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Abstract

Conventional unsupervised video summarization algo-

rithms are usually developed in a frame level clustering

manner. For example, frame level diversity and represen-

tativeness are two typical clustering criteria used for un-

supervised reinforcement learning-based video summariza-

tion. Inspired by recent progress in video representation

techniques, we further introduce the similarity of video rep-

resentations to construct a semantically meaningful reward

for this task. We consider that a good summarization should

also be semantically identical to its original source, which

means that the semantic similarity can be regarded as an

additional criterion for summarization. Through combin-

ing a novel video semantic reward with other unsuper-

vised rewards for training, we can easily upgrade an unsu-

pervised reinforcement learning-based video summarization

method to its weakly supervised version. In practice, we first

train a video classification sub-network (VCSN) to extract

video semantic representations based on a category-labeled

video dataset. Then we fix this VCSN and train a sum-

mary generation sub-network (SGSN) using unlabeled video

data in a reinforcement learning way. Experimental results

demonstrate that our work significantly surpasses other un-

supervised and even supervised methods. To the best of

our knowledge, our method achieves state-of-the-art perfor-

mance in terms of the correlation coefficients, Kendall’s τ

and Spearman’s ρ.

1. Introduction

With the explosive growth of video data on the inter-

net, more and more researchers have paid their attention to

develop new technologies for efficient video indexing, re-

trieval, browsing and classification. Video summarization

aims to shorten an input video into a short summary, which

can help users relieve the tedious work of browsing and

managing the video content of interest. Due to the extremely

diverse nature of online videos, it still remains a challenging

task to robustly produce a semantically meaningful video

summary.

Many machine learning technology-based video summa-

rization approaches have been proposed over the past few

years. They can be roughly classified into three categories:

supervised, weakly supervised and unsupervised. Zhang et

al. [31] proposed a bidirectional LSTM network with a De-

terminantal Point Process module (dppLSTM) for summa-

rization. This method directly utilizes the human annotated

frame level importance scores as ground-truth to train the

model. Based on the learned video semantic knowledge, an

effective video summarization can be achieved by using this

method. Although supervised learning-based methods look

robust and easy to understand, they would be suffered from

the difficulties to define which frames deserve higher scores

and to label massive frame level importance scores, lead-

ing to relatively limited studies in this category. In contrast,

weakly supervised and unsupervised learning-based meth-

ods attract more attention in the research community.

Otani et al. [20] utilized contrastive loss to map videos

as well as its descriptions to a semantic space. During the

test step, they extract video segment level features and apply

clustering techniques to generate summary. Mahasseni et

al. [17] designed an adversarial learning framework to train

the dppLSTM model. Based on the work of Mahasseni et

al, Jung et al. [12] introduced CSNet, which reconstructed

the input sequence in a stride and chunk way, to improve

summarization for long-length videos. It is very interest-

ing to introduce the adversarial learning techniques to this

task, however, the adversarial nature may incur mode col-

lapse, leading to an unstable training procedure. A novel

reinforcement learning-based deep summarization network

(DR-DSN), which combines frame level diversity and rep-

resentativeness of the generated summaries as unsupervised

training rewards, is proposed by Zhou et al. in [33]. This

method does not need to label frame level importance scores

for training data and therefore is easy to reproduce in prac-

tice. Extended from Zhou’s solution, Chen et al. [7] de-

composed the task into several sub-tasks and proposed a

hierarchical reinforcement learning method for summariza-

tion. These two methods perform superior than other un-

supervised methods, however they still have some limita-

tions. For example, DR-DSN [33] ignores the content infor-

mation although the content is very important for a seman-

tically meaningful summarization, and frame level impor-

tance score annotations are still needed for Chen’s method

[7] to guide the network training.
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Figure 1. Training of our proposal. A pre-trained CNN converts the raw input video into a sequence of frame level feature representations.

