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Abstract

“Making black box models explainable” is a vital prob-

lem that accompanies the development of deep learning net-

works. For networks taking visual information as input,

one basic but challenging explanation method is to identify

and visualize the input pixels/regions that dominate the net-

work’s prediction. However, most existing works focus on

explaining networks taking a single image as input and do

not consider the temporal relationship that exists in videos.

Providing an easy-to-use visual explanation method that is

applicable to diversified structures of video understanding

networks still remains an open challenge. In this paper, we

investigate a generic perturbation-based method for visu-

ally explaining video understanding networks. Besides, we

propose a novel loss function to enhance the method by con-

straining the smoothness of its results in both spatial and

temporal dimensions. The method enables the compari-

son of explanation results between different network struc-

tures to become possible and can also avoid generating the

pathological adversarial explanations for video inputs. Ex-

perimental comparison results verified the effectiveness of

our method.

1. Introduction

Deep neural networks have achieved remarkable perfor-

mance in various tasks [26, 6, 36, 39, 17, 3, 15, 16]. Besides

good results, sometimes people may also naturally concern

about the interpretability of a network, i.e., why a certain

prediction is derived by a network for a given input. As one

direction towards interpreting these networks, visual expla-

nation (also known as attribution) methods, which iden-

tify and visualize the contribution of each pixel/region of a

given input to the output of a trained network, have attracted

much attention recently [37, 29, 32, 4, 23, 1].
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Figure 1. The visual explanation methods for deep neural net-

works could be generally divided into three categories. The up-

per block demonstrates the activation-based and backprop-based

methods, which usually utilize activations or gradients extracted

from the interior layers of a network to identify the significant

places in the input frames. The lower block demonstrates the

perturbation-based methods, who visually explain a black-box net-

work by directly operating on the input and locating the area that

affects the output most in a forward manner. In this paper, aiming

at visually explaining video understanding networks via a model-

agnostic method, we investigate the perturbation-based attribution

method on video classification networks.

Recently, researchers begin to focus on the visual ex-

planation methods of video understanding networks. Most

existing works on visual explanation methods are concen-

trated on individual images [32, 27, 38, 20, 23, 11, 10].

Directly applying these methods to videos usually cannot

obtain satisfactory explanation results since it is difficult for

these methods to handle the complex nonlinear and even re-

current spatiotemporal dependencies in videos. Although

there are a few works [1, 31] turning on the visual expla-

nation methods for video processing networks, they are de-

signed specifically for only a fixed type of network (e.g. 3D-

CNNs or CNN-RNN) and cannot be generalized to other

networks.

The perturbation-based approach [11, 10] is a promising

direction for visually explaining video understanding net-

works since it is agnostic to the network structure. As il-
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lustrated in Fig. 1, the perturbation-based method operates

on the input and then observes changes in the model out-

puts. Through iteratively adjusting preserved pixels/regions

in the input video and observing the effect on the output of

the network, the perturbation-based methods aim to find a

small subset of the input, with the preservation of which

a large output value can be still retained. However, one

cannot directly apply the previous perturbation-based ap-

proaches (e.g. [11, 10]) that were applied to individual im-

ages to video understanding networks. This is because

pathological explanation results caused by the adversarial

effect would be easily produced if no smoothness constraint

on the temporal dimension is incorporated [18, 33, 11, 10].

In this paper, we propose a generic method for visually

explaining video understanding networks by incorporating

a perturbation-based method enhanced by a spatiotemporal

smoothness loss function. This method can be easily ap-

plied to any video understanding networks without detailed

architectural knowledge. Furthermore, the loss function ex-

ploits the spatiotemporal dependencies between frames to

generate explanation results smoothed in both temporal and

spatial dimensions and thus avoid the pathological adver-

sarial explanations for video understanding networks. The

contribution of this paper is three-fold:

• We are the first to introduce perturbation-based method

to visually explain video understanding networks. The

proposed method can be easily utilized on any diversi-

fied and complicated video understanding networks.

• We introduced a novel loss function to regularize the

spatiotemporal smoothness of the visual explanation

results derived by the perturbation-based method.

• Our experimental results verified that the proposed

perturbation-based method equipped with our loss

function could achieve competitive performances on

multiple datasets.

