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Abstract

Some tasks, such as surface normals or single-view

depth estimation, require per-pixel ground truth that is diffi-

cult to obtain on real images but easy to obtain on synthetic.

However, models learned on synthetic images often do not

generalize well to real images due to the domain shift. Our

key idea to improve domain adaptation is to introduce a

separate anchor task (such as facial landmarks) whose an-

notations can be obtained at no cost or are already avail-

able on both synthetic and real datasets. To further lever-

age the implicit relationship between the anchor and main

tasks, we apply our HEADFREEZE technique that learns the

cross-task guidance on the source domain with the final net-

work layers, and use it on the target domain. We evaluate

our methods on surface normal estimation on two pairs of

datasets (indoor scenes and faces) with two kinds of an-

chor tasks (semantic segmentation and facial landmarks).

We show that blindly applying domain adaptation or train-

ing the auxiliary task on only one domain may hurt perfor-

mance, while using anchor tasks on both domains is better

behaved. Our HEADFREEZE technique outperforms com-

peting approaches, reaching performance in facial images

on par with a recently popular surface normal estimation

method using shape from shading domain knowledge.

1. Introduction

Collecting annotations is difficult for geometric tasks,

such as predicting depth [30, 41], surface normals [27], and

3D pose [37], because it usually requires a specialized de-

vice and access to the scene. Synthetic images and their ge-

ometric labels are easily generated, but synthetically trained
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Figure 1. Illustration of our formulation compared to unsupervised

domain adaptation. Although target domain main task labels are

hard or expensive to obtain, we can use free or already available

labels from an “anchor” task to help align the domains with clear

correspondence between images and the anchor task label space.

models often do not generalize well to real data. Unsuper-

vised domain adaptation methods [32, 25, 26, 12] can help,

but they often blindly minimize domain distribution differ-

ence [9, 35, 28, 34] even when the ground truth distributions

in source and target differ. How can we better adapt from

synthetic to real data?
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In this paper, we propose to use anchor tasks as a guide

for improving pixel-level domain transfer of the main task.

The anchor task is a task labeled on both domains, whose

annotations are already available or automatically gener-

ated. For example, in one experiment we improve trans-

fer for surface normal prediction on faces by using facial

keypoint detection as an anchor task, and the anchor task

ground truth is estimated using an off-the-shelf model. We

propose our HEADFREEZE method that first trains the main

task and anchor task on synthetic data, then freezes the

top few layers and retrain the feature layers to perform the

main task on synthetic data and the anchor task on both

domains. The fully-supervised anchor task provides ad-

ditional semantic and spatial context information to learn

better feature representations for the real images (hence

the name “anchor”), while the frozen predictors leverage

learned “cross-task guidance” so that the main task on the

target domain can be guided by the anchor task.

Our idea can be seen as a generalization of existing

works that use a closely related auxiliary task to help adap-

tation. We call this family of methods “Task-assisted Do-

main Adaptation” (TADA). Prior work [10, 39, 14, 6] in the

TADA family all rely on problem-specific, explicitly de-

fined mappings between the auxiliary tasks and the main

tasks (see Section 2 for details), and thus are restricted to

their own task pair and problem settings. Unlike prior work,

we require only that the anchor task has pixel labels, and

HEADFREEZE is applicable even when the main-anchor re-

lationship lacks an explicit formulation (e.g. between facial

keypoints and surface normal map). We demonstrate this

with different anchor tasks for the same main task without

changing the framework. Our experiments focus on geo-

metric tasks with synthetic and real images as the source

and target domains, but our approach also applies to other

pixel labeling domain transfer problems.

The anchor task helps domain adaptation in two ways.

First, learning shared features for the anchor task on both

domains and the main task on the source domain encour-

ages that the features are effective for the main task in the

target domain. Second, there may be a multitask learning

benefit, if the anchor task and main task have related labels

(e.g. “ceiling” is always horizontal) or the same features are

useful for both tasks.

Our HEADFREEZE method strengthens the first benefit,

while being simple enough not to require domain knowl-

edge on the task pair. Specifically, when our network fin-

ishes training on the source domain, its final layers have

learned not to output unlikely main-anchor prediction pairs

(e.g. flat nose, misaligned object edges) but to output likely

pairs. We term this knowledge “cross-task guidance”. But

this guidance may be ignored if the network overfits to tar-

get domain anchor task and outputs unlikely pairs at will.