Kernel Temporal Segmentation (KTS) based shot segmentation is proceeded to cluster the frame level feature representations {fk}
K

k=1
into

its shot level feature representations {st}
T

t=1
, where K and T denote the frame numbers of the raw input video and clustered shot level

feature representations, respectively. A summary generation sub-network (SGSN) is subsequently used to predict the importance score

{pt}
T

t=1
for the segmented video shots, which will then be applied to generate the video summary Y . The shot level feature representations

of the input video st and those of its summary sy, y ∈ Y are fed into a video classification sub-network (VCSN) to obtain their semantic

representations VCSN(st) and VCSN(sy). A new semantic reward Rsem is proposed to measure the similarity between these two video

representations, where sim(·, ·) is a similarity function (here we use Cosine similarity). A semantically meaningful reward R, designed as a

summation of a video semantic reward term Rsem, a summary length reward term Rlen and two unsupervised reward terms Rdiv and Rrep,

are used to guide the RL procedure of the SGSN for video summarization.

In this paper, we propose a weakly supervised reinforce-

ment learning method for video summarization. Our pro-

posal consists of two sub-networks: video classification

sub-network (VCSN) and summary generation sub-network

(SGSN), where the former sub-network plays a supervisor

role to guide the learning of the latter one. We first train

the VCSN based on a large-scale video dataset in which

each video has been classified into some specific semantic

categories (based on its content), such as concert, animal,

boxing, cooking show, and so on. Commonly, video level

semantic category annotation is much easier and less am-

biguous than frame level importance score labeling, which

indicates that less efforts would be required to train this

VCSN, compared with the workload for training a super-

vised summarization network directly. Then, regarding the

input of the last fully connected layer in the frozen VCSN

as feature representation of the raw input video, a video se-

mantic reward can be evaluated by measuring the similarity

between the summary video representation and the raw in-

put video representation. The training step of our proposal

is illustrated in Figure 1. As we can seen from this figure,

in order to remove redundant footage in the raw video se-

quence, we first apply a video preprocessing step to clus-

ter the consecutive similar frames into a sequence of video

shots. Each video shot will be regarded as a basic summary

element for following processes. Both the preprocessed in-

put video and its summary are fed into the VCSN to obtain

their semantic representations, respectively. A new training

reward term Rsem, defined as the similarity measurement

between the two video representations, is proposed to guide

the reinforcement learning of the SGSN. By doing so, the

learning procedure of our SGSN can also be considered as

a weakly supervised upgrade from its original unsupervised

version given in [33]. In addition, here we note that only the

video preprocessing step and the trained SGSN are needed

for inference, as shown in flow chart Figure 2.

We conduct extensive experience on four benchmark

datasets: TVSum [27], SumMe [10], OVP 1 and YouTube

[2], and evaluate algorithm performance based on three met-

rics: Kendall’s τ and Spearman’s ρ correlation coefficients

[19] and F-Score [31]. Experimental results confirm that

our proposed method outperforms other leading methods in

video summarization.

We summarize our contributions as follows: (1) we

present a new weakly supervised reinforcement learning so-

lution for video summarization. In our proposal, the VCSN

is introduced to guide the unsupervised reinforcement learn-

ing procedure of the SGSN; (2) a new semantic reward term

is proposed to guide the unsupervised reinforcement learn-

ing procedure for summarization. This improvement can ef-

fectively help to generate a semantically meaningful sum-

mary from its original; (3) we introduce an efficient pre-

processing step to reduce the redundant video content and

shorten the input sequence for the following processes. It

also makes the training converge faster; (4) we conduct ex-

tensive experiments on four benchmark datasets and confirm

1Open video project: https://open-video.org/.
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Figure 2. During inference, the video preprocessing step is first ap-

plied to obtain the shot level feature representation of the raw input

video st, then the SGSN is used to predict the corresponding shot

level importance score pt. The final frame level importance scores

for summarization rk can be recovered based on the segmentation

boundaries of the frame level feature representations fk.

that our weakly supervised reinforcement learning method

can reach a state-of-the-art performance for video summa-

rization in terms of Kendall’s τ and Spearman’s ρ correla-

tion coefficients.

