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Abstract

Image extrapolation aims at expanding the narrow field

of view of a given image patch. Existing models mainly

deal with natural scene images of homogeneous regions and

have no control of the content generation process. In this

work, we study conditional image extrapolation to synthe-

size new images guided by the input structured text. The

text is represented as a graph to specify the objects and

their spatial relation to the unknown regions of the image.

Inspired by drawing techniques, we propose a progressive

generative model of three stages, i.e., generating a coarse

bounding-boxes layout, refining it to a finer segmentation

layout, and mapping the layout to a realistic output. Such a

multi-stage design is shown to facilitate the training process

and generate more controllable results. We validate the ef-

fectiveness of the proposed method on the face and human

clothing dataset in terms of visual results, quantitative eval-

uations, and flexible controls.

1. Introduction

Given an image patch with a narrow field of view, image

extrapolation aims at expanding it by generating plausible

visual content outside the image boundaries. The extrapola-

tion is a challenging task since it requires to synthesize new

content that aligns well with the given image patch. To the

best of our knowledge, only a few approaches [29, 52, 36]

have been developed to address this topic, and all are de-

signed for unconditional extrapolation where the target im-

age is generated solely based on the input patch. This is

often achieved by finding low-level cues of similar patterns

from the given image or external databases. These methods

perform well on natural images of homogeneous regions.

A core problem, however, is that oftentimes a user has

some concept in mind from which one wants to generate an

image, and the most straightforward way to express the con-

cept is via text. Consider an example in Figure 1(a), for the

given patch, users may have different ideas of extrapolating

the lower body, wearing the dress or pants. An ideal model

should directly take both the patch and text into account to

(a) Text-driven extrapolation (b) Progressive extrapolation

Scene graph
Extrapolation

Image patch

Figure 1. Definition and motivation of the extrapolation task. (a)

Conditional image extrapolation takes the input of the image patch

and text. Users may want to synthesize the lower body to generate

the dresses or pants object and can control the generation by the

text input. (b) Top: illustration of human layout drawing in the

coarse-to-fine manner. Bottom: intermediate and final outputs of

our progressive generation model, which corresponds to each step

of human layout drawing.

generate the target image.

In this paper, we study conditional image extrapolation

where the inputs are an image patch and a structured text

that specifies desired properties to synthesize. The image

patch serves as the same role as that in the unconditional

extrapolation, whereas the input text controls the content

generation outside the image boundaries. Similar to [16],

we represent the structured text as a scene graph to circum-

vent handling the ambiguity in natural languages. The scene

graph [23, 41, 40, 16] consists of nodes to represent objects

and edges to describe their relations (spatial arrangements

in our case). Conditional image extrapolation offers more

flexibility than existing counterparts in that users can con-

trol what and where to generate outside the image bound-

aries, thereby allowing users to generate a variety of target

images from the same image patch with different text de-

scriptions. Our problem is related to text-to-image genera-

tion [51, 50, 44] but differs in its usage of multimodal input

of both image and text.

A straightforward solution to this problem is to learn

a deep generative model (e.g., [13, 37, 25, 6]) to directly

translate unknown regions to plausible RGB pixels. How-

ever, this approach is likely to generate blurry images of

poor quality. More importantly the text cannot effectively
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control the generated content. The reason is that learn-

ing such a direct mapping between two different modali-

ties (from text to high-dimensional pixel space) is extremely

difficult. As a result, the current key research question for

conditional image extrapolation is how to make the image

generation process controllable by the input text and amica-

ble to the input image patch.

To address this issue, we mimic the process of how an

painter creates an artwork. Before filling out the details,

a painter often progressively refine a sketch from object

contours to finer layouts, as shown on the top row of Fig-

ure 1(b). Motivated by this, we propose a progressive gen-

erative model that consists of three stages to extrapolate an

image patch. We first generate a bounding-box layout from

the scene graph to roughly indicate the size and spatial loca-

tion of each object. Conditioned on the bounding-box lay-

out, we then learn to generate a semantic segmentation lay-

out, where each pixel is represented as an object class label.

Finally, we map the segmentation layout to the extrapolated

pixels via image-to-image translation. See the bottom row

of Figure 1(b). These modules are first separately trained

for individual tasks and then jointly optimized.

