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Abstract

Existing deep learning based interactive segmentation

methods have achieved remarkable performance with only

a few user clicks, e.g. DEXTR [32] attaining 91.5% IoU

on PASCAL VOC with only four extreme clicks. However,

we observe even the state-of-the-art methods would often

struggle in cases of objects to be segmented with elongated

thin structures (e.g. bug legs and bicycle spokes). We in-

vestigate such failures, and find the critical reasons behind

are two-fold: 1) lack of appropriate training dataset; and

2) extremely imbalanced distribution w.r.t. number of pix-

els belonging to thin and non-thin regions. Targeted at

these challenges, we collect a large-scale dataset specif-

ically for segmentation of thin elongated objects, named

ThinObject-5K. Also, we present a novel integrative thin

object segmentation network consisting of three streams.

Among them, the high-resolution edge stream aims at pre-

serving fine-grained details including elongated thin parts;

the fixed-resolution context stream focuses on capturing se-

mantic contexts. The two streams’ outputs are then amal-

gamated in the fusion stream to complement each other for

help producing a refined segmentation output with sharper

predictions around thin parts. Extensive experimental re-

sults well demonstrate the effectiveness of our proposed so-

lution on segmenting thin objects, surpassing the baseline

by ∼ 30% IoUthin despite using only four clicks. Codes

and dataset are available at https://github.com/

liewjunhao/thin-object-selection.

1. Introduction

Interactive image segmentation task aims to extract a

high quality segmentation mask delineating the object-of-

interest using only a few user clicks. On this task, deep

learning based methods [51, 23, 50, 32, 21, 15, 31, 16,

27, 41] have been very successful. For example, the re-

cent state-of-the-art method DEXTR [32] achieved 90%

IoU using only four extreme clicks. Advancement in this

task would significantly benefit other tasks like image/video

composition, localized image editing and large-scale dataset

Figure 1: Left: Ground truth annotation of PASCAL VOC

validation set [9]. Gray lines indicate the “void” label.

Middle: Segmentation results of DEXTR [32] trained on

PASCAL-10K. Right: Segmentation prediction by our pro-

posed TOS-Net trained on our ThinObject-5K dataset.

annotation [4, 2, 28].

Despite the overall good segmentation performance, the

state-of-the-art methods can hardly be applied to profes-

sional high-end applications (e.g. Photoshop), especially

when the objects to be segmented have elongated thin struc-

tures (e.g. bug legs and bicycle spoke). In such cases, high

annotation accuracy is required or otherwise a large number

of user clicks or manual delineation is inevitable. As shown

in Fig. 1, the current state-of-the-art DEXTR is only capa-

ble of producing a rough object mask with details along the

thin spokes missing. In this work, we study the reasons be-

hind such failures and provide an effective solution for thin

object segmentation.

We attribute the failure of existing methods to the fol-

lowing factors:

1) Poor training data quality: Existing datasets used for

training interactive segmentation models (e.g. PASCAL [9],

COCO [26]) are often coarsely annotated, where fine-

grained details including elongated thin parts are ignored

(e.g. bicycle spokes in Fig. 1(a) and 2), leading to signifi-

cant label noise. This may also partially explain why most

learned models often output “blobby” predictions and fail
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PASCAL VOC MS COCO LVIS Open Images V6 ADE20K ThinObject-5K (ours)

Figure 2: Example annotations for ‘bicycle’ and ‘boat’ class from existing datasets (e.g. PASCAL [9], COCO [26], LVIS [11],

Open Images V6 [18] and ADE20K [53]). Elongated thin parts (e.g. bicycle spoke and boat stay) are usually ignored during

annotation for labeling efficiency. On the other hand, our ThinObject-5K dataset provides much finer annotation.

to capture thin structures (Fig. 3).

2) Class imbalance between thin and non-thin pix-

els: Most interactive segmentation models adopt per-pixel

cross-entropy loss for training as in semantic segmentation.

