize Eq. 4 to estimate the label set for each test example.

2To be completely order-agnostic, g would have to be both symmet-

ric and associative. Symmetry alone does not ensure g(g(x, y), z) =
g(x, g(y, z)), but it provides at least some (if imperfect) invariance to

order.

Baselines: Because multi-label few-shot learning is a new

learning domain, and because none of the existing literature

exactly matches the assumptions of our model ([1] assumes

strongly supervised training labels, and [9] requires auxiliary

semantic labels for unseen classes), it was not obvious to

what baselines we should compare. When evaluating our

models, we sought to assess the unique contribution of the

compositional embedding above and beyond what traditional

embedding methods achieve. We compared to two baselines:

1. Traditional embedding f and average (TradEm): A

reasonable hypothesis is that a traditional embedding

function for one-shot learning trained on images with sin-

gleton class label sets can implicitly generalize to larger

label sets by interpolating among the embedded vectors.

Hence, we trained a traditional (i.e., non-compositional)

embedding f just on singletons using one-shot learning,

similar to [34, 11]. (Accuracy on singletons after training

on OmniGlot: 97.9% top-1 accuracy in classifying test

examples over 5 classes.) The embedding of a composite

image with label set T is then estimated using the mean

of the embeddings of each class in T . In contrast to gMean

above, the f in this baseline is trained by itself, without

knowledge of how its embeddings will be composed.

Note: In our experiments, the models always needed to

pick the correct answer from 25 candidates. “1-sets” in

the table means the accuracy when the ground truth is a

singleton, but the model still sees 25 candidates.

2. Most frequent (MF): Always guess the most frequent

element in the test set. Since all classes occurred

equally frequently, this was equivalent to random guess-

ing. While simplistic, this baseline is useful to get a basic

sense of how difficult the task is.

Assessment: We assessed accuracy (%-correct) in 3

ways: (a) Accuracy, over all test examples, of identifying T .

(b) Accuracy, over test examples for which |T | = l (where

l ∈ {1, 2, 3}), of identifying T . Note: we did not give the

models the benefit of knowing |T | – each model predicted

the class label set over all T ⊂ N such that |T | ≤ 3. This

can reveal whether a model is more accurate on examples

with fewer vs. more classes. (c) Accuracy, over all examples,

in determining just the number of classes in the set, i.e., |T |.
Results: As shown in Table 1, the MF baseline accuracy

was just 4% for an exact (top-1) and 12% for top-3 match.

(Recall that the models did not “know” |T | and needed to

pick the correct answer from all 25 possible label sets.)

Using the TradEm approach, accuracy increased to 25.5%
and 40.9%, respectively. All of the proposed f&g models

strongly outperformed the TradEm baseline, indicating that

training f jointly with a composition function is helpful.

For all the f&g approaches as well as the TradEm baseline,

model predictions were well above chance (MF) for all label
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{1} {2} {3} {4} {5}

{1,2} {1,3} {1,4} {1,5} {2,3}

{2,4} {2,5} {3,4} {3,5} {4,5}

{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5}

{1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}

Figure 2: Examples of the images from the OmniGlot dataset,

used in Experiments 1 and 2. Below each image is its asso-

ciated class label set T .

set sizes, i.e., these approaches could all distinguish label

sets with more than one element at least to some degree.

In terms of architecture for composition function g, over-

all, the gLin, which contains a symmetric bi-linear layer be-

fore L2-normalization, did best: 64.7% and 87.6% for top-1

and top-3 matches over all examples, respectively. This sug-

gests that composition by averaging alone is not optimal for

this task. However, adding more layers (i.e., gLin+FC, gDNN)

did not help, especially when |T | increases. It is possible

that the more complex g overfit, and that with regularization

or more training data the deeper models might prevail.

Discussion: Experiments 1 suggests that, for f&g com-

positionality for set union, a simple linear layer works best.

Function gLin, despite the L2Norm at the end, might retain a

greater degree of associativity (i.e., (a+b)+c = a+(b+c))
than deeper g functions. This property may be important

especially for larger T , where g is invoked multiple times to

create larger and larger set unions.