We evaluate the conditional image extrapolation on two

public datasets in terms of visual results, quantitative evalu-

ations and flexible controls. Extensive experimental results

demonstrate that our model performs favorably against ex-

isting methods. The progressive training not only speeds up

the convergence substantially but also makes the generated

content more controllable. In addition, the intermediate out-

puts, byproducts of our model, are semantically meaningful

to users. The main contributions of this work are summa-

rized as follows:

• We study a new task of conditional image extrapola-

tion which takes multimodal inputs of image and text.

• We propose an effective progressive generative net-

work to synthesize new content outside image bound-

aries by generating layouts as sub-tasks.

• We realize controllable extrapolation to generate di-

verse extrapolated images which respect different in-

dications in the scene graph.

2. Related Work

Image extrapolation. Early extrapolation algorithms gen-

erally follow a retrieve-and-compose strategy where an ex-

ternal library of sample images that depict the similar scene

is assumed to be available. For example, Efros and Free-

man [8] expand the small texture patch with similar patches

and develop an optimal boundary with minimum cost for

composition. By extending similar textured patches to im-

ages of the similar scene category, Zhang et al. [52] extrap-

olate photos by utilizing the self-similarity of a reference

image to generate a set of local transformations. To handle

different viewpoints and appearance variations, a few meth-

ods [29, 36] use library images to search good candidates

and align them with the given input. However, those non-

parametric methods are mainly limited in semantically new

content and requiring proper reference databases. With the

recent advances of generative models [9, 24], a few neural

network based methods greatly improve the performance.

For example in texture synthesis, Zhou et al. [54] directly

train a feed-forward network to expand a certain small tex-

ture patch to a larger one. Other methods [39, 46, 34] focus

on single object or scene images. However, they are still

under the uncontrollable setting.

Image inpainting. Compared to extrapolation, image in-

painting concerns filling the unknown regions inside the im-

age. A number of image inpainting methods [20, 48, 12, 22,

38] learn to fill the holes inside the image with different de-

sign of architectures and losses, and achieve better results

over diffusion-based [4, 33] or patch-based [2] schemes.

However, those approaches seldom pay attention to extrap-

olation explicitly where the number of unknown pixels is

much more than that of known pixels.

Text-to-image generation. Our problem is also related

to text-to-image generation which aims at synthesizing im-

age content only from text descriptions. Much progress has

been made in this field in improve the quality of results in

higher resolution [51, 50, 53, 11], reduce the ambiguity in

text with attention mechanism [42, 19] or other text repre-

sentations such as the scene graph [16, 47]. Conditional im-

age extrapolation is apparently different from text-to-image

generation since the former input contains both image patch

and text. Therefore, conditional image extrapolation poses

an unique challenge that is how to align the generated im-

age with the input patch controlled by the text which is not

concerned in text-to-image generation approaches.

Curriculum and progressive learning. Our progres-

sive training approach is related to curriculum learning

schemes [3], which aim to master a complex job by first

learning easier aspect of the task and gradually take more

complex samples into consideration. It has been widely

used to weight training samples [14, 5] or to prioritize the

tasks in multi-task learning [30, 26]. The line of research

work generally regards finding an optimal order of execut-

ing some known tasks [3]. Different from prior work, the

sub-tasks in our problem are unknown. Our work designs

two latent tasks (learning the bounding-box and segmenta-

tion layout) and a progressive learning strategy for effec-

tive conditional image extrapolation. Although our sub-

tasks share high-level similarity with text-to-image gener-

ation approaches [11, 19], our progressive learning strategy

is different which separately trains each sub-task before the

joint training. We have shown in Table 1 that it turns out
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Scene graph
Patch

Patch
Bounding box layout

Extrapolated resultSegmentation layout

Hair left of the face skin,  

lower lip below the upper lip,  

and upper lip below the nose

Stage II Stage III
GCN

Stage I

Bbox regression

Figure 2. Framework of the proposed algorithm on progressive extrapolation. In stage I, we generate a bounding-box layout from the scene

graph to roughly indicate the size and spatial location of each object. Then conditioned on the coarse bounding-box layout and the image

patch, we learn to generate a semantic segmentation layout in stage II. Finally in stage III, we map the segmentation layout and the image

patch to generate the extrapolated results.

to be ineffective merely by incorporating these sub-tasks

without progressive training (see “w/o pt” column). Similar

definitions of sub-tasks are also found in text-to-image gen-

eration [11, 19]. Ours differ from them in two aspects: (i)

we demonstrate it in the task of image extrapolation under

the multi-modality conditioning; (ii) our progressive train-

ing contains an a joint training stage after separate training.