2. Related Work

Video Summarization: Machine learning technology-

based video summarization techniques have achieved sig-

nificant improvement in recent years. As mentioned above,

they can be classified into three categories. Supervised

methods are straightforward and provide a strong baseline

for reference. Zhang et al. [31] trained a dppLSTM us-

ing training data with frame level importance score anno-

tations. Due to the difficulty to label frame level impor-

tance scores for a large amount of training data, more re-

searchers paid their attention to develop weakly supervised

or unsupervised learning-based methods. Instead of annotat-

ing training data, different implementation rules like frame

level clustering or specially designed learning rewards, are

proposed to solve the summarization problems in an unsu-

pervised way, as proposed by Zhou et al. in [33]. In contrast,

some high-level semantic knowledge, even a small amount

of annotated frame importance scores data, are involved in

the weakly supervised training procedures for better model

learning. For example, Cai et al. [5] presented a generative

model with weakly supervised semantic constraint to gener-

ate topic-associated summaries. A variational autoencoder

(VAE) was first trained to learn the latent semantic video

representations from web videos, then a simple encoder-

decoder with attention as well as sampled latent variable was

presented for summarization. In this paper, we also treat

video level semantic information as an additional constraint

condition to enhance the summarization quality.

Video Classification: Recently, with the availability of

large-scale video datasets, such as YouTube-8M [1], auto-

matic video classification has attracted more and more atten-

tion. Commonly, video classification needs massive com-

putational power and takes temporal information into ac-

count. Recurrent Neural Networks [3, 4] like LSTM and

GRU are usually applied here to learn temporal dependen-

cies from frame-level feature space. These methods first em-

ploy sophisticated image representation techniques to con-

vert video streams into frame level feature sequences, then

use the RNNs to learn spatiotemporal relationships in the

feature space. The great success of 2D CNNs in image

classification also triggered many researchers to upgrade 2D

CNNs to their corresponding 3D cases [6, 8, 14]. The intro-

duction of an additional temporal dimension to 2D convo-

lution networks makes the training of these networks more

challenging. Some researchers therefore proposed pseudo

3D [23] and “R(2+1)D” [28] solutions to alleviate com-

putational cost. Some local frame descriptors are aggre-

gated into a global compact vector for video representation

and classification in BOW [25], FV [21], NetVlad [13] and

NeXtVlad [16]. These methods demonstrated a great bal-

ance of computational efficiency and algorithm performance

for this task. In our work, we apply NeXtVlad method to

construct our VCSN, based on its outstanding performance

in large-scale video classification [11, 32, 15].

Reinforcement Learning (RL): RL is well known for

its superior capability of solving decision-making problems.

It also demonstrates a great availability in computer vision

applications. Sahba et al. [24] trained an opposition-based

Q-learning model for image segmentation. Mnih et al. [18]

proposed a variant of the Q-learning algorithm to learn game

control policies directly from raw video data in complex RL

environments. Xu et al. [30] applied RL technique to pro-

pose an encoder-decoder with “hard” attention to solve im-

age captioning problems. Furuta et al. [9] applied a new

pixel-wise reward to extend the application of deep RL to

various low-level image processing applications, such as im-

age denoising, image restoration, and local color enhance-

ment etc.

Video summarization, aiming to select important key

frames from the input frame sequence, can be also consid-

ered as a decision-making problem [26, 33, 7]. Based on

the key frame labels and category information of the train-

ing video, Song et al. [26] proposed a RL model to se-

lect category-specific key frames. Limited by the number

of annotated summary data, Zhou et al. [33] introduced a

combined diversity-representativeness reward to guide the

learning of an unsupervised RL model. To solve the sparse

reward problem in RL, Chen et al. [7] decomposed the

whole task into several subtasks and presented a hierarchi-

cal RL framework for summarization. Though this method

achieves the state-of-the-art results, human annotated impor-

tance scores are necessary to train the model. Different from

their work, in our paper, we introduce an additional video

level semantic similarity reward to guide the unsupervised

RL procedure, which can avoid the tedious frame level im-

portance score annotation work. We also introduce an effec-

tive video segmentation method to reduce redundant content

and shorten the input sequence. This process can help to al-

leviate the sparse reward problem, especially for long-length
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input videos.