Freezing the final layers fixes the guidance, and ensures the

main and anchor task classifiers continue to rely on the same

features and the same mapping from feature space to label

space.

We evaluate our methods on two pairs of synthetic and

real datasets, performing surface normal estimation in in-

door scenes and faces, using semantic segmentation and fa-

cial landmark as anchor tasks separately. We show the im-

portance of having anchor labels in both domains instead

of just one, and that HEADFREEZE outperforms compared

approaches, reaching results in facial images on par with a

popular recent model SfSNet [27] that leverages a domain-

specific illumination model. We also find that, surprisingly,

distribution matching adaptation methods can sometimes

hurt performance when the label distributions are different

between domains, where HEADFREEZE’s performance is

better behaved in our experiments.

In summary, our main contributions are:

• We propose a novel domain adaptation formulation for

pixel-labeling main tasks from synthetic to real, us-

ing free or readily available anchor task labels. Our

formulation is more widely applicable than existing

domain adaptation work that leverages auxiliary tasks

(but more restricted than unsupervised domain adapta-

tion).

• We introduce a HEADFREEZE technique to further uti-

lize the spatial and contextual cross-task guidance, that

can be applied to different pairings of anchor tasks

with the same main task.

2. Related work

Domain adaptation methods using auxiliary tasks

that are constrained to specific task pairs (TADA meth-

ods). An emerging line of work recently is using multi-task

learning or weakly supervised learning to help unsupervised

domain adaptation. Gebru et al. [10] adapt fine-grain clas-

sification between an easy domain and in-the-wild images

with the help of classes’ attributes. They adapt a consis-

tency loss between attributes and classes and domain adap-

tation losses from Tzeng et al. [36]. Yang et al. [39] adapts

lab-environment 3D human pose estimation for in-the-wild

data with only 2D pose ground truth, by jointly training on

2D and 3D labels and aligning domains with a GAN-based

discriminator. Fang et al. [6] adapts a robot grasping appli-

cation from simulation to real images, and from the indis-

criminate grasping task to instance-specific grasping. They

perform joint training on all existing labels and the optional

input of the instance mask. Inoue et al. [14] adapts image

object detection to paintings by generating pseudo-labels

which are filtered using auxiliary image-level labels.

Our paper has two major differences from these prior

work. (1) All prior work have very application-specific con-

straint formulation on the their task-pair relationship, mak-

ing them inapplicable to nearly all other tasks. Gebru et

al. [10] assumes the auxiliary and main annotation to have

a known linear relationship. Yang et al. [39] constraints the

2D pose and 3D pose to use the same 2D pose output layer.

Fang et al. [6] assumes both tasks’ output are both binary
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prediction, share the same output neuron, and the tasks are

differentiated by an extra input. Inoue et al. [14] must use a

hard-coded procedure to filter erroneous outputs of the main

detection task using the anchor task classification labels. In

contrast, our work requires only that the two tasks’ annota-

tions are spatial, without any constraint on the output layers

or the loss of each task – a much weaker assumption – and

models the cross-task guidance without hard-coded domain

knowledge. Our experiments show that the TADA formula-

tion helps task transfer scenarios beyond these task-specific

designs with explicit task relations. (2) We focus on tasks

with pixel-wise outputs, such as surface normal estimation

or keypoint detection (in the form of heatmaps for each key-

point).

Weakly supervised learning [42, 13, 17] uses a weaker

label to help infer a stronger label, e.g. when inexact

coarse category are provided to help fine-grain classifica-

tion. These methods are not concerned with domain adap-

tation, and are similar to our method only in the usage of an

auxiliary task with available annotations.

Unsupervised Domain Adaptation [25, 26, 12, 28, 9]

is similar to our formulation without the anchor task. Es-

pecially worth mentioning is Tsai et al. [34]. Instead of

matching feature space distributions, they adapt the struc-

tured output space to have a similar distribution between

domains. This is done by applying a GAN-based domain

confusion loss over the output from the two domains, and

optionally, the feature space as well. Our method addition-

ally uses the anchor task to help on top of these methods,

achieving a more fine-grained adaptation with the corre-

spondence the anchor brings. We experimentally show that

UDA may hurt performance due to systematic domain dif-

ference, while ours is more robust.