3. Proposed Method

Given an input image patch and a structured text repre-

sented as a scene graph, our goal is to extrapolate visual

content beyond image boundaries that satisfies the condi-

tions specified in the scene graph. We formulate this prob-

lem as a conditional image generation problem, where the

conditions are the image patch, which specifies visual con-

tent in the known region of the target image, and the text

(scene graph) which defines desired objects and their spa-

tial relation to extrapolate for the unknown region.

Our model takes two inputs: an image patch zp and a

structured text represented as a scene graph sg. We denote

the input image patch as zp ∈ R
h×w×3 and the target im-

age to generate as x ∈ R
H×W×3, where h,H and w,W

are width and height of the images and h < H , w < W .

We represent the text input as a scene graph [17]. Given

a set of pre-specified object categories C and relationship

categories R, a scene graph is a tuple sg = (O,E) where

O = {oi|oi ∈ C} is a set of objects to extrapolate for the un-

known region, and E ⊆ O×R×O is a set of directed edges

specifying the relationship between objects. We focus on a

common type of relationship in our problem, i.e., the spatial

relationship between objects which includes {left of, right

of, above, below, inside, surrounding}.

Given an training example x drawn from the real distri-

bution preal and zp randomly cropped from x, our gener-

ation model learns a mapping function from zp and sg to

the data space x̂ = G(zp, sg; θg) ∈ R
H×W×3. In general,

this learning process is self-supervised with a reconstruc-

tion loss Lrec and an adversarial loss Ladv [9]:

Ltotal = Lrec + λLadv =|| x− x̂ ||2
2
+λLadv, (1)

St
an
da
rd

Progressive

Figure 3. Comparison of the standard training and the proposed

progressive training.

where Ladv is computed by:

Ladv=Ex∼preal
[logD(x)] + Ex̂∼pfake

[log(1−D(x̂))],
(2)

where D is a discriminator to output a single scalar repre-

senting the probability of whether the x is real or not.

3.1. Overview

Directly optimizing Eq. (1) with deep generation net-

works (e.g., [13, 37, 25, 6]) to translate unknown regions

to plausible regions (i.e., the standard training) only leads

to blurry and less realistic outputs. Figure 3 shows an ex-

ample training curve where the training loss (in blue) hardly

decreases after a few epochs. The underlying reason is that

using text to directly control RGB pixel generation is ex-

tremely difficult.

To address this issue, we design two latent sub-tasks that

are closely related to our final generation task but are pro-

gressively easier to learn. Specifically, we train the gen-

erator progressively via three tasks where the output of a

previous task is used in the next task. Let θ∗g be the optimal

parameter for our generator G and we find it by minimizing

the total loss Ltotal over all training pairs of scene graphs

and image patches:

Ltotal = Lbox(sg) + Lseg(xbb, zp) + Limg(xseg, zp),
(3)

where the losses Lbox, Lseg , and Limg are used to es-

timate the negative log-likelihood for each generation of

p(xbb|sg), p(xseg|xbb, zp), and p(x̂|xseg, zp), respectively.
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With Eq. (3), the generation process is decomposed into

three stages. First the bounding-box layout xbb is con-

structed from the scene graph. Then the segmentation lay-

out xseg is created from the bounding-box and the input

patch. Finally, the model generates the target image x̂ using

the segmentation layout and the input patch.

Figure 2 illustrates the framework of our model. Our net-

work first generates a bounding-box layout xbb ∈ Z
|O|×4,

a low-dimensional coordinate space for each object in the

scene graph. Then the bounding-boxes are refined into a se-

mantic segmentation layout (xseg ∈ Z
H×W×1), where each

pixel is represented as a classification label of the object in

O. The third stage maps the segmentation layout to the ex-

trapolated RGB pixels x̂ via image-to-image translation. In

the following, we describe the details of these stages.