3. Proposed Method

As defined in [33, 7], we formulate video summarization

as a sequential decision-making problem in which frame

level importance scores are predicted for summary frame

selection. In [33], Zhou et al. combined two frame level

clustering rewards, diversity reward and representativeness

reward to guide an unsupervised RL process for the task. In-

spired by recent progress in video representation techniques,

here we further introduce video level semantic similarity as

an additional reward to weakly supervise the RL procedure.

The rationality of this idea stems from our observation that a

good video summarization should also be semantically iden-

tical to its original source. The semantic similarity measure-

ment can therefore play a supervisor role in our task. In this

paper, we employ a VCSN to extract video semantic rep-

resentations. The similarity between the representation of

the raw input video and that of its summary will then be

considered as an additional constraint condition to construct

a semantically meaningful reward to guide the learning of

our SGSN. In practice, we find that the training process is

sometimes hard to converge due to the inherent sparse re-

ward problem of RL. We therefore apply a KTS algorithm

module to first cluster the original video sequence into a se-

quence of video shots. Each video shot will be regarded as

a basic summary element for summarization. We find this

preprocessing can effectively help to improve the training

of our model. We will describe our work in detail in the

following sections.

3.1. Video Preprocessing

Commonly, reinforcement learning-based video summa-

rization approaches may face a sparse reward problem,

which is inherently caused by the learning mechanism of

RL that the agents can only receive the reward after the

whole summary is generated. This problem becomes more

serious when the inputs are long-length videos, even some-

times makes RL hard to converge. Here we apply a Kernel

Temporal Segmentation (KTS) algorithm [22] to segment

the consecutive similar frames into T video shots, as shown

in Figure 1. This KTS algorithm calculates shot boundaries

based on frame feature similarity measurement, so different

shots may have different numbers of covered frames. Since

a video shot can also be considered as a content segment

captured by a temporal sliding window, it is quite similar to

the fact that human annotators always like to scroll forward

and backward to review the video content in adjacent frames

for frame level importance score annotation. In practice, re-

ferring to the preprocessing step of the famous Youtube-8M

challenge [1], we first feed each frame image of the raw in-

put video into an Inception-V3 feature extractor and apply

Principal Component Analysis (PCA) transformation to ob-

tain the frame level feature representations. For each shot

clustered by applying KTS algorithm to the input video, a

shot level feature representation is then calculated as the

mean of all the frame level feature representation vectors

covered by the boundary of this video shot. It can be formu-

lated as:

st =

∑it+1−1
k=it

fk

it+1 − it
, (1)

where st stands for tth shot level feature representation, it
denotes the index of the first frame in the tth video shot, fk
represents the feature representation vector of the kth frame

extracted by Inception-V3 feature extractor and the followed

PCA transformation. After this video preprocessing step, an

input video can be converted into a sequence of shot level

feature representations. It can significantly benefit our train-

ing, particularly on long-length video sequences.

3.2. Video Classification SubNetwork (VCSN)

The video representation can be seen as a by-product

of video classification tasks. In our work, we introduce

NeXtVlad model [16], which has shown promising perfor-

mance in large-scale video classification task, to train the

VCSN. This network will be used to generate video level se-

mantic representation of the input video. Any video dataset

with category annotations can be used to train NeXtVlad

network. Here we use Youtube-8M dataset, which contains

6 million videos with 3,862 class labels. Since each video

sample in Youtube-8M dataset may contain multiple labels,

we define our task as a multi-class multi-label video classi-

fication problem. The training loss can be written as:

lossbce = −
1

M

M
∑

i=0

ti log (oi) + (1− ti) log (1− oi) , (2)

where the subscript bce means that it is a binary cross en-

tropy loss for solving this multi-class multi-label classifica-

tion problem, M denotes the total number of categories, ti
represents the ith target category, and oi stands for the ith

output prediction. We follow the parameter settings given in

[16] to train this network. After training, the network struc-

ture and weights will be fixed. We consider the input of the

last fully connected (FC) layer of VCSN as the video level

semantic representation of the input video/frames.