Semi-supervised Domain Adaptation, on the other

hand, assumes a small number of target domain samples are

labeled, compared to our assumption that a task with free or

available labels exists for both domains. Castrejon et al. [5]

have a variant similar to HEADFREEZE, but require main

task supervision, contrary to our anchor task idea. This is a

separate research direction orthogonal with ours.

Combining Multi-task learning and Domain Adap-

tation [36, 8, 38] is topically similar. Besides the TADA

works we mentioned earlier, most assume all tasks’ labels

from the target domain are available, and some still requires

specially designed losses or constraints for the task pair (e.g.

Tzeng et al. [36] constrains the all tasks to be classification

tasks). Whether their formulation are still effective in our

unsupervised case is beyond the scope of our paper.

Transfer Learning (e.g. Taskonomy [40]), including

Multi-task Learning [4] (e.g. UberNet [15]) and Meta-

transfer Learning (e.g. MAML [7]), are methods that use

knowledge learned from one task to help another. Most

methods assume all tasks are in the same domain or ignore

the domain difference (e.g. Taskonomy [40], UberNet [15]),

and some assume one task per domain or dataset (e.g. Liu et

al. [19]). Our idea makes use of the knowledge in one task
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Figure 2. Illustration of various compared methods and their train-

ing label usage. TADA methods (d-f) uses the anchor task on both

domains to establish clear correspondence in the anchor task an-

notation space. Our HEADFREEZE method first trains only on the

source domain, and then freezes the final network layers to con-

solidate the learned cross-task spatial and contextual guidance in

the output.

to help another, but we are more interested in how having

the anchor task knowledge in both domains can help domain

adaptation instead. Compared to prior methods, we empir-

ically show that the anchor task is needed in both domains

to bridge the domain gap.

Among these, UberNet [15] has similar formulation with

our MTL (+both anchor) ablation, but without using an an-

chor task shared by all samples. The paper also ignores any

domain difference, and only focuses on tasks in datasets

where it has supervision, making it irrelevant to domain

adaptation.

Some other methods consider performing the same task

on different domains as multitask learning [21], but in

our formulation of multitask learning (performing tasks

that have conceptually different labels) they are performing

semi-supervised domain adaptation instead.

Modeling output spatial structure [22, 34, 35] is re-

lated to how we preserve the cross-task guidance between

two tasks’ outputs. Mostajabi et al. [22] regularizes seman-

tic segmentation by training an autoencoder on the seman-

tic labels, and force the network to use the fixed decoder

to output its prediction. We are inspired by these ideas, but

are focused on how two tasks’ output spaces interact, and

generalizing across domains.

3. Method

To formulate our Task-Assisted Domain Adaptation

(TADA), we first start from a brief review of Unsupervised

Domain Adaptation (UDA). In UDA, we have labeled data

in the source domain (xS , yS) ∈ S , and unlabeled data in
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the target domain (xT , yT ) ∈ T . However, only the test set

in T may contain labels yT for evaluation purposes, and in

the train set, (xT ,∅) ∈ Str is provided. A model, usually

with the form of ŷ = g(f(x)), is trained on all available

data, where f(·) is the network backbone for input-feature

mapping, and g(·) is the head for feature-prediction map-

ping. In this paper, unless otherwise specified, we refer to

the networks’ second-to-last layer output as the “features”.

Usually, to reduce the domain gap, features in both do-

mains f(xS) and f(xT ) are encouraged to follow the same

distribution [9] (although this can also be done in output

space g(f(x·)) as well [34]). However, it is usually not

guaranteed that ground truths yS , yT follow the same dis-

tribution. When the ground truths distribute differently, the

ideal features and outputs have to distribute differently too.

Forcing either of them to distribute similarly would deviate

the prediction from the ground truth.