3.2. Stage I: Boundingbox Layout Generation

The Stage I takes the scene graph as input and outputs

a bounding-box spatial layout map. For the scene graph in-

put, we use the graph convolution network (GCN) of [16] to

transform object embeddings into the relationship-encoded

representation. Given a graph with embeddings initialized

at each node and edge, the GCN computes new embeddings

for each node and edge through propagating information

along edges of the graph. The edge embedding encodes the

relationship between connected objects. The encoded ob-

ject embeddings are then fed into a fully-connected network

of three layers to predict the bounding-box coordinates b̂bi
for each object. Each box is represented as the top-left and

bottom-right x-y coordinates. The loss in this stage is com-

puted by the L1 difference between ground-truth and pre-

dicted boxes:

Lbox =
1

|O|

|O|∑

i=1

|| bbi − b̂bi ||1 (4)

where bbi is the true bounding-box. Figure 4(a) shows two

examples of the generated bounding-box layout for differ-

ent scene graph inputs.

Note that sometimes scene graphs can be similar, e.g.,

nearly all face images contain “eyes” and “nose” as the

nodes. The lack of diversity makes it difficult to learn a

good graph embedding. To address this issue, we augment

the training data by randomly dropping some nodes out of

the scene graph and meanwhile modifying the target image

accordingly. We observe that the augmentation consider-

ably enhances the controllability of the scene graph.

3.3. Stage II: Segmentation Layout Generation

The Stage II is responsible for transforming the coarse

bounding-box layout into a segmentation layout condi-

tioned on the image patch. As such, we need to accomplish

three goals: (i) parse the known regions in the patch, (ii)

Hair on left of the face 
skin, upper lip below the 
nose, and a left eye

Hair on right of the face 
skin, upper lip above the 
nose, and a left eye

(a) Stage I: bounding-box generation

(b) Stage II: segmentation layout generation
Figure 4. Examples of outputs of Stage I and II.

generate the segmentation layout for the unknown regions,

and (iii) align the unknown and known regions.

The input to Stage II is the concatenated feature of the

graph embedding from Stage I and the input image patch.

We warp each node embedding in the scene graph using

bilinear interpolation according to coordinates to compute

a spatial vector that has the same shape as the input image.

We use the network of [27] as the backbone architecture

to infer the pixel-level object labels. Let c1, . . . , cN ∈ {1,

. . . , |C|} be the target class labels for the pixels 1, · · · , H ×
W where |C| is the number of object categories and N =
H ×W . This module is trained with pixel-wise multi-class

cross-entropy loss:

Lseg = −
1

N

N∑

i=1

|C|∑

ci=1

ωci yi,ci log pi,ci , (5)

where pi,ci is the predicted probability for pixel i of belong-

ing to class ci, and yi,ci is the binary label (0 or 1) indicating

if class label ci is a correct classification for pixel i. To han-

dle the imbalanced classes (e.g., “background” class is more

common than “eye”), we use ωci to downweigh the pixels

from common classes.

Figure 4(b) shows two examples of the alignment be-

tween an existing eye in the given patch and the other eye

generated outside boundaries. Given the same bounding-

box layout, while the eyes of two conditional patches are

at different height, our model is able to generate different

segmentation layout that aligns with the input image patch

well. This indicates that bounding-box layouts only impose

soft constraints, and Stage II is able to recover the error from

the Stage I output.

3.4. Stage III: Layout to Image Generation

Given the generated layout, the Stage III operates as a

label-to-image mapping model in a way similar to image-

to-image translation [13, 25]. Here we use a generic auto-

encoder with the instance normalization layer [35] for reg-

ularizing the network activations. The difference to image-

to-image translation here is that our input is the concatena-

tion of the segmentation layout and the input image patch.
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To learn this model, we use the perceptual loss [15] and ad-

versarial loss [1]:

Limg =

4∑

i=1

|| Φi(x)− Φi(x̂) ||
2

2
+Ladv , (6)

where x, x̂ are the ground truth and predicted image, and Φi

is the pretrained VGG-19 [31] network up to the ReLU i 1

layer.

Remarks on training. While all three tasks share the same

goal of extrapolating valid objects that align well with the

given image patch, they are made increasingly difficult to

learn. For example, it is much easier to find the box lo-

cations (in Stage I) than the RGB image (in Stage III) for

all objects to satisfy their relationship in the scene graph.

Likewise, it is a simpler task to align the input image patch

with the boxes than the final extrapolated content. There-

fore, we first train each stage separately such that each stage

can focus on its own objective and learn a better initialized

model than random weights. However, the individual mod-

els trained in these stages may cause errors when the in-

termediate stage does not generate the precise layout. We

further jointly train all three models (from three stages) in

order to enforce the later stage to correct some inconsistent

outputs from the previous stage.