2. Related Work

In this section, we introduce existing attribution ap-

proaches for the visual explanation, including methods

mainly focused on networks for individual images (referred

to as ‘image attribution method’ below), as well as meth-

ods especially proposed for video understanding networks

(noted as ‘video attribution method’ below).

2.1. Image Attribution Approaches

The goal of an image attribution method is to tell us

which elements of the input (e.g., pixels or regions for an

image input) are responsible for its output (e.g., the soft-

max probability for a target label in the image classification

task). The results are commonly expressed as an impor-

tance map in which each scalar quantifies the contribution

of the element in the corresponding position. Differing from

the attention mechanism that is commonly embedded in a

deep network to enhance performance by removing redun-

dancies in input, attribution methods are applied to a model

with fixed parameters to provide explanations.

Backpropagation-based (BP-based) methods are estab-

lished upon a common view that gradients (of the out-

put with respect to the input) could highlight key regions

in the input since they characterize how much variation

would be triggered on the output by a tiny change on the

input. [5] and [25] have shown the correlation between

the pixels’ importance and their gradients for a target la-

bel. However, the importance map generated by raw gradi-

ents is typically visually noisy. The way to overcome this

problem could be partitioned into three branches. DeCon-

vNets [37] and Guided Backprop [29] modify the gradient

of the ReLU function by discarding negative values during

the back-propagation calculation. Integrated Gradients [32]

and SmoothGrad [27] resist noises by accumulating gradi-

ents. However, methods based on unmodified backpropaga-

tion tend to capture the average properties of the network,

and thus are difficult to obtain class-discriminative explana-

tion results. LRP [4], DeepLift [24] and Excitation Back-

prop [38] propose modified backpropagation schemes to

overcome this challenge. But a modified backpropagation

scheme may also limit the user-friendliness of the method,

because not all operations used in networks may be com-

patible by the scheme.

Activation-based methods generate the importance map

by linearly combining the activation maps taken from the

intermediate convolutional layer of a network. Different

methods vary in the choice of combining weights. CAM

[40] selects parameters on the fully-connected layer as

weights, while Grad-CAM [23] produces the weight by av-

erage pooling the gradients from the output to the activa-

tion. Grad-CAM++ [7] replaces the average pooling in

Grad-CAM with coefficients calculated by second deriva-

tive. Since the intermediate activation maps are likely to

have a lower resolution than input images on networks with

pooling layers, the visual explanation results derived by

these methods tend to be coarse-grained. For example,

when these methods are utilized to visually explain 3D-

CNNs with temporal pooling layers, adjacent input frames

will be allocated with the same visual explanation result.

Perturbation-based methods start from an intuitive as-

sumption that the change of outputs could reflect the im-

portance of certain elements when they are removed or pre-

served only in the input. However, in order to find the opti-

mal results, theoretically it is necessary to traverse the ele-

ments and their possible combinations in the input and ob-
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serve their impact on the output. Due to the high time cost

of this traversal process, how to obtain an approximate op-

timal solution faster is the research focus of this problem.

Occlusion [37] and RISE [20] perturb an image by sliding

a grey patch or randomly combining occlusion patches, re-

spectively, and then use changes in the output as weights

to sum different patch patterns. LIME [22] approximates

networks into linear models and uses a super-pixel based

occlusion strategy. Meaningful perturbation [11] converts

the problem to an optimization task of finding a preser-

vation mask that can maximize the output probability un-

der the constraints of area ratio and smoothness. Real-time

saliency [8] learns to predict a perturbation mask with a sec-

ond neural network. Qi et al. [21] improved the optimiza-

tion process by introducing integrated gradients and Wagner

et al. [35] introduced certain restrictions in the optimiza-

tion process to avoid adversarial results. Fong et al. [10]

introduced the extremal perturbation scheme and a special

smooth mask to solve the problem of imbalance between

several constraining terms.

2.2. Video Attribution Approaches

The goal of the video attribution is to obtain the regions

taken important by a network of the input, in both spatial

and temporal dimensions. The increase of dimension means

inflated searching space and time cost. [12] and [2] respec-

tively applied pure gradients and LRP to ground the input

regions taken important by a video understanding network.