In our Task-Assisted Domain Adaptation scenario, in ad-

dition to the main task, an anchor task is defined for both

domains. The domains become (xS , ySm, ySa) ∈ S , and

(xT , yT m, yT a) ∈ T . Here, m and a stand for the main and

anchor tasks. In the train set of T , only (xT ,∅, yT a) ∈ Ttr

is provided, while yT m is unknown or unavailable. A

model, usually with the form of ŷm = gm(f(x)), ŷa =
ga(f(x)) is trained on those data, where gm(·) and ga(·)
are sub-modules specific to each task. In this work, we fo-

cus on the popular formulation above where the two tasks

share the same network backbone f(·).
In this work, we consider that the anchor task exists

solely to aid the learning of the main task. We evaluate

only on the target domain main task, not on the anchor. If

the anchor task is important, one can always train a separate

model for it using a variety of transfer learning methods.

3.1. MTL + anchor for effective feature learning

When prior work has performed Multi-task Learning

(MTL), either all tasks are assumed to be in one domain,

or one task is available in each domain (main in S , anchor

in T ). Formally, there can be three supervised losses in the

TADA scenario:

LSm = Lm (ySm, ŷSm) , (1)

LSa = La (ySa, ŷSa) , (2)

LT a = La (yT a, ŷT a) . (3)

In prior work, a multitask learning loss may only comprise

of two of the three:

LMTL (+src anchor) = LSm + λLSa, or (4)

LMTL (+tgt anchor) = LSm + λLT a, (5)

for “everything in source” and “one task per domain” re-

spectively. We instead use the alternative baseline – MTL

(+both anchor), which simply uses all the supervised losses.

LMTL (+both anchor) = LSm + λLSa + λLT a. (6)

Differences between these formulations are illustrated in

Figure 2.

We suggest two ways of choosing the anchor task and

obtaining its annotations. (1) Some anchor annotations can

be freely obtained, e.g. from very robust estimators that

work across most domains, such as facial keypoint detec-

tors. (2) Some anchor tasks can be popular tasks and already

have labels in many datasets, such as semantic segmenta-

tion. It should be chosen so obtaining it is much easier than

the main task annotation.

It may be tempting to hypothesize that the baseline losses

in Eq. 4, 5 will be enough for the TADA scenario, and that

collecting anchor labels on both domains is not necessary.

Maybe in Eq. 4 the multitask learning aspect can already

improve model generalization, and in Eq. 5 the network is

trained on the target domain, so it may be forced to adapt to

perform well on the anchor task. One can also add an unsu-

pervised domain adaptation loss to reduce the domain gap.

We experimentally show that these baselines underperform

MTL (+both anchor) and degrade performance.

In addition to any of these supervised losses, an unsu-

pervised domain adaptation loss can be added. For exam-

ple, adversarial losses (a.k.a. GAN losses) on the features

or the output space are used in prior work [9, 34] with a

discriminator network d(·) trained in a mini-max fashion:

min
f,g

max
d

L(f, g) + λadvLadv(f, g, d). (7)

We refer our readers to the prior work [9, 34] for the exact

formulation of Ladv.

3.2. HEADFREEZE for preserving cross­task guidance

Building on MTL (+both anchor), we further propose our

HEADFREEZE method to leverage the cross-task guidance

that can be used to guide the target domain main task based

on the target anchor task.

The final layers of a trained multitask network can can

be seen as a decoder from its input feature space to the

joint label space of the two tasks. When we train these lay-

ers on the source domain to convergence, they have only

learned to predict output pairs for main and anchor tasks

that are contextually and spatially coherent, and have never

learned to output incoherent pairs (such as misaligned ob-

ject edges or shapes between tasks, and contradictory out-

puts like vertical ceilings or flat noses). We assume that the

final layers can incorporate this coherency knowledge, and

are more likely to predict coherent outputs. It follows that

the coherency knowledge can act as a cross-task guidance,

so training on target anchor task improves the target main

task by ruling out incoherent predictions.

However, it is possible that the model overfits to the

target domain anchor task, ignores or forgets any cross-

task guidance learned in the source domain. We force the

cross-task guidance to persist across domains with HEAD-

FREEZE. We first train the multitask network on the source

domain, using Eq. 4. When it approaches convergence (or
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just before it overfits to one of the tasks), we freeze the pa-

rameters of its final layers. We then train only the lower lay-

ers jointly on all available labels using Eq. 6, forcing their

output to go through the pre-trained final layers. See Fig-

ure 2 (e,f) for an illustration. This procedure can be trained

end-to-end by modifying the loss and optimizer’s list of

variables after the convergence of the first step, which is

easy to do in modern frameworks such as PyTorch [23].