4. Experiments

We conduct experiments to validate the effectiveness of

our model on two kinds of data, i.e., real and synthetic data.

For real data, we evaluate the proposed method on two types

of object images of great interests, i.e., face and human

body. However, there always exist strong priors over certain

object parts in real objects, which may degrade the controls

from the scene graph. Hence, in order to better show the

effectiveness of the scene graph, we design another experi-

ment on a synthetic 2D shape dataset [43] where objects are

randomly positioned without any prior. More results and

details can be found in the supplementary material.

4.1. Real Dataset

Dataset. As the first study of multi-modality conditional

image extrapolation, we validate it on face and human

datasets of similar complexity as in contemporary extrap-

olation works. The Helen dataset [18] consists of 2,330

face images with each face having 11 labels from [32] of

main facial components. The Clothing Co-Parsing (CCP)

dataset [45] contains 1,004 images and corresponding la-

bel maps for 59 clothing items. Since the label classes are

highly unbalanced, we group similar labels (e.g., boots and

wedges are both treated as shoes) and create a super la-

bel set of 9 clothing items: {background, accessory, up-

per cloth, shoe, dress, hair, hat, pant, skin}. In this work,

we choose not to employ complex scene datasets (e.g.,

COCO [21], Cityscapes [7]) because extrapolating multiple

complex objects is still too challenging for image extrapo-

lation and no extrapolation works have ever been done on

complex scenes. The experiments are conducted on these

two datasets mainly because (i) face and human body are

two types of object image of great interests, and (ii) com-

pared with more complex scene datasets (e.g., COCO [21],

Cityscapes [7]) which only label the rough silhouette of ob-

jects, they contain more important detailed object parts.

The ground truth coordinates of the bounding-box of

each label are computed by considering the smallest and

largest coordinate of all pixels with the same label as the top

left and the bottom right. Since both datasets do not provide

annotated scene graphs, we construct the input scene graphs

in a way similar to [16] from the ground truth position of

each label in the image, with each label as the node and

one of the six spatial relationships {left of, right of, above,

below, inside, surrounding} as the edge.

During the training process, for each input image, we

crop image patches of random size (around 15%∼25% of

the original image size) at random positions and train the

network model to recover the original image. We fix the

output size of extrapolated results which serves as a pre-

defined canvas to restrict the scale of objects in the results.

The extrapolated image sizes of face and human body in our

work are 128×128 and 384×256 pixels respectively, which

is 4∼6 times bigger than the size of input patches. For

images in both datasets, we replace their original complex

background, i.e. pixels of the label 0, with the clean white

background to let the network focus on learning meaningful

object parts.

Evaluated methods. Since there exist no exact extrapola-

tion methods that can handle the multimodal input of im-

age patch and scene graph, we compare with the following

related work. The GMCNN [38] is the state-of-the-art im-

age inpainting model. We adapt its original training objec-

tive from inpainting to outpainting pixels outside the patch

boundary and keep the rest unchanged. As it does not sup-

port controls from the scene graph, we train the model only

based on the image patch using their released code. The

SRN [39] is the state-of-the-art model for image extrapola-

tion. Similarly, the input to this model is an image patch

only and we train the model using their code on both Helen

and CCP dataset. The sg2im [16] is a closely-related promi-

nent method to synthesize image from scene graph. As it

does not take the image patch as input, we concatenate the

image patch as additional input channels of their refinement

network. We denote this variant as sg2im c and use the code

from [16] to retrain the model. In addition, by converting

the scene graph to sentences, we also evaluate our method

against the state-of-the-art text-driven I2I translation work

DMIT [49] which has the same multimodal conditioning
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Hair left of face skin, 

right eyebrow above 

right eye, nose below 

left eyebrow, and left 

eyebrow above left eye

Hair left of face 

skin, lower lip 

below upper lip, 

and upper lip 

below nose

Dresses 

below upper 

clothes and 

above shoes, 

and skin 

above shoes

Hat above 

hair, 

hair above 

skin, shoes 

below pants, 

and there are 

upper clothes

(a) Input (b) sg2im c (c) DMIT [49] (d) Layout (e) Ours (f) GT
Figure 5. Visual comparisons between our method and baselines. Different colors in the layout (d) represent different object nodes.