However, this loss treats every pixel independently, which

means misclassification of a few pixels would produce low

cost to the overall loss. This is especially devastating for de-

lineation of thin structures because pixels belonging to the

thin parts usually occupy a small fraction of the entire ob-

ject. Recent methods employ class-balancing cross-entropy

loss [32] or IoU loss [21] to tackle the class imbalance prob-

lem between foreground and background samples. Never-

theless, the highly imbalanced distribution between thin and

non-thin pixels remains unaddressed.

Based on above observations, in this work we first pro-

pose a large-scale dataset for segmentation of thin objects,

named ThinObject-5K. It consists of 5,743 unique fore-

ground objects collected from the Internet. Like other

synthetic dataset construction pipeline [49], we compos-

ite these foreground objects on background images taken

from other datasets for training. Some example images

of ThinObject-5k are shown in Fig. 4, with elongated thin

structures finely annotated.

Also, we present a novel solution specially for thin ob-

ject segmentation, named TOS-Net. It is designed based

on the idea that the distribution between thin and non-

thin pixels can be better balanced by converting the learn-

ing target to edge-based representation, such that the ob-

ject interior which mainly comprises of non-thin pixels can

be ignored. We thus explicitly separate the processing

of high-resolution boundary information, which preserves

fine-grained details including thin structures, from that of

the context which focuses on capturing semantic contexts.

In this way, the two separate streams specialize in different

aspects and thus, a refined mask with sharper predictions

around elongated parts can be obtained by fusing these two

complementary information.

Our contributions are three-fold: 1) we identify the rea-

sons behind the failure in segmenting objects with elon-

gated thin structures; 2) we present a large-scale dataset,

ThinObject-5K for interactive segmentation; and 3) we in-

troduce a simple yet effective edge-guided segmentation

baseline to tackle thin object selection. Extensive ex-

perimental results well validate the effectiveness of both

ThinObject-5K and the proposed solution. To our best

knowledge, this is the first interactive segmentation work

to study the problem of segmenting objects with elongated

thin structures under the context of deep learning.

2. Related Works

Deep interactive object segmentation. Xu et al. [51]

made the first attempt to apply deep learning to interac-

tive segmentation, in which user clicks first go through Eu-

clidean distance transformation before concatenated with

the image for training an FCN. Recent methods focus

on better exploiting useful context from user-provided in-

puts [23, 15, 27] or deriving better representation for user

clicks [32, 45, 19, 31]. Mahadevan et al. [30] proposed an

iterative training strategy to reduce the train-test discrep-

ancy. BRS [16] and f-BRS [41] enforce user-specified lo-

cations to have correct labels. Li et al. [21] and Liew et

al. [22] addressed the ambiguity in interactive segmentation

by enabling multiple hypothesis segmentation. Nonethe-

less, none of these methods addresses the problem of seg-

menting objects with elongated thin structures. As we will

show in later sections, these approaches often fail when di-

rectly applied to thin object segmentation.

Interactive thin object segmentation. Starting with a seg-

mented object part given some scribble inputs, Vicente et

al. [43] proposed a connectivity prior that connects user-

clicked pixels (on thin parts) to the main object. Inspired by
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the observation that the color gradient remains uniform al-

most everywhere along the boundaries of thin parts, Coop-

Cut [17] introduced discount for homogeneous boundaries

in segmentation of long thin objects. COIFT [33, 34] incor-

porates a connectivity constraint on Oriented Image Forest-

ing Transform (OIFT) to facilitate segmentation of con-

nected objects with thin parts. Dong et al. [8] proposed a

sub-Markov random walk algorithm with label prior. These

non-learning-based approaches cannot capture semantics

and other high-level priors, and thus are often slow and re-

quire extensive user efforts.

Context-edge disentanglement. Several prior works have

also explored the idea of decoupling context and edge in-

formation to improve segmentation accuracy. For instance,

Liu et al. [29] introduced an edge-prior branch into the seg-

mentation network for indoor scene parsing. Takikawa et

al. [42] proposed a new gating mechanism that encourages

the shape stream to only focus on processing boundary-

relevant information. Li et al. [20] explicitly decouple fea-

tures into body and edge parts, and jointly optimize them

in a unified framework. In our case, while more advanced

design such as [42, 12, 20] might also work, we purposely

opt for simpler design as the main goal of this work is to

demonstrate the effectiveness of context-edge disentangle-

ment for thin object segmentation task.