3.3. Summary Generation SubNetwork (SGSN)

The backbone of our SGSN is constructed as a bidirec-

tional LSTM (BiLSTM) topped with a FC layer (see Fig-

ure 1). The input sequence of this network is the shot level

feature representations {st}
T

t=1 obtained by the video pre-

processing step. A sigmoid function is applied after the

FC layer. We regard the output of the sigmoid function as

the importance score of the corresponding input video shot,

which indicates the probability that this video shot should

be selected as a part of the final summary. This process can

be formulated as Eq. 3. Bernoulli sampling is subsequently

applied to select video shots.

pt = sigmoid (Wht) , (3)

at ∼ Bernoulli (pt) , (4)
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In Eq. 3, {pt}
T

t=1 represents the estimated importance score

for the input video shot, at ∈ {0, 1} represents if a tth video

shot is selected or not, ht is the hidden state of BiLSTM, W

is the learnable parameters.

3.4. Reward Functions

Unsupervised reward: In [33], an unsupervised

diversity-representativeness reward Rdiv + Rrep is defined

to jointly guide the RL for video summarization. In this

composed reward, Rdiv represents the degree of diversity of

the generated summaries, it measures the mean of the pair-

wise dissimilarities among the selected shot features. While

Rrep measures how well the summary frames can represent

the input video, it calculates the minimum distance between

each selected shot features and input shot features. We also

apply these two rewards to our task. The definitions of these

two rewards can be written as:

Rdiv =
1

Y (Y − 1)

∑

t∈Y

∑

t′∈Y
t′ 6=t

d (st, st′) , (5)

d (st, st′) = 1−
sTt st′

‖st‖2 ‖st′‖2
, (6)

Rrep = exp

(

−
1

T

T
∑

t=1

min
t′∈Y

‖st − st′‖2

)

, (7)

where d(·, ·) in Eq. 6 is the dissimilarity function, the in-

dices of the selected shot level feature representations are

Y = {yi|ayi
= 1, i = 1, . . . , Y }.

Supervised reward: In this paper, we propose a new se-

mantic reward Rsem to measure how well the summary is

semantically identical to its original source. This reward

will play a supervisor role to guide the training. Through

applying the proposed VCSN to the input video st and its

summary sy respectively, two corresponding video repre-

sentations VCSN(st) and VCSN(sy) can be obtained. A

supervised reward will then be calculated as the similarity

measurement between these two representations by,

Rsem = sim (VCSN(st),VCSN(sy)) , (8)

where VCSN(·) denotes the process to extract the video

level semantic representation vector by using the proposed

VCSN model; sim(·, ·) is a similarity function, in practice,

we use Cosine similarity measurement.

Weakly supervised reward: We combine the supervised

semantic reward Rsem with the unsupervised rewards Rdiv

and Rrep to jointly train the SGSN. Therefore, we can easily

upgrade an unsupervised RL method-based summarization

approach to its weakly supervised version. A new semanti-

cally meaningful reward for the weakly supervised RL can

therefore be formulated as:

R = Rdiv +Rrep +Rsem, (9)

As mentioned in [33] and [17], due to the nature of video

summarization, selecting more or even all frames will in-

crease the rewards for the learning of RL. A regulariza-

tion term is therefore imposed to constrain the percentage of

frames selected for the summary in these two papers. Dif-

ferent from these two methods, here we further put forward

a new summary length reward Rlen that helps to constrain

the length of the generated summaries. Its definition is:

Rlen = 1−

(

plen − ε

max(ε, 1− ε)

)2

, plen =
Y

T
, (10)

where the reward term Rlen represents the ratio of the num-

ber of selected video shots to the total number of shots, ε

is an expected length percentage factor. With this summary

length reward term, our semantically meaningful reward Eq.

9 can be updated to:

R = Rdiv +Rrep +Rsem +Rlen, (11)

As will be seen in the Experiments Section, this full com-

bination of reward terms performs more robust than other

combination cases. During training, we assign zero reward

to R if none of the frames are selected.

3.5. Optimization

The SGSN is trained with REINFORCE algorithm [29],

aiming to learn a policy function πθ to maximize the ex-

pected rewards.