For implementation details such as network structure and

the number of layers frozen, please see Section 4.4.

4. Experiment setup

We validate our methods and claims on two sets of exper-

iments, facial images and indoor scenes, both adapting from

synthetic data to real images – our motivating scenario.

4.1. Facial images

We perform facial surface normal estimation as the main

task, and for the anchor task we choose 3D facial keypoint

detection with automatically generated ground truth. Intu-

itively, 3D keypoints can inform surface information, and

thus is a good form of guidance. As 3D keypoints can cur-

rently be reliably generated by methods that generalize well

across domains, we use this to show whether free anchor

task labels can be helpful for another label-deprived task.

We adapt from synthetic data generated by Sengupta et

al. [27] (“SfSsyn”), using 3DMM models [1]. The dataset

provides facial images with surface normal ground truth,

with synthetic faces both frontal and looking to the side. We

change the reference frame of the surface normal to camera

coordinates to follow the definition of all other datasets.

For the target domain, we use real data from FaceWare-

house [3] (“FaceWH”). The dataset provides facial models

fitted using a morphable model followed by a laplacian-

based mesh deformation without any PCA reduction, so

the surface normals rendered from them are both clean and

faithful to the raw RGBD scan.

None of these two datasets provide an official split. We

split the subjects (separated by dataset folders) into 70% for

training, and 15% each for validation and test.

We obtain the anchor annotations for free. On both

datasets, we use state-of-the-art Bulat et al. [2] to extract

both 3D keypoints and 2D keypoints using their separate

models. 3D keypoints are used as anchor training ground

truth. We compute the facial region mask from the 2D key-

points for performing evaluation, which is a standard prac-

tice in facial surface normal estimation [33, 27].

During training, we use the standard losses for both

tasks: for surface normal estimation, cosine loss (see [33]);

for 3D keypoint detection, a heatmap regression for the 2D

positions, and a vector regression for depth (see [2]). Dur-

ing evaluation of surface normal, we use five metrics in the

literature. Specifically, the angular difference between pre-

dicted 3D surface normal and the ground truth is treated as

the error and computed for each pixel. Then we aggregate

the root mean square angular error (RMSE), mean of the er-

ror (Mean), median of the error (Median), and percentages

of pixels with errors below 11.25◦ and 30◦. Only valid re-

gions are considered, so we ignore pixels outside the face or

where there is no ground truth (e.g. where depth is missing

and surface normal cannot be correctly estimated).

4.2. Indoor scenes

We again perform surface normal estimation as the main

task, but use semantic segmentation as the anchor task to

demonstrate, since semantic segmentation has annotations

available across many datasets. The semantic boundaries

can inform discontinuities in surface normal space, and

some categories such as ceilings have very constrained nor-

mal directions. Other categories with no fixed shape or ex-

pected direction can be hard to improve.

We adapt from the SUNCG dataset [31] with physically-

based rendering [41], which provides images, semantic

segmentation, and surface normal ground truth. We use

NYUdv2 [29] as the target domain, with additional surface

normal estimated from depth by Ladicky et al. [16]. We

only use the labeled portion of the dataset.

SUNCG is large, so we use a 90%-5%-5% split for train,

validation, and test. We use NYUdv2’s official split. Nor-

mal estimation loss and metrics are the same as before, and

semantic segmentation is trained using cross-entropy.

4.3. Compared methods

Since we address the domain adaptation problem, we

compare to unsupervised adaptation methods that applies

either a multi-level version of Ganin et al. [9] or state-of-

the-art Tsai et al. [34], either on the single task model (DA),

or on our method for further improvement (HEADFREEZE

+DA). Adversarial training is brittle and not all configura-

tions work too well. We implement our own version and

perform hyperparameter tuning, and omit some of the un-

derperforming combinations. We also compare to an oracle

method that uses both tasks labels on both domains, includ-

ing the target domain main task. This gauges how far each

method is from fully successful adaptation.