Scalability: The number of subsets is exponential in |N |,
which poses a scalability problem for both training and test-

ing, and hence Model I may in some sense be regarded more

as a proof-of-concept than practical algorithm. However, in

settings where the number of simultaneously present classes

is inherently small (e.g., in speaker diarization from audio

signals, it is rare for more than just a few people to speak

at once), the model can still be practical. In our Model II

(Section 4), we overcome this scalability issue by switching

Experiment 1 (OmniGlot): Train with |T | ≤ 3

Label Set Identification

f&g Approaches Baselines

gDNN gLin+FC gLin gMean TradEm MF

All Exact 50.6 56.7 64.7 52.8 25.5 4.0

Top-3 76.5 81.7 87.6 80.0 40.9 12.0

1-sets Exact 94.5 96.0 97.0 86.9 89.3 4.0

Top-3 99.1 99.4 99.6 95.4 96.6 12.0

2-sets Exact 51.2 54.6 64.5 49.7 15.4 4.0

Top-3 82.9 83.0 87.9 81.4 37.7 12.0

3-sets Exact 27.9 39.1 48.9 39.0 3.7 4.0

Top-3 58.7 71.6 81.1 71.1 16.4 12.0

Set Size Determination

All 81.7 87.4 90.1 71.4 44.9 36.0

Table 1: Experiment 1 (OmniGlot): One-shot mean accuracy

(% correct) of Model I in inferring the label set of each

example exactly (top 1), within the top 3, and the size of

each label set. Set Size Determination measures the ability

to infer the set size. TradEm is similar to [34, 11], and MF

is based on random guessing.

from set union to set containment.

4. Model II: Embedding f and Query h

With this model we explore compositional embeddings

that implements set containment: In some applications, it

may be more useful to determine whether an example con-

tains an object or set of objects. For instance, we might

want to know whether a specific object is contained in an

image. Moreover, in some settings, it may be difficult dur-

ing training to label every example (image, video, etc.) for

the presence of all the objects it contains – for each exam-

ple, we might only know its labels for a subset of classes.

Here we propose a second type of compositional embedding

mechanism that tests whether the set of classes associated

with one example subsumes the set of classes associated

with another example. We implement this using a “query”

function h that takes two embedded examples as inputs:

h(f(xa), f(xb)) = True ⇐⇒ c(xb) ⊆ c(xa). Note that h

can be trained with only weak supervision w.r.t. the individ-

ual examples: it only needs to know pairwise information

about which examples “subsume” other examples. Com-

pared with typical multiple instance learning models, Model

II deals with single samples instead of bags of instances.

Additionally, training procedure of Model II is more focused

on one-shot learning.

4.1. Training procedure

Functions f and h are trained jointly. Since h is not

symmetric, its first layer is replaced with a linear layer
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Experiment 2 (OmniGlot)

hDNN hLin+FC hLin TradEm

Acc % 71.8 71.1 50.8 63.8

AUC 80.0 79.1 51.4 78.2

Table 2: One-shot learning results for Model II (with differ-

ent versions of h) on OmniGlot compared to a traditional

(non-compositional) embedding baseline (TradEm).

W1a + W2b (see Supp. Material). In contrast to Model I,

reference examples are not needed; only the subset relation-

ships between label sets of pairs of examples are required.

We backpropagate a binary cross-entropy loss, based on

correctly answering the query defined above, through h to f .

4.2. Experiment 2: OmniGlot

Here we assess Model II on OmniGlot where size of class

label sets is up to 5, and we use the same rendering function r

in Experiment 1. Let f(xa) and f(xb) be the two arguments

to h. For xa, each image can be associated with multiple

classes, from 1 class (i.e., c(xa) = {s1}) to 5 classes (i.e.,

c(xa) = {s1, s2, . . . , s5}), where all label sets occur with

equal frequency. For xb (which is always a singleton in

this experiment), half are positive examples (i.e., such that

h(f(xa), f(xb)) = True) which are associated with classes

contained in xa, so that c(xb) ⊆ c(xa). The other half are

negative examples (h(f(xa), f(xb)) = False), where xb is

associated with some other singleton class c(xb) 6⊆ c(xa).
Both the training set and test set have this configuration.

Architecture: The f was the same as in Experiment

1. For h, we tried several functions (hDNN, hLin+FC, hLin),

analogous to the different g from Section 3.2 except the final

layers are 1-dim sigmoids. See Supp. Materials.

Baseline: How would we tackle this problem without

compositional embeddings? We compared our method

with a traditional (non-compositional) embedding method

(TradEm) that is trained to separate examples according to

their association with just a single class. In particular, for

each composite example xa (i.e., |c(xa)| = 2), we picked

one of the two classes arbitrarily (according to some fixed

ordering on the elements of S); call this class s1. Then, we

chose a positive example xb (such that c(xb) = {s1}) and a

negative example xc (such that c(xc) = {s3} 6⊆ c(xa)). We

then compute a triplet loss so the distance between f(xa)
and f(xb) is smaller than the distance between f(xa) and

f(xc), and backpropagate the loss through f . During testing,

we use f to answer a query—does c(xa) contain c(xb)?—by

thresholding (0.5) the distance between f(xa) and f(xb).
Results are shown in Table 2. Compositional embed-

dings, as implemented with a combination of f trained

jointly with either hDNN or hLin+FC, outperform the TradEm

baseline, in terms of both % correct accuracy and AUC.