J(θ) = Epθ(a1:T )[R], (12)

where θ denotes the trainable parameters of the summary

generated sub-network, at is the action taken by time t,

pθ(a1:T ) is the probability of the action sequence. R is the

weakly supervised reward defined by Eq. 11. Following

the REINFORCE algorithm, the derivative of the objective

function Eq. 12 can be computed as:

∇θJ(θ) = Epθ(a1:T )

[

R

T
∑

t=1

∇θ log πθ (at|ht)

]

, (13)

where ht is the hidden state of the BiLSTM. We introduce

Monte-Carlo policy gradient method to solve this equation.

By running the agent for N episodes for each input se-

quence, Eq. 13 can be approximately computed as:

∇J(θ) ≈
1

N

N
∑

n=1

T
∑

t=1

(Rn − b)∇θ log πθ (at|pt) , (14)

here b is defined as the moving average of reward R, n rep-

resents the nth episode. pt is the probability of at.

The pseudo code of the proposed SGSN RL is given in

Algorithm 1.

4. Experiments

4.1. Dataset

As mentioned above, we apply the large-scale dataset

Youtube-8M to train our VCSN. The evaluations of algo-

rithm performances are based on two benchmark datasets:

TVSum [27] and SumMe [10]. TVSum contains 50 videos
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Algorithm 1 Proposed SGSN REINFORCE Learning pseudo code

1: for e : 1, 2, .... to numEpoch do

2: for each {st}
T
t=1

in input videos do

3: pt = SGSN({st}
T
t=1

)

4: avgEpisodeCost = 0.0

5: for n : 1, 2, .... to numEpisode do

6: at ∼ Bernoulli(pt) (Eq. 4)

7: logm = − 1

T

∑T
i=i ai log(pi) + (1− ai) log(1− pi)

8: R = Rdiv + Rrep + Rsem + Rlen (Eq. 11)

9: avgEpisodeCost += (R− baseline) ∗ logm (Eq. 14)

10: end for

11: avgEpisodeCost =
avgEpisodeCost

numEpisode

12: avgEpisodeCost.backward()

13: end for

14: end for

annotated by 20 persons, ranging from 2 to 10 minutes;

SumMe includes 25 videos annotated by 15 to 18 persons,

ranging from 1 to 6 minutes. Refer to paper [31], we also

consider OVP and YouTube [2] data to construct the “Aug-

mented” and “Transfer” sets for evaluations. More details

about these two settings will be described in Section 4.3.

4.2. Evaluation metric

Rank correlation coefficient: Two well established met-

rics, Kendall’s τ and Spearman’s ρ correlation coefficients

are recently introduced to measure the strength of relation-

ship between the predicted rankings of video summaries and

human annotated frame level importance scores. They have

been verified as the robust criteria to evaluate performance

of video summarization [19]. We also apply these two met-

rics for performance evaluation in this paper.

F-score: F-score is a commonly used metric to evalu-

ate the performance of video summarization. However, as

Otani et al. pointed out in [19], F-score may not be stable

for this task because it is highly determined by the distribu-

tion of video segment lengths. For instance, F-score tends

to get higher as summary length gets longer. Even so, here

we still consider F-score as a complementary metric for our

comparison. Considering the intersection of two videos, the

definition of F-score can be given as:

P =
overlapped(A,B)

A
,R =

overlapped(A,B)

B
, (15)

F =
2PR

P +R
× 100%, (16)

where A is the ground truth summary and B is the gener-

ated summary. There we can see that this metric describes

the overlapped duration of the generated summary and its

ground truth. For fair comparisons with previous methods,

we strictly follow Zhou’s method [33] to deal with the mul-

tiple ground truth summary problem.

4.3. Evaluation settings

Following Zhang’s suggestion [31], we study three set-

tings in performance evaluation: (1) Canonical: we use stan-

dard 5-fold cross validation (5FCV), which means 80% of

SGSN Reward combinations τ ρ

Unsupervised [33] Rlen +Rrep +Rdiv 0.058 0.076

Weakly supervised

by LSTM-based

VCSN

Rlen +Rsem 0.063 0.082

Rlen +Rsem +Rdiv 0.063 0.082

Rlen +Rsem +Rrep 0.063 0.083

Rlen +Rsem +Rrep +Rdiv 0.064 0.084

Weakly supervised

by NeXtVlad-based

VCSN

Rlen +Rsem 0.083 0.108

Rlen +Rsem +Rdiv 0.085 0.111

Rlen +Rsem +Rrep 0.090 0.117

Rlen +Rsem +Rrep +Rdiv 0.094 0.122

Table 1. Kendall’s τ and Spearman’s ρ correlation coefficient-

based SGSN performance evaluation on TVSum dataset.