However, directly utilizing image attribution methods to

videos is likely to obtain unsatisfactory explanation results

since spatiotemporal dependencies between frames are not

considered by these methods. EB-R (excitation backprop

for RNNs) [1] firstly extended the Excitation Backprop at-

tribution method to the framework for videos, to be specific,

the CNN-RNN structure. Grad-CAM [23] is inherently ap-

plicable to network processing videos. [31] and [30] adapt

activation-based methods for 3D convolutional networks to

produce visualization results over time. However, both the

EB-R and Grad-CAM family cannot treat the network to-

tally as a real black-box, since they have to take the gra-

dients or activations from the interior of a network, which

obstructs their application on increasingly complicated and

diversified video understanding networks.

3. Proposed Approach

In this section, we present the perturbation-based visual

explanation method for video understanding networks. Let

X = {xt}
T
t=1,xt ∈ R

H×W×3 represents a video of T
frames with width W and height H . The proposed method

is investigated on a function Φ that maps the image se-

quence to a softmax probability Φc(x) ∈ R for a given

target class with the index of c among all C classes. The

goal of video attribution methods is to derive a sequence

of importance maps M = {mt}
T

t=1 which assign to each

pixel xi,j,t a value mi,j,t ∈ [0, 1]. Here i, j refer to the

spatial location of each pixel.

3.1. Perturbation­based visual explanation

The preservation version of the perturbation-based attri-

bution method [11] is to find a reserving subset of the input

which is as small as possible while retaining the prediction

accuracy on a specified target label. The optimization target

can be formulated as follows when the method is applied to

a network taking an image x as input.

m
∗ = argmin

m

{λ||m||1 − Φc(m⊗ x)}, (1)

where m is the perturbation mask which has the same shape

as the input image x, || · ||1 denotes the L1 norm for matri-

ces, λ controls the scope of regularization, and ⊗ represents

the local perturbation operation on the input image accord-

ing to the mask. The operation can be mathematically writ-

ten as m⊗x = m ·x+(1−m) · (k ∗x), where · denotes

the Hadamard multiplication, ∗ represents convolution, and

k denotes a kernel for Gaussian blur. The first item in Eq. 1

constrains the preservation ratio on the input image to be

small while the second item encourages the model’s predic-

tion accuracy to be as high as possible.

However, the balance between the two constraint targets

is difficult to control, which thus makes it difficult to obtain

an optimal solution. In order to alleviate these two nega-

tive impacts, we take advantage of the extremal perturbation

(EP) according to [10], which decomposes the optimiza-

tion procedure into two steps. The first step finds a mask

that maximizes the output probability under a constrained

preservation ratio a, i.e.,

ma = argmax
m:‖m‖1=aHW

Φc(m⊗ x). (2)

The second step sets the lowest bound Φ0 for the output

probability, and searches for the smallest mask achieving

this bound, i.e., finds the smallest preservation ratio a∗ as

a∗ = min{a : Φc(ma ⊗ x) ≥ Φ0}. (3)

The final extremal solution ma∗ is therefore obtained.

Eq. 2’s optimization is commonly solved by stochastic

gradient descent (SGD) method. In order to constrain the

masks’ preservation ratio to approach the setting target a,

Eq. 2 is also adjusted by a loss function that regularizes the

mask, which enforces values ranked in the top a to be close

to 1 and the remaining values to be close to 0, i.e.,

ma = argmin
m

{λ||vecsort(m)−ra||
2−Φc(m⊗x)}, (4)

where vecsort(m) ∈ R
HW is a vector in which all the val-

ues of a mask are sorted and arranged in a descending order

and ra is a template vector consisting of aHW ones fol-

lowed by (1− a)HW zeros.

1122



3.2. Spatio­temporal perturbations for videos

The preservation ratio, which determines how many pix-

els will be preserved in the input, is a key constraint in the

optimization procedure of extremal perturbation. In this pa-

per, we firstly extend the original spatial constraints to the

spatiotemporal dimensions, so we can constrain the overall

preservation ratio on all the frames. Furthermore, in order

to obtain the result with better spatiotemporal smoothness,

we introduce an effective loss function, which can consider

the inter-frame relationship in the optimization.