For facial surface normal, we compare to a recent and

popular intrinsic decomposition method SfSNet [27], which

produces surface normal based on extra domain knowledge

(lighting model for unsupervised learning). We use their re-

leased model trained on synthetic data and on unsupervised

CelebA [20], a much larger dataset. This comparison only

serves to prove that our method is effective instead of being

a controlled experiment, since neither our network structure

or external knowledge is similar.

For ablation studies, we compare to baselines shown in

Fig. 2: single task baseline, multitask with only one domain

(MTL (+src anchor)), multitask with source main task and

target anchor task (MTL (+tgt anchor)) as used in prior work

such as Liu et al. [19], and MTL (+both anchor).
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Faces: SfSsyn→FaceWH Indoor: SUNCG→NYUdv2

ySm ySa yT m yT a < 11.25◦ < 30◦ RMSE Mean Median < 11.25◦ < 30◦ RMSE Mean Median

Baseline X 0.424 0.929 17.8 14.8 12.8 0.298 0.683 33.5 25.8 18.8

Baseline+DA X 0.456 0.937 17.2 14.2 12.1 0.316 0.703 33.3 25.2 17.6

HEADFREEZE (ours) X X X 0.519 0.954 15.8 12.9 10.9 0.301 0.708 31.8 24.6 18.0

HEADFREEZE (ours)+DA X X X 0.455 0.935 17.2 14.2 12.1 0.316 0.715 32.0 24.4 17.4

Oracle X X X X 0.907 0.995 7.8 6.2 5.2 0.340 0.734 30.4 23.1 16.5

SfSNet [27] – – – – 0.495* 0.965 15.2 12.9* 11.3*

Table 1. Comparison in our two experimental settings. Unsupervised domain adaptation with Tsai et al. [34] is shown for indoor scenes,

and with Ganin et al. [9] shown for faces, whereas the other combinations underperform (see supplemental). Our HEADFREEZE method is

comparable to surface normal estimated from SfSNet, without the use of a lighting model. HEADFREEZE +DA performs closest to oracle

in indoor scene, but domain adaptation methods fail to improve HEADFREEZE for faces. Statistical significance computed from 3 runs. (*)

denotes a method with domain knowledge performs equal to or worse than our best performing method.

Faces: SfSsyn→FaceWH Indoor: SUNCG→NYUdv2

ySm ySa yT m yT a < 11.25◦ < 30◦ RMSE Mean Median < 11.25◦ < 30◦ RMSE Mean Median

Baseline X 0.424 0.929 17.8 14.8 12.8 0.298 0.683 33.5 25.8 18.8

MTL (+src anchor) X X 0.409 0.935 17.7 14.9 13.1 0.280 0.666 34.1 26.6 19.8

MTL (+tgt anchor) X X 0.162 0.791 24.3 21.8 20.4 0.260 0.662 32.9 26.2 20.6

MTL (+both anchor) X X X 0.492 0.953 16.0 13.3 11.4 0.275 0.675 32.4 25.7 19.8

HEADFREEZE (ours) X X X 0.519 0.954 15.8 12.9 10.9 0.301 0.708 31.8 24.6 18.0

Table 2. Ablation studies. See Figure 2 for each method’s formulation. Other MTL baselines underperform while MTL (+both anchor) out-

performs, indicating the importance of shared anchor tasks. Our HEADFREEZE technique further boosts MTL (+both anchor) performance.

Statistical significance computed from 3 runs.

4.4. Implementation details

Code will be released. We use a ResNet50 [11] with

FPN [18] for our network backbone, with the ResNet pre-

trained on ImageNet [24]. We use the variant with 3 up-

sampling layers with skip connection, and used a decon-

volution layer as the output layer for both tasks, making

the output 50% of the input resolution. For HEADFREEZE,

we freeze the layers after the second upsampling layer, in-

cluding any skip connection weights. Some tasks require

additional non-spatial outputs. A common practice of 3D

keypoint estimation [2] is to output a heatmap for projected

2D positions, and a vector for 3D depth. We add a fully-

connected branch of 2 layers with 256 hidden units after the

global average pooling over the second upsampling layer’s

output. Batches of the same size are sampled from each

domain for each iteration. We choose λ so losses from dif-

ferent domains and tasks have similar magnitudes. For ad-

versarial training and dataset processing, please refer to our

supplemental material.