(a) (b) (c) (d) (e)

Figure 3: An example image (top) of a running dog and

the lower body of a human. The image is padded to form a

square and downscaled. The composite embedding with f is

computed and then queried with h about the presence of the

object in images (a-e), containing dog, trousers, footwear,

countertop, and caterpillar. The query function h, when

given the embeddings of the top image and another image,

should return True for (a,b,c) and False for (d,e).

Unlike in Model I, where hLin achieved the best results, f

trained jointly with hLin is just slightly better than random

guess (50%). The deeper h worked better.

4.3. Experiment 3: Open Images

Here we trained and evaluated Model II on Open Images

[13]. This dataset contains a total of 16M bounding boxes

for 600 object classes on 1.9M images. This is a highly chal-

lenging problem: in the example in Fig. 3, f has to encode a

dog, trousers and footwear; then, given completely different

images of these classes (and others), h has to decide which

objects were present in the original image. In Open Images,

each image may contain objects from multiple classes, and

each object has a bounding box. We acquire singleton sam-

ples by using the bounding boxes to crop singleton objects

from images. In this experiment, 500 classes are selected for

training and 73 other classes for testing. The training and

evaluation settings are the same as Experiment 2.

Architectures: For f , we use ResNet-18 that was modi-

fied to have a 32-dimensional output. We used the same h

as in Experiment 2.

Baselines:

1. TradEmb: Similar to Model II, here we compare with

a non-compositional embedding trained using one-shot

learning on singleton classes (TradEm). All objects

are cropped according to their labeled bounding boxes

and then resized and padded to 256× 256. All original

images are also resized and padded to the same size.

2. SlideWin: In Open Images, multiple objects co-occur

in the same image but rarely overlap. Hence, one might
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Experiment 3 (Open Images)

hDNN hLin+FC hLin TradEm SlideWin

Acc % 76.9 76.8 50.0 50.1 52.6

AUC 85.4 85.2 50.3 59.2 52.1

Table 3: One-shot learning results for Model II on Open

Images compared to either the TradEm or the SlideWin

baselines (similar to [8]).

wonder how well the following approach would work

(somewhat similar to [8] on one-shot detection): train a

traditional embedding model on examples of cropped

objects; then apply it repeatedly to many “windows”

within each test image (like a sliding window). To

answer a query about whether the test image contains

a certain object, compute the minimum (or median, or

other statistic) distance between the embedding of each

window and the embedding of the queried object.

We trained a baseline model using this approach (ac-

curacy in 2-way forced-choice task on pre-cropped

256x256 images not seen during training: 93.6%). To

answer queries, we partitioned each test image into a

rectangular grid of at most 4x4 cells (depending on

image aspect ratio). We then constructed windows cor-

responding to all possible contiguous subgrids (there

were between 70-100 windows for each image), and

then resized each window to 256x256 pixels. We found

that taking the minimum embedding distance worked

best.

Results are shown in Table 3. The compositional models

of f combined with either hDNN and hLin+FC (though not with

hLin) achieve an AUC of over 85% and easily outperform

TradEm. It also outperforms the SlideWin method: even

though this baseline was trained to be highly accurate on

pre-cropped windows (as reported above), it was at-chance

when forced to aggregate across many windows and answer

the containment queries. It is also much more slower than

the compositional embedding approach.

Discussion: An interesting phenomenon we discovered

is that while the linear model gLin achieves the best results

in the f&g setting (set union), it is hardly better than ran-

dom chance for the f&h setting (set containment). On the

other hand, while gDNN is worse than other trainable g func-

tions for set union, it outperforms the other functions for

set containment. One possible explanation is that training

f in Model I to distinguish explicitly between all possible

subsets causes f to become very powerful (relative to the f

in Model II), after which only a simple g is needed for set

unions. The training procedure in Model II based on set con-

tainment might provide less information to f , thus requiring

g to be more powerful to compensate. Another possibility

Figure 4: Supervised multi-label image classification:

Left is a traditional approach based on a CNN with mul-

tiple independent sigmoid outputs. Right is the proposed

Model III with 3 jointly trained embeddings fim, flabel, & h.

is that, since g is applied recursively to construct unions, its

complexity must be kept small to avoid overfitting.