3.2.1 Extremal perturbation 3D

When adopting extremal perturbations to video cases, we

constrain the overall preservation ratio in the whole spa-

tiotemporal dimensions, i.e., the distribution of all masks’

values is optimized together in a 3D space. We refer to this

method as Extremal Perturbation 3D (EP-3D). Hence, the

energy function for optimizing masks under a preservation

ratio constraint of v could be represented as

Mv = argmax
M :

∑
T
t=1

‖mt‖1=vTHW

Φc(M ⊗X). (5)

Then we can transfer Eq. 4 as below for optimizing by SGD.

Mv = argmin{λ||vecsort(M)− rv||
2 − Φc(M ⊗X)},

(6)

where rv is a template vector consisting of vTHW ones

followed by (1− v)THW zeros.

3.2.2 Spatio-temporal smoothness constraint

Neural networks are vulnerable to adversarial inputs, e.g.,

images that are unrecognizable to humans may be rec-

ognized by networks as some objects with high confi-

dence [19], and images that are modified in a way imper-

ceptible to humans may mislead networks to have totally

wrong predictions [14]. For perturbation-based methods

derived from Eq. 1, since their optimization targets are sim-

ilar to that for generating adversarial inputs [18, 13, 33],

they are prone to producing pathological solutions that can

cause the adversarial inputs. The smoothness constraint is

a common method to alleviate the generation of patholog-

ical adversarial solution. For example, meaningful pertur-

bations [11] incorporated an extra optimization item to reg-

ularize the shape of perturbation regions in masks, and ex-

tremal perturbations [10] proposed a special up-sampling

operator based on 2D transposed convolution to generate

masks with spatial smoothness. However, only smoothness

in the spatial dimensions are constrained by these methods.

When extending the perturbation-based method to the video

input with an extra temporal dimension, it is also necessary

to constrain the smoothness of perturbations in the temporal

dimension.

One easy way to constrain mask temporally is to use

higher-order differences between frames as an energy func-

tion, e.g., using second-order differences to control the

smoothness. However, it tends to constrain masks to be con-

sistent which will lose the sensitivity to features on different

frames. Considering the spatiotemporal dependencies be-

tween frames, a better idea is to smooth masks in spatial and

temporal dimensions jointly rather than merely in temporal.

Hence we introduce a special loss function LK that aims to

gather the high-value pixels in small regions into some pre-

defined shape by doing 3D convolution on the importance

maps M . The K in LK denotes the kernel used in convolu-

tion, which has a shape of (HK+1)×(WK+1)×(TK+1).
The loss function can be defined as below,

LK(M) = ||vecsort(M ∗K)− rv′ ||2, (7)

where ∗ denotes 3D convolution with stride. In the ex-

periment, we use a ellipsoid kernel which defined as ∀t ∈
{0, ..., TK − 1}, i ∈ {0, ..., HK − 1}, j ∈ {0, ...,WK − 1},

kt,i,j =

{

0, ( 2t
TK−1

−1)2+( 2i
HK−1

−1)2+( 2j

WK−1
−1)2>1;

1, otherwise,
(8)

Ki,j,t = Z−1ki,j,t. (9)

Here Z =
∑

i,j,t ki,j,t is the normalization factor. The loss

function regularizes the first v′ high values in the convoluted

masks M ∗ K to be as close as possible to 1. v′ denotes

the expected proportion of value-one among all values in

the convolution masks, which is calculated as vTHW/Z to

satisfy the constraint for preservation ratio in masks M . In

experiment, we set the size of the kernel K to be 11×11×7
and convolution stride to be 11. This will guarantee the

high-value pixels of the mask to be concentrative as much

as possible, as well as retain the flexibility in shape to adapt

to the spatiotemporal variance in the input frame sequence.

We call this method for visually explaining video under-

standing networks as Saptio-Temporal Extremal Pertur-

bation (STEP) considering that it could get smoothing ex-

tremal perturbation results in both spatial and temporal di-

mensions.