Method τ ρ labels

dppLSTM [31] 0.042 0.055 470

DR-DSN [33] 0.02 0.026 -

Hierarchical RL [7] 0.078 0.116 24

Our Proposal 0.094 0.122 -

Human Annotations 0.177 0.204 -

Table 2. Kendall’s τ and Spearman’s ρ correlation coefficients-

based comparisons on TVSum dataset in the Augmented setting.

the selected dataset as training set and remaining 20% as

testing data; (2) Augmented: based on the Canonical result,

we complement the other three datasets to the training set;

(3) Transfer: pick one dataset (TVSum or SumMe) as train-

ing set, the other three as testing set.

4.4. Implementation details

Video preprocessing: In order to reduce computational

time, we sample one frame per second for all the training

and testing video samples. The frame level feature repre-

sentations are obtained by the Inception-V3 and PCA trans-

formation, as presented in [1]. KTS algorithm is then ap-

plied to segment the consecutive similar frames into a se-

quence of video shots. Here we set the maximum number of

segmented video shots to 50. For those videos shorter than

50 frames, KTS segmentation will not be applied, i.e. the

frame level feature representations will be directly regarded

as the shot level feature representations. VCSN: we try two

basic architectures, LSTM and NeXtVlad, to construct the

VCSN. Following the parameter setting given in [16], we

set 2 LSTM layers with hidden size 1024 and learning rate

2e-4 for the LSTM case, and set 8 groups, 2 expansions with

cluster size 128, hidden size 2048 and learning rate 2e-4 for

the NeXtVlad case. All these two VCSN cases are trained

on Youtube-8M training set. SGSN: The input of SGSN is

the shot level feature representations. We set dimension of

the hidden state of the BiLSTM to 256, length ratio ε 50%,

learning rate 2e-5, and baseline equals to the moving aver-

age of the learning reward.
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Method
SumMe TVSum

Canonical Augmented Transfer Canonical Augmented Transfer

Supervised

vsLSTM [31] 37.6 41.6 40.7 54.2 57.9 56.9

dppLSTM [31] 38.6 42.9 41.8 54.7 59.6 58.7

SUM-GANsup [17] 41.7 43.6 - 56.3 61.2 -

DR-DSNsup [33] 42.1 43.9 42.6 58.1 59.8 58.9

Unsupervised
SUM-GAN [17] 39.1 43.4 - 51.7 59.5 -

DR-DSN [33] 41.4 42.8 42.4 57.6 58.4 57.8

Weakly Supervised
Hierarchical RL [7] 43.6 44.5 42.4 58.4 58.5 58.3

Our Proposal 41.5 44.9 43.8 55.7 59.1 58.7

Table 3. Evaluation by F-score on SumMe and TVSum in the Canonical, Augmented and Transfer Settings, respectively.

4.5. Comparisons

Refer to [16], we first introduce the Global Average Pre-

cision (GAP) metric to evaluate the performance of the

two VCSN cases for video classification. Our experiments

show that the NeXtVlad-based VCSN can reach higher GAP

(0.856) than the LSTM-based VCSN (0.830), which are

consistent with the results reported in [16]. Based on the

trained VCSN, we can extract the video semantic represen-

tations to guide the RL of the SGSN. To demonstrate how

the new video semantic representations can help to improve

video summarization, we apply Kendall’s τ and Spearman’s

ρ correlation coefficients to evaluate performance of the

trained SGSNs with different combinations of VCSN cases

as well as reward terms. The results tested on augmented

setting of TVSum dataset are listed in Table 1, where the

second column shows the reward combination methods. For

example, Rlen + Rrep + Rdiv represents that the learning

reward for RL is a summation of summary length, represen-

tativeness and diversity reward terms, similar to the method

proposed in [33]; Rlen + Rsem denotes that the learning

reward is a summation of summary length and our new se-

mantic reward terms, and so on.