Patch [38] [39] Ours Patch [38] [39] Ours
Figure 6. Comparisons with non-text based inpainting/outpainting

methods which directly generate the final output without taking

the layout into account.

setting as our work, i.e., using both text and image as con-

ditions. Considering that DMIT is originally developed for

unpaired data but our extrapolation task uses paired data,

we add the perceptual loss in (6) into their objectives and

use their code to retrain the model.

Qualitative Comparison. Figure 5 and 6 show the visual

comparisons between the proposed method and baselines,

where the former includes conditional extrapolation and the

latter contains unconditional extrapolation baselines. Given

the scene graph and conditional image patch in in Fig-

ure 5(a), our method generates more visually appealing and

realistic results (e) than the scene graph based method (b)

and text-based scheme (c). We also show the segmentation

layout of second stage in our model in (d). Figure 6 shows

that the inpainting and outpainting algorithms, which uses

no text inputs, are missing the majority of pixels about de-

tailed object parts (e.g., the thin eyebrow and small head).

Overall, our model generate sharper and more realistic re-

sults.

A unique property of conditional image extrapolation is

being able to control image extrapolation with different text

inputs. Figure 7 shows different extrapolated results of our

model from the same image patch for different inputs. We

randomly change the node or the relation of a given scene

graph at a time. The results show that our extrapolation

model follows the control signals specified in the scene

graph and generate images that align well with the condi-

tional image patch. These results tests our model is able to

control extrapolation based on texts and images.

Quantitative results. We first evaluate the realism of the

extrapolated results, i.e. measuring how close the distribu-

tion of results is to that of the real data. We use two common
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Table 1. Quantitative evaluations on the Helen [18] and CCP [45] dataset.

sg2im c DMIT [49] GMCNN [38] SRN [39] Ours w/o pt Ours

Helen
IS ↑ 1.42±0.08 1.58±0.14 1.40±0.11 1.48±0.12 1.45±0.11 1.82±0.16

FID ↓ 70.02±1.53 56.84±1.31 71.28±1.22 67.69±1.63 62.34±1.27 49.21±1.92

CCP
IS ↑ 3.01±0.34 3.36±0.26 3.24±0.29 3.37±0.27 3.14±0.31 3.67±0.33

FID ↓ 119.77±0.19 83.46±1.32 95.88±1.49 86.85±1.22 97.24±0.78 68.64±0.17

Patch Hair on left Hair on right

Patch No inner mouth With inner mouth

Patch Wearing dress Wearing pants

Patch No hat Wearing hat
Figure 7. Diverse results by manipulating the scene graphs.

metrics for general image generation tasks: Inception Score

(IS) [28] and Fréchet Inception Distance (FID) [10]. We

randomly crop patches on images in the test set and com-

pute the metrics over 3,000 outputs of each model. Note that

these metrics favor realistic and reasonable images com-

pletely neglecting the input texts (scene graph) and hence

cannot evaluate the controllable setting. The evaluation re-

sults in Table 1 show that the proposed method achieves

higher IS and lower FID scores across both datasets. Note

that here we do not evaluate the layout generated in Stage

I and II because there is no unique ground truth for an in-

put patch under a controllable setting. Therefore we mainly

focus on the evaluation of final results using the IS/FID met-

ric and user studies, where humans can examine relevance

between the final image and the given text.

We conduct user studies to analyse human perceptual

preference towards different methods. In addition to visual

quality, we also concern the relevance of generated images

to the input scene graph. Thus here we only compare our

model with sg2im c and DMIT that are able to control the

Table 2. User preference towards different methods on real dataset.

sg2im c DMIT [49] Ours

Vote (%) ↑ 8.35 17.43 74.22

Table 3. Quantitative evaluations on the 2D shape dataset.

sg2im c DMIT [49] Ours

IS ↑ 1.31±0.24 1.66±0.19 1.75±0.22

FID ↓ 80.37±1.68 62.83±1.21 55.44±1.39

extrapolation by scene graph. We prepare extrapolated im-

ages for 20 (10 from Helen [18] and 10 from CCP [45])

pairs of scene graphs and patches. For each subject, we

randomly select 15 pairs to evaluate and display the extrap-

olated results side-by-side in random order. Each subject

is asked to vote the single best generated image that are (i)

relevant to the given scene graph and (ii) realistic. We col-

lect 300 votes from 20 participants who are not involved in

the project. The user study is double-blind, i.e., our results

are shown unlabeled in randomized order and the identi-

ties of the participants are not disclosed. The user study re-

sults in Table 2 show that the proposed method receives the

most votes, significantly higher than others. These results

substantiate that our model is able to generate controllable

image content that are more semantic relevant to the input

scene graph.