4. Experiments and Results

4.1. Experiments setting

Video classification networks are characterized by com-

plicated and various architectures. To experimentally com-

pare different visual explanation methods for video clas-

sification networks, we adopt two kinds of representative

structures: CNN-RNN and 3D-CNNs. Specifically, we se-

lect two exemplar networks, i.e., VGG16LSTM [1] and

R(2+1)D [34] under the two model structures, respectively.

We validate methods with the two model structures on sub-

sets of two video datasets: UCF101-24 and EPIC-Kitchens
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since their bounding box annotations are (partially) avail-

able.

UCF101-24 [28] is a subset of the UCF101 dataset, con-

taining 3207 videos of 24 classes that are intensively labeled

with spatial bounding box annotations of humans perform-

ing actions. In our experiment, we trained a VGG16LSTM

model and an R(2+1)D model on the UCF101-24 dataset

by the training set defined in THUMOS13. To generate

importance maps for evaluating different visual explanation

methods, we randomly selected 5 videos on each category

to form a test set of 120 videos in total.

EPIC-Kitchens [9] is a dataset for egocentric video

recognition, where 39596 video clips segmented from 432

long videos are provided, along with action and object la-

bels. We choose the top 20 classes with the most number

of clips to form the EPIC-Object and EPIC-Action sub-

datasets, and randomly selected 5 clips for each class to

generate two test sets and used the remaining clips to train

models. Bounding boxes for the ground-truth objects in

EPIC-Objects are provided in 2fps. On the EPIC-Action

task, we connect a randomly selected part of each clip with

its adjacent background frame sequence, to form a set for

testing the temporal localization performance of attribution

methods.

4.1.1 Model training

We trained a VGG16LSTM model and an R(2+1)D

model on every video classification task. We use the

VGG16LSTM model as it is defined in [1] and we fine-tune

it on each dataset. To avert the gradient vanishing, we block

the gradient propagation on hidden states and take the av-

erage of softmax probabilities on all-time steps as the final

prediction. For the R(2+1)D model, we use R(2+1)D-18

structure [34] and fine-tune the network upon its pre-trained

parameters on Kinetics-400. Both in training and testing

phases, we sample 16 frames as the input by splitting one

video clip into 16 segments and selecting one frame in each

split. The classification accuracy for each network on every

task’s test set is shown in Tab. 1. Notably, the accuracy on

the UCF101-24 test set is nearly 100%. We think this is due

to the models are pre-trained on the UCF101 datasets.

Table 1. Top 1 & 5 classification acc. of test networks

Acc. UCF101-24 EPIC-Object EPIC-Action

R(2+1)D 1.00 / 1.00 0.57 / 0.85 0.77 / 0.97

V16L 0.97 / 1.00 0.55 / 0.84 0.81 / 1.00

4.1.2 Evaluation metrics

As most previous works did, we mainly adopt the ‘Point-

ing Game’ metric to evaluate the effectiveness of different

visual explanation approaches. This metric takes advantage

of manually annotated bounding boxes to evaluate whether

the importance maps generated by an attribution method

could locate the “key” spatial regions or temporal segments,

which is called spatial pointing game (S-PT) and temporal

pointing game (T-PT) respectively. We perform the S-PT

evaluation on the UCF101-24 and EPIC-Object test sets.

Following [1], we set a tolerance radius of 7-pixel, i.e., one

hit is recorded if a 7-pixel radial circle around the maxi-

mum point in an importance map intersects the ground-truth

bounding box. On the EPIC-Action test set, we evaluate

methods by the T-PT metric, in which a hit is recorded only

when the index of the frame with the highest importance

value locates in the ground-truth segment. The metric is

measured by the hit rate on all test samples with bounding

box annotations.

4.1.3 Implementation details

Following [10], all masks are generated and optimized

based on smaller seed masks M̄ = {m̄t} ∈ R
H̄×W̄×T and

in our experiment we set H = 7H̄ and W = 7W̄ . The seed

masks are then up-sampled by the transposed convolution

operation with the 2D smooth max kernel defined in [10].

We report our explanation results under a series of preser-

vation ratio constraints, which is {0.02, 0.05, 0.1, 0.2} for

R(2+1)D and {0.05, 0.1, 0.2, 0.3} for VGG16LSTM. We

expect the redundant information could be removed and key

regions could be located via small preservation ratios. Em-

pirically, a larger preservation ratio will not arouse a signif-

icant increase in the quantitative results.