From Table 1 we can see, our new video semantic reward

can help to improve the summarization performance appar-

ently, even if only the video semantic and summary length

reward terms are applied (compare row “Unsupervised” to

two cases of reward combination “Rlen+Rsem” supervised

by different VCSNs). By comparison, we can see the algo-

rithm performance can be steadily improved while more re-

ward terms are added to supervise the RL procedure. Unsur-

prisingly, all the SGSN cases supervised by the NeXtVlad-

based VCSN perform significantly better than those cases

supervised by the LSTM-based VCSN. In all these solu-

tions, we find the SGSN case with the full reward com-

bination Rlen + Rsem + Rrep + Rdiv and supervised by

NeXtVlad-based VCSN can reach the best performance (see

the last row in Table 1). We therefore choose this case as our

preferred solution for video summarization.

We compare our method with other leading video sum-

marization methods on TVSum dataset in the Augmented

setting. The experimental results are listed in Table 2, where

dppLSTM, DR-DSN and Hierarchical RL are supervised,

unsupervised and weakly supervised methods, respectively.

From this table, we can see that our proposal works consid-

erably better than others. What’s more, compared with the

state-of-the-art Hierarchical RL method [7], our method is

more practical because it does not require any frame level or

shot level importance score annotations whereas shot level

importance score annotation is necessary for the Hierarchi-

cal RL method.

We also apply F-score to compare the algorithm perfor-

mance on two benchmark datasets, SumMe and TVSum.

The results are revealed in Table 3. From this table, we

can see that our method performs a bit worse than some

others in the Canonical settings of the two datasets. We

note that it is a reasonable result because the introduction

of our new semantic reward Rsem increases the RL com-

plexity of the SGSN, however, the limited training data in

the Canonical setting maybe insufficient to support the RL

procedure to fit the model very well. In contrast, more train-

ing data in the Augmented setting can benefit our RL obvi-

ously, as shown in Table 3 where our proposal outperforms

the two RL baseline methods DR-DSN and Hierarchical RL

on both two benchmark datasets. The same situation can

also be identified in the Transfer settings. In addition, com-

pared with supervised methods, our method performs better

than vsLSTM method on two datasets but worse than SUM-

GANsup and DR-DSNsup methods on TVSum dataset. For

SumMe dataset, our method even outperforms the majority

of the listed supervised methods, particularly in the Aug-

mented and Transfer settings.

Finally, a visual comparison on a real TVSum test video

is given in Figure 3. The original video is about pet groom-

ing. We compare the summary frames picked by using our

SGSN and DR-DSN method. As seen, thanks to the newly

introduced semantic constraint, our result skips many ir-

relevant frames, including title frames and people walking

footage etc., and selects most of the frames that show the

details of pet grooming, comparing to DR-DSN also picks

some irrelevant frames at the beginning of this video. A

higher F-score is therefore achieved by using our method.

5. Conclusion

In this paper, we propose a weakly supervised reinforce-

ment learning method for video summarization. Our pro-

posal consists of two sub-networks: video classification sub-
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Our proposal (F-score=57.6%)

DR-DSN (F-score=44.3%)

Video 3eYKfiOEJNs in TVSum·

Figure 3. Examplar video summary generated by our proposal and DR-DSN, along with the ground-truth importance scores (gray back-

ground). Cyan bars represent the summaries selected by our method, while orange bars stand for the summaries selected by DR-DSN.

network and video summary generation sub-network, where

the former sub-network plays a supervisor role to train the

latter sub-network. A semantically meaningful reward, for-

mulated as a combination of a new semantic reward term,

a summary length reward term and the other two unsuper-

vised reward terms, is proposed to guide the learning of

our reinforcement learning model. By doing so, an un-

supervised reinforcement learning-based video summariza-

tion method can be easily upgraded to its weakly supervised

version, leading to the dramatically enhanced performance

of summarization. Experimental results revealed that our

proposed method significantly surpasses other unsupervised

and even supervised methods for video summarization, and

achieves state-of-the-art performance in terms of Kendall’s

τ and Spearman’s ρ correlation coefficients.
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