3. Method

3.1. Preliminaries

We first examine performance of existing interactive im-

age segmentation models applied to thin objects. Specifi-

cally, we evaluate four state-of-the-art algorithms, including

DIOS [51], Latent Diversity [21], DEXTR [32] and f-BRS

on a subset of HRSOD [52] dataset which mainly consists

of objects with elongated thin parts. We use the official re-

leased pre-trained weights (except DIOS) for testing. The

performance is evaluated based on the Intersection-over-

Union (IoU) at 4th click1 for fair comparison with DEXTR

which requires 4 extreme points as input. We further intro-

duce a new metric IoUthin by evaluating performance only

on regions surrounding thin pixels (see Section 4). The re-

sults are summarized in Fig. 3.

As shown in the histogram plot, despite the overall good

segmentation, the elongated thin parts are not well seg-

mented (IoUthin < 45%). Similar observations can be

made from qualitative comparison, where the models strug-

gle even given 10 user clicks. These results reveal simply

applying state-of-the-art interactive segmentation models to

thin objects does not work. Therefore, at below we first

introduce a new large-scale dataset for thin object segmen-

1We employ the standard iterative testing protocol in interactive seg-

mentation literature [51, 23, 21, 41] by iteratively adding clicks to the cen-

ter of the largest erroneous regions until the 4th click.
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Figure 3: Comparison between our TOS-Net and existing

state-of-the-art methods, including DIOS [51], Latent Di-

versity [21], f-BRS [41] and DEXTR [32]. Top: IoU and

IoUthin at 4-th click on HRSOD [52] dataset are chosen

as the metrics. Bottom: The blue, green and red clicks

denote the foreground, background and extreme clicks, re-

spectively. We see that these models still struggle to seg-

ment elongated thin parts even when given 10 user clicks.

tation, and then present a three-stream network for effective

segmentation of elongated thin parts with only four clicks.

3.2. ThinObject­5K Dataset

Existing segmentation datasets (e.g. PASCAL VOC [9],

MS COCO [26]) are mostly coarsely annotated, with fine-

grained details (including the elongated thin parts e.g. bicy-

cle spokes in Fig. 1 and 2) sacrificed during the annotation

process for labeling efficiency. Hence they are not suitable

for training and testing thin object segmentation models.

We thus collect images with thin structures from the In-
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Figure 4: Example images from our ThinObject-5K dataset. Please zoom-in for more details.

ternet and construct a new dataset specially for thin ob-

ject segmentation, which is named ThinObject-5K. We first

source objects with transparent background from http:

//pngimg.com/ and only retain those with elongated

thin parts. Foreground masks can thus be easily extracted

from the alpha channel. Despite their high quality annota-

tions in general, we observe some of the images contain la-

beling noise (e.g. halo effects) or incorrect annotations (e.g.

missing parts). We then manually screen through the im-

ages and refine the masks using Photoshop. After that, we

have 5,743 unique foregrounds in total.

Similar to [49], we composite the foreground objects

on the background images taken from different datasets,

leading to a total of 5,743 images with varying size rang-

ing from 32 to 10K pixels. They are split to 4,743, 500

and 500 images for training, validation and testing re-

spectively. Since compositing foreground objects on low-

resolution background images such as PASCAL [9] or

COCO [26] would lead to poor transferability to real im-

age domain, we leverage two sources of background im-

ages, i.e., a high-resolution and a low-resolution back-

ground for composition depending on the resolution of the

foreground object. Specifically, for training and valida-

tion set, we use HRSOD [52] and DIV2K [3] as high-

resolution backgrounds, and COCO [26] as low-resolution

backgrounds. Similarly, we use Flickr2K [24] and PAS-

CAL [9] as high- and low-resolution backgrounds respec-

tively for compositing test set. Some example images are

shown in Fig. 4. It can be seen the thin structures, such as

ant’s legs, racket strings, soccer goal nets, computer mouse

cable, harp strings etc. are finely annotated.