4.2. Comparison between 3D­CNNs and CNN­RNN

Figure 2. Visual explanation results comparison for two networks.

The output probabilities on the two networks are guaranteed to be

nearly equal when generating the results by EP-3D.

Table 2. Minimum preservation ratios without decreasing the out-

put probabilities. For the same dataset, VGG16LSTM (V16L)

need to preserve more regions than R(2+1)D.

Ratio EPIC-Object UCF101-24

R(2+1)D 0.064 0.170

V16L 0.157 0.280
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One of the aims of investigating visual explanation meth-

ods is to understand the characteristics of networks, espe-

cially when we have multiple networks for the same task.

Since we have constructed a generic visual explanation

method and two networks for the task of video classifica-

tion, it is natural to be curious about the difference of ex-

planation results derived through the same method. Fig. 2

shows the visual comparison between explanation results

obtained by EP-3D on R(2+1)D and VGG16LSTM. We

uniformly sampled 8 frames for visualization. When ob-

taining the results, we ensure that perturbed videos have

the same probability outputs under each network. It can be

seen that VGG16LSTM relies on more input regions than

R(2+1)D to derive equal output probabilities. For quan-

titative comparison, we calculated the minimum preserva-

tion ratio for each sample in a dataset without decreasing

the output probabilities of the two networks and made an

average for both datasets. The result, which can be seen

in Tab. 2, is consistent with Fig. 2, where we found that

VG16LSTM (V16L) requires more preservation regions to

achieve a comparable output probability as R(2+1)D. We

consider that the potential reason for the larger preserva-

tion in VGG16LSTM’s results relies on its network archi-

tecture, where frame features are first extracted by VGG-16

and then forwarded into LSTM recurrently. If the preserved

regions are too small in a certain frame, the feature vector

for this frame would be close to zero and would become

trivial for LSTM. As a result, VGG16LSTM tends to pre-

serve more regions in order for higher prediction accuracy.

4.3. Comparison of existing attribution methods

We compare with three existing video attribution meth-

ods as baseline methods to validate the effectiveness of our

proposed method.

• Grad-CAM[23]: A generic attribution method that

could be utilized on both 3D-CNNs and CNN-RNN

networks. For the R(2+1)D model, we generate the

heatmaps based on the activation of the last 3d convo-

lutional layer and upsample the maps to the shape of

input images, in both spatial and temporal dimension.

For the VGG16LSTM model, the heatmaps are gener-

ated based on the activation of conv5-layer of VGG16.

• Saliency Tubes[31]: A visualization method specially

designed for 3D-CNNs networks. The activation maps

of the last 3d convolutional layer are combined by

weights in the final FC layer to produce heatmaps. We

up-sample the maps as in Grad-CAM for visualization

and evaluation.

• EB-R[1]: A backprop-based method specially pro-

posed for the CNN-RNN structure which uses a mod-

ified back-propagation algorithm. We adopt it di-

rectly on our VGG16LSTM models and capture the

heatmaps for each frames at the conv5 layer of VGG16

as it was done in [1].

4.3.1 Qualitative results

Fig. 3 illustrates two groups of visualization results includ-

ing the original frames and importance maps generated by

different visual explanation approaches. Each group cor-

responds to one example video, and only 5 frames are

sampled out of 16 input frames for visualization. For

perturbation-based methods, we visualize the results gen-

erated under the preservation ratio constrain of 0.1. The

first group shows a UCF101-24 video with the action label

of Skateboarding and all visual explanation results are ob-

tained on the R(2+1)D model. A video with the object label

of Cupboard belonging to the EPIC-Object sub-dataset is

showed as the second group, whose visual explanation re-

sults are all obtained on the VGG16LSTM.