5. Model III (supervised): fim, flabel, & h

Given the promising results on one-shot learning tasks for

object recognition, we wanted to assess whether composi-

tional embeddings could be beneficial for multi-label classi-

fication in standard supervised learning problems where the

testing and training classes are the same (i.e., not one-shot).

Specifically, we developed a model to answer questions of

the form, “Does image x contain an object of class y?”. The

intuition is that a compositional embedding approach might

make the recognition process more accurate by giving it

knowledge of which object is being queried before analyzing

the input image for its contents. Model III consists of three

functions trained jointly: (1) a deep embedding fim for the

input image x; (2) a linear layer flabel to embed a one-hot

vector of the queried label y into a distributed representation;

and (3) a query function h that takes the two embeddings as

inputs and outputs the probability that the image contains

an object with the desired label. This approach enables the

combined model to modulate its perception of the objects

contained within an image based on the specific task, i.e., the

specific label that was queried, which may help it to perform

more accurately [20].

5.1. Experiment 4: COCO

To evaluate Model III, we conducted an experiment on the

Microsoft COCO dataset [16], which has |S| = 80 classes in

both the training and validation sets. During evaluation, half

the test labels are positive and the other half are negative.
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Architecture: For fim, we modify ResNet-18 (pretrained

on ImageNet) so that its last layer has dimension 128. The

embedding layer flabel maps 80-dimensional 1-hot labels

to 32-dimension real-valued embeddings. Then the im-

age embedding and label embedding are concatenated to

a 160-dimension vector and fed to the DNN h, consisting

of FC(160) → BN → ReLU → FC(136) → BN →
ReLU → FC(136) → Sigmoid(1), where Sigmoid(k) is

a sigmoidal layer with k independent probabilistic outputs.

The output of h represents the probability that image x con-

tains an object of class y. See Figure 4 (right). Binary cross-

entropy, summed over all classes, is used as the loss function.

Because of class imbalance, different weights are used for

positive and negative classes according to their numbers in

each image.

Baseline: We compare to a baseline consisting of a

pretrained ResNet-18 followed by a DNN (to enable a

fairer comparison with our Model III). The DNN consists

of FC(128) → BN → ReLU → FC(128) → BN →
ReLU → FC(128) → Sigmoid(80). The final layer gives

independent probabilistic predictions of the 80 classes. Note

that this DNN has almost exactly the same number of pa-

rameters as the DNN for Model III. For multi-label image

classification, we simply check whether the output for the

desired label is close to 1. See Figure 4 (left).

Results: The baseline accuracy using the ResNet attained

an accuracy of 64.0% and AUC of 67.7%. In contrast, the

compositional embedding approach (fim&flabel&h) achieved

a substantially higher accuracy of 82.0% and AUC is 90.8%.

This accuracy improvement may stem from the task mod-

ulation of the visual processing, or from the fact that the

compositional method was explicitly designed to answer

binary image queries rather than represent the image as a

|S|-dimensional vector (as with a standard object recognition

CNN).

6. Conclusions

We developed a compositional embedding mechanism

whereby the set of objects contained in the input data must

be both perceived and then mapped into a space such that

the set relationships – union (Model I) and containment

(Model II) – between multiple embedded vectors can be in-

ferred. Importantly, the ground-truth rendering process for

how examples are rendered from their component classes

must implicitly be learned. This new domain of multi-label

one-shot learning is highly challenging but has interesting

applications to multi-object image recognition in computer

vision, as well as multi-person speaker recognition and di-

arization in computer audition. In contrast to prior work

[1, 9], our models require only relatively weak one-shot su-

pervision consisting of the label-set relationships among the

training examples. Our experiments on OmniGlot, Open Im-

ages, and COCO show promising results: the compositional

embeddings strongly outperformed baselines based on tradi-

tional embeddings. These results provide further evidence

that embedding functions can encode rich and complex struc-

ture about the multiple objects contained in the images they

came from. Our results also shed light on how the task struc-

ture influences the best design of the functions f , g, and h.

Finally, we demonstrated the potential of compositional em-

beddings for standard supervised tasks of multi-label image

recognition (Model III): task-specific perception of images,

as enabled by jointly trained embedding functions, can boost

perceptual accuracy.

One direction for future research – motivated by percep-

tual expertise research on, for example, how chess experts

perceive real vs. random game configurations [4] – is to take

better advantage of the class co-occurrence structure in a

specific application domain (e.g., which objects co-occur in

images).
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