3.3. Thin Object Selection Network (TOS­Net)

To tackle the extremely imbalanced distribution of thin

versus non-thin pixels within an object, we convert the

learning target (segmentation mask) to an edge-based repre-

sentation, such that the interior of the object which mainly

consists of non-thin pixels are ignored. Moreover, we also

consider better maintaining high-resolution boundary fea-

tures in order to preserve more visual evidence needed for

segmentation of thin structures. However, this would in-

evitably lead to a trade-off problem between capturing se-

mantic context and retaining fine details. With downsam-

pled inputs, the model captures semantics better but loses

high-frequency details. On the other hand, with high-

resolution inputs, the receptive field would be too small

compared to the image context to capture object-level se-

mantics. Our key idea for solving such an issue is using two

separate streams to specialize for each aspect and then fuse

them to make the best of both.

We therefore adopt a three-stream design for address-

ing thin object segmentation, termed Thin Object Selection

Network (TOS-Net). As shown in Fig. 5, its three separate

streams include: 1) context stream which accepts a fixed-

resolution input image to extract global context and esti-

mate a rough object segmentation; 2) high-resolution edge

stream that processes the input of high resolution to delin-

eate the object contours; and 3) fusion stream that fuses the

information from the preceding two streams to produce the

final mask. Please refer to the supplementary material for

more details of our network architecture.

Context Stream. The context stream exploits and aggre-

gates the semantic contextual information describing the

object-of-interest for segmentation. For this purpose, a

fixed-resolution input is used for better capturing semantics.

In particular, we employ DEXTR [32] with minor modifi-

cations for this stream due to its simplicity. Similar to [32],

our context stream takes four extreme points (top, bottom,

leftmost and rightmost pixels) as inputs and converts them

to Gaussian heatmaps before concatenating with the image.

Then, the bounding box determined from the extreme points

is relaxed to include some contextual information before

used to crop the input. However, using a fixed value for re-

laxation as in [32] (50 pixels) is found harmful when tested

on images of resolutions that are very different from train-

ing data, resulting in almost no context as shown in Fig. 6.

We therefore replace the original fixed relaxation with an

adaptive alternative as follows. Given a bounding box en-

closing the object with box height h and width w, the relax-

ation r is set to r = rori · sbox/save, where sbox = h+w

2
is

the average size of the bounding box while rori = 50 refers

to the default relaxation value. save denotes the average box

size in the training set used in [32], which is 428 pixels.

The input image is cropped by the relaxed box and re-
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Figure 5: Overall architecture of our TOS-Net. Our network consists of three streams. The context streams processes

the fixed-resolution cropped input Ilr to obtain a rough object segmentation Mlr. Taking the high-resolution image Ihr and

its gradient map ∇Ihr as input, the edge stream progressively incorporates multi-level features from the context stream to

extract a high-resolution boundary map Ehr which preserves image details including elongated thin structures. Finally, both

regional and high-resolution boundary features are fused to produce the final segmentation mask Mhr.

Fixed Adaptive

Figure 6: Fixed vs. adaptive relaxation scheme.

sized to a fixed resolution of 512×512. We denote the

cropped input before and after resizing as Ihr ∈ R
H×W×4

and Ilr ∈ R
512×512×4, respectively, where the 4th chan-

nel is a 2D Gaussian heatmap encoding the locations of

each extreme point. We then pass the input Ilr into a fully

convolutional network to produce a rough segmentation

mask. In this work, we employ a ResNet-50 [14] variant of

DeepLabv3+ [5] as the backbone, which is proven success-

ful across various segmentation tasks [44, 6]. DeepLabv3+

employs an Atrous Spatial Pyramid Pooling (ASPP) module

for aggregating multi-scale context, followed by a decoder

for refining its segmentation predictions. We append a 1×1
convolution layer with sigmoid activation at the end of the

decoder to produce a fixed-resolution binary segmentation

mask Mlr ∈ [0, 1]
512

k
×

512

k , where k = 4 is the