Ablation study on progressive training. We compare with

a variant of the proposed method in terms of training strat-

egy. In contrast to the progressive training (pt) strategy used

as default, we directly train all models of three stages from

scratch and demoted this baseline as Ours w/o pt. For fair

comparisons, we use the same set of cropped image patches

in all methods. Results in Table 1 (see “w/o pt” column)

show that it turns out to be ineffective merely by incorpo-

rating these sub-tasks without progressive training.

4.2. Synthetic Dataset

We observe that for real object data, there generally exist

strong priors over certain object parts, e.g., lips are always

under noses in faces or sky is always above other objects.

During training, network models will bias towards the prior

and ignore the input control signal. The prior inherently ex-

ists in our natural world and every real dataset, simple or

2146



Figure 8. Left: the generated layout without relationships in scene

graph. Right: two examples in the shape dataset [43].

Input Bbox Seg Output
Figure 9. Extrapolation result of our method on synthetic 2D shape

dataset [43] (the null means the background).

complex, big or small. To demonstrate this, we use a sim-

ple experiment by removing all relationships in the scene

graph. Figure 8(left) shows that with object nodes only, the

model is still able to generate a reasonable layout. How-

ever, we do not want to completely lose the controls over

the extrapolation. As shown in Figure 5, we can still con-

trol several items like the position of hair, pant or dress, and

with or without hat.

Therefore, to further validate the effective controls by the

scene graph, we conduct experiments on a synthetic dataset

of 2D shapes [43]. Each image in [43] contains three types

of objects (circles, squares, and triangles), which are ran-

domly positioned to reduce the prior information (two ex-

amples are presented on right of Figure 8). We show an

example of our extrapolation results in Figure 9. Quanti-

tative evaluations listed in Table 3 show that our method

still obtains the best extrapolation results. Here we mainly

compare with sg2im c and DMIT which also have the con-

trollable setting.

While extrapolating 2D shape image is not of that great

interest, below we mainly manipulate the scene graph to

show the bounding-box output of Stage I to illustrate the

controllability. While positions are totally random between

objects, the scene graph is expected to be the only control

signal. By controlling the scene graph, our model turns

out to be able to generate diverse bounding-box layouts

as shown in Figure 10, where each generated layout cor-

rectly reflects the object and relationship information in the

scene graph. Note that each image in the original shape

dataset contains one circle, one square and one triangle only.

Our model generates more combinations of three categories

(e.g., multiple circles) through controlling the scene graph.

This can be potentially used for graphic layout design to au-

tomate the process of distributing different elements. One

interesting future direction is to add more detailed controls

(e.g., how far left or right, intersecting or tangent).

From the experimental results on both real and syn-

thetic datasets, we conclude that the controllability of scene

Figure 10. Flexible controls from scene graphs at Stage I. For bet-

ter visualization, here we replace the bounding-boxes with objects.

graphs can be flexible but will be constrained, at least to

some extent, by the data prior. It is also worth noting that

although the scene graph provides control signals, we find it

is insufficient to model rare objects or relationships. For ex-

ample, it is unlikely to generate four left eyebrows if there

are four left eyebrows in the scene graph. This should be

expected because there exist no such cases in the training

data.

5. Conclusion

In this work, we propose a generative network to ex-

trapolate new content outside the image boundaries. Unlike

image extrapolation, the studied extrapolation is controlled

by a structured text (modeled as a scene graph) indicating

what and where to generate for the unknown region. To

realize controllable extrapolation, we decompose the learn-

ing process into three stages and introduced two important

sub-tasks, of generating layouts from coarse to fine, to fa-

cilitate the training. Based on this multi-stage model, we

use a curriculum learning strategy for effective model train-

ing. Both qualitative and quantitative results show that the

proposed model performs favorably against the evaluated

methods and is able to generate more controllable extrapo-

lated results. Our future work includes modeling more com-

plex scene images.
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