Hyperparameter tuning is hard in TADA, just like in any

unsupervised domain adaptation, due to the lack of target

domain main task ground truth in validation. Although by

evaluating against available ground truth we can tune most

hyperparameters (e.g. stop criteria, learning rate, layers to

freeze), some parameters critical to target main task (e.g.

discriminator network complexity, its learning rate and loss

weights) may barely cause any change. We empirically find

that the discriminator accuracy being very frequently lower

than 55% and good qualitative results (absence of artifacts)

are good indicators of successful adaptation, and tune the

parameters accordingly.

5. Results

Table 1, 2 shows our results and ablation studies.

Facial images. On SfSsyn to FaceWH adaptation,

HEADFREEZE outperforms the non-adaptation baseline.

Adding domain adaptation [9] does improve baseline re-

sults, but still underperforms our HEADFREEZE method.

HEADFREEZE is comparable to the popular SfSNet [27],

which underperforms on Median and 11.25◦ but outper-

forms on RMSE and 30◦. However, all methods are still

quite far from the oracle method that uses target domain

main task annotations.

Perhaps a very surprising observation is that the unsuper-

vised domain adaptation methods added to HEADFREEZE

would hurt performance instead of improving them. In fact,

HEADFREEZE without adaptation is the best method apart

from the oracle (and SfSNet). The adaptation puts HEAD-

FREEZE at the same level with DA [9], eliminating any ad-

vantage brought by the anchor task. We have vigorously

tuned the adversarial loss hyperparameters, yet still cannot

find a configuration that would not hurt performance. In

comparison, HEADFREEZE (and even MTL (+both anchor)

in Table 2) work naturally. We analyze the reason for our

robustness in Section 5.1.

In the ablation study, the baseline and MTL with anchor
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(a) Oracle (b) Baseline + DA (c) MTL (+tgt) (d) MTL (+both)

center

mouth

nose tip

source
target

Figure 3. PCA visualization of the subtle differences between methods’ feature space at different facial keypoint locations. (a) Oracle

does not have fully overlapping domain due to systematic distribution differences. (b) Forcing domains’ distributions to be similar can

deviate the features from the oracle and hurt performance (top row). (c) Training MTL with one task per domain may encourage using

separate feature space regions for different domains (bottom row). (d) MTL (+both anchor) produces feature distributions slightly more

visually similar to the oracle. Disclaimer: the baseline’s visualization (not shown) is also similar to the oracle, so this cannot indicate

higher performance. Other facial locations may not exhibit observed behaviors as clearly. Best viewed in color.

Input Ground Truth Baseline Baseline+DA MTL (+tgt anch) MTL (+both) HeadFreeze HeadFreeze+DA SfSNet

Input Ground Truth Baseline Baseline+DA MTL (+tgt anch) MTL (+both) HeadFreeze HeadFreeze+DA Oracle

Figure 4. Qualitative results for compared methods. For domain adaptation, Ganin et al. [9] is shown for facial images (top), and Tsai et

al. [34] is shown for indoor scenes (bottom). Best viewed in color.

on either one domain all underperform. Two observations

are interesting: (1) MTL (+src anchor) does not perform

very differently from the baseline on the target domain, in-

dicating that the effect of multi-task learning is limited here.

(2) MTL (+tgt anchor) vastly underperforms the baseline

when trained with one task per domain. We hypothesize that

despite the network being trained on the target T , the task

performed on T is too different, which encourages the net-
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< 11.25◦ < 30◦ RMSE Mean Median

Baseline 0.418 0.913 18.6 15.3 13.0

Baseline+DA [9] 0.495 0.944 16.6 13.5 11.3

HEADFREEZE 0.550 0.958 15.2 12.4 10.4

HEADFREEZE +DA [9] 0.573 0.963 14.7 11.9 10.0

Table 3. Facial normal estimation, with SfSsyn-frontal as the

source domain, which has head pose distribution similar to

FaceWH. In this experiment, domain adaptation [9] always

helps performance, indicating that systematic dataset difference

is the reason distribution matching adaptation fails, which HEAD-

FREEZE is robust to.

work to learn very different features for the tasks, harming

adaptation. MTL (+both anchor) outperforms other MTL

methods, indicating the importance of the anchor task being

trained on both domains, affirming our hypothesis. HEAD-

FREEZE further improves all criteria by a margin, implying

that the cross-task guidance learned in the source domain

can be helpful for the target domain as well.