There is a part of regions highly correlated with the

ground-truth label in the two videos, e.g., the first two

frames of the left video example, and the middle three

frames of the right example. STEP enhances EP-3D by a

special loss function. It can be seen that STEP could gen-

erate temporally smooth mask sequences to preserve these

related regions. In contrast, the regions preserved by the

mask sequences generated by EP-3D perform lower consis-

tency in the temporal dimension. They also tend to con-

tain some regions showing no obvious relationship with the

ground-truth label, such as the region of a red object in the

second frame of the cupboard video. This reflects the ef-

fectiveness of LK in improving the temporal smoothness

of preservation masks. Moreover, combining with compre-

hensive observations of other samples’ results, we discover

that EP-3D tends to allocate more preserved regions on the

head and tail frames for R(2+1)D and the front frames for

VGG16LSTM.

On the R(2+1)D model, although stable results could be

generated by Grad-CAM, they are coarse-grained in both

spatial and temporal dimensions, which is the same for

Saliency Tubes. This is because the two methods both gen-

erate importance maps based on the activation maps ex-

tracted from the intermediate convolutional layer, which

have a lower resolution than the input frame sequence when

the pooling operators are applied. On VGG16LSTM, EB-R

could locate the ground-truth object while it also highlights

the salient but unrelated regions.

4.3.2 Quantitative results

We then quantitatively compare the visual explanation re-

sults generated by different methods, using the spatial point-

ing game (S-PT) metric, which measures the percentage of

importance maps whose maximum points fall into the anno-

tation bounding boxes. When calculating the metric, only
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Figure 3. Qualitative comparison of visual explanation results generated by baseline methods and the perturbation-based methods. The

importance maps generated by our method could smoothly preserve the regions associated with the ground-truth label and remove areas

with weaker correlations.

the frame annotated with bounding boxes are considered.

The evaluation results on the two models and two datasets

are shown in Tab. 3. It can be seen that in all cases, STEP

is able to get the best performance and achieve obvious

improvement on EP-3D. A potential reason could be that

the proposed loss function LK smooths the perturbations

in both spatial and temporal dimensions so that the regions

unrelated with the specified label are removed.

Table 3. Quantitative evaluation of visual explanation results gen-

erated by different method based on the spatial pointing game (S-

PT) metric (in percentage). Results on this metric are measured

by percentage. Here we use V16L to represent VGG16LSTM for

short.

Methods EPIC-Object UCF101-24

R(2+1)D V16L R(2+1)D V16L

Grad-CAM [23] 7.1 6.1 47.5 35.5

SaliencyTubes [31] 6.6 / 41.4 /

EB-R [1] / 6.9 / 46.5

Ours (EP-3D) 8.1 6.1 47.6 47.2

Ours (STEP) 9.0 9.1 56.7 52.7

4.4. Comparison of methods for smoothness

To further evaluate the effectiveness of our proposed

loss function on enhancing the EP-3D method through con-

straining temporal smoothness, we designed the following

baseline smoothness methods for comparison. The quanti-

tative results are available in Tab. 4.

Evenly allocating preservation in temporal is a

straight-forward way, i.e., assigning each frame the same

preservation ratio. Thus under this setting, we only opti-

mize the distribution of mask values on the 2D image space

of each frame. Formally, if we set the constraint to the over-

all preservation ratio as v, then the energy function Eq. 5

and 6 for EP-3D could be transcribed as follow in the video

case,

Mv = argmax
mt:||mt||1=vHW,∀t

Φc(M ⊗X), (10)

Mv = argmin
M

{λ

T
∑

t=1

||vecsort(mt)−rv||
2−Φc(M⊗X)}.

(11)

which means we constrain the preservation ratio for each

frame’s mask uniformly as the predefined v. Here rv is

a template vector consisting of vHW ones followed by

(1−v)HW zeros. We refer to the variant method of EP-3D

as EP-3D-Evenly for short below. We see this method as

one straight-forward method for temporal smoothness be-

cause the distribution of preservation ratios on frames are

uniform.

It can be seen from Tab. 4 that EP-3D-Evenly have com-

parable performance as the pure EP-3D on R(2+1)D mod-

els. On VGG16LSTM models, EP-3D-Evenly achieves ob-

vious improvements than the pure EP-3D, which is consis-

tent with our analysis that CNN-RNN tends to give even
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focuses on each frame.

Gaussian smoothing is a generic method for blurring.