Indoor scenes. We still see both HEADFREEZE and do-

main adaptation [34] improve over the non-adaptation base-

line, but it is inconclusive whether HEADFREEZE outper-

forms domain adaptation [34]. But we observe that HEAD-

FREEZE +DA further improves the adaptation-only method,

closing much of the gap between baseline and the oracle.

In Table 2’s ablation study, all MTL variations suffer

from negative transfer, i.e. main task performance degrades

as the second task is jointly learned. We still observe that

MTL (+both anchor) outperforms other MTL variants, indi-

cating that it has an adaptation effect that other variants do

not possess, despite the negative transfer. We also observe

that HEADFREEZE makes a larger improvement on MTL

(+both anchor) than in the facial experiments.

5.1. Further analysis

Failure of adaptation and face label distribution. We

analyze why the compared domain adaptation methods fail

to improve HEADFREEZE in the SfSsyn-FaceWH experi-

ment. After trials and errors, we found that the difference

of head pose distributions between domains may be a ma-

jor contributor. We generated a second version of the Sf-

Ssyn dataset with only frontal faces (“SfSsyn-front”), with

rotation distribution closely following the estimated poses

from the target dataset. We evaluate the domain adaptation

methods with SfSsyn-front as the source domain in Table 3

instead, with all methods using the same hyperparameter.

The trends and conclusions are exactly the same, except

that unsupervised domain adaptation always helps, making

our HEADFREEZE + DA the top method. This experiment

indicates that the distributional difference is indeed why

adaptations [9, 34] fail. We conclude that while these prior

works are effective, they would hurt performance when do-

main ground truths are differently distributed, whereas our

methods are more robust to such differences. While these

differences may sometimes be easily eliminated in data syn-

thesis procedures, other times they may be expensive to

eliminate, or difficult to pinpoint.

Impact on feature space. To better understand the im-

pact of different methods on the feature distribution, we

visualize their feature space for source and target domain.

Since features at different spatial locations may encode in-

formation differently, we extract the feature at separate fa-

cial keypoint locations in the facial experiment. For each

location (e.g. nose tip), we perform PCA and obtain the top

two components, and visualize them in Fig. 3. Please refer

to its caption for observations. This experiment resonates

with our hypothesis that training MTL (+tgt anchor) with

one task per domain would map source and target to differ-

ent feature space regions, and that blindly matching feature

distribution may be suboptimal.

Qualitative results are shown in Figure 4. For faces,

the synthetic dataset has less facial expressions than Face-

Warehouse, so baselines struggle with e.g. open mouths.

Unsupervised adaptation [9] tends to erroneously force the

cheeks and nose normals to the side to force the output look

like side-facing faces locally. The ground truth is not ex-

tremely faithful to the image due to being fitted on RGBD

scans, and both our HEADFREEZE method and SfSNet [27]

capture local details better than the ground truth, although

SfSNet performs better with open mouths due to their usage

of a lighting model on unlabeled real faces.

For indoor scenes, HEADFREEZE improves the perfor-

mance for shelves, cabinets, and ceilings more effectively

than the facial datasets, possibly due to their semantic la-

bels providing much information for their surface normal.

6. Summary and future work

We propose a strategy to extend prior Task-assisted Do-

main Adaptation methods by eliminating the need for task-

specific relationship formulations. We use spatial informa-

tion of a free or already available shared anchor task to align

both features between domains and spatial prediction and

context between tasks, and propose HEADFREEZE to fur-

ther leverage the cross-task guidance to improve target do-

main main task. We show effectiveness and robustness of

using anchor tasks against multitask baselines, and HEAD-

FREEZE against conventional adaptation methods.

There are many open questions to answer for the effect

of anchor tasks. How do we make sure main task get infor-

mation from anchor task output directly? Would a design

built on PAD-Net [38] work? Can we adapt multiple main

tasks from only one anchor task to leverage all the rich la-

beling of synthetic data? How cheap can the anchor task be

made? Can Taskonomy [40] help in choosing which anchor

task to use? We leave these questions for future work.
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