As shown in equation 12, we exploit a Gaussian kernel

k ∈ R
2∆t+1 to smooth the value of m̄i,j,t on the smaller

seed masks M̄ according to its neighbours in the temporal

dimension and yield the smoothed value m̄′
i,j,t.

m̄′
i,j,t = Z−1

t+∆t
∑

t′=t−∆t

kt′−tm̄i,j,t′ (12)

Here Z normalizes the kernel to sum to one. The kernel k is

a radial basis function with profile ku = exp(−u2/(0.6σ))
and set σ = ∆t to ensure the kernel’s sharpness. Since the

smoothness operator is applied on the smaller seed masks

M̄ which will be up-sampled to the masks M before per-

turbing frames, the operation could be viewed as smooth-

ing the masks M both spatially and temporally. We insert

this smoothness operator to the pure EP-3D method and test

its effectiveness by choosing three different values of ∆t.
As shown in Tab. 4, the smoothness operator does not im-

prove the performance of EP-3D obviously compared with

our proposed LK . We think this is because the smooth-

ness method based on the loss function LK could give the

masks more searching freedom of shape in the process of

optimization.

Table 4. Effectiveness evaluation of the proposed loss function

LK . We quantitatively compare it with a baseline temporal

smoothness method based on Gaussian kernels. Here ∆t decides

the size of the applied Gaussian kernel.

Methods EPIC-Object UCF101-24

R(2+1)D V16L R(2+1)D V16L

EP-3D 8.1 6.1 47.6 47.2

EP-3D-Evenly 7.9 8.7 47.4 53.2

EP-3D (∆t = 1) 8.4 7.4 48.5 51.1

EP-3D (∆t = 2) 8.1 8.1 47.9 52.6

EP-3D (∆t = 3) 7.7 7.1 50.3 54.3

STEP 9.0 9.1 56.7 52.7

4.5. Temporal pointing game

In Tab. 5, we show the results for quantitatively evalu-

ating the ability of different visual explanation methods to

locate the key action segments in the temporal dimension.

The ability is measured by the metric of the temporal point-

ing game (T-PT) on the EPIC-Action sub-dataset. Because

the temporal resolution of the importance maps generated

by Grad-CAM and Saliency Tubes on 3D-CNNs is very

low, that is, only two different importance maps are gen-

erated for the input sequence with 16 frames, we will not

test the two methods on R(2+1)D model. The method EP-

3D-Evenly is also excluded because it gives each frame the

same importance. It can be seen that EB-R performs well

on the VGG16LSTM model and the pure EP-3D does not

show satisfactory performance on both networks. As we

analyzed, the pure EP-3D tends to attribute the network’s

output on the head and tail parts of videos, which lowers

its performance on temporal localization. This could be ef-

fectively alleviated after adding the Gaussian smoothness

kernel as the results shown in the middle three lines, which

also reflects the necessity of introducing temporal smooth-

ness. STEP could also improve the performance of EP-3D

by introducing the loss function LK . The improvement is

comparable to the best of that achieved by Gaussian kernel

on the R(2+1)D model but is relatively lower than the best

results on the VGG16LSTM model.

Table 5. Quantitative evaluation results on the EPIC-Action test

set by the temporal pointing game (T-PT) metric (in percentage).

Results on this metric are measured by percentage.

Methods R(2+1)D V16L

EB-R [1] / 57.0

EP-3D 34.0 31.0

EP-3D (∆t = 1) 46.0 39.0

EP-3D (∆t = 2) 46.0 47.0

EP-3D (∆t = 3) 41.0 45.0

STEP 47.0 49.0

5. Conclusion

In this paper, we shed light on the task of visually ex-

plaining video understanding networks by the perturbation-

based method. The proposed method is characterized by

model-agnostic and thus could be applied to diverse struc-

tures of video understanding networks in the same way even

without detailed architectural knowledge. We also intro-

duced a novel loss function to smooth the perturbation re-

sults in both spatial and temporal dimensions in order for

the spatiotemporal smoothness of the explanation results.

We experiment on two typical kinds of video classifica-

tion network 3D-CNNs & CNN-RNN and on two datasets

EPIC-Kitchens & UCF101-24, and compare smoothness

with naive Gaussian blur. Both qualitative and quantitative

results show that our proposed method could achieve com-

petitive performance and the effectiveness of our method is

therefore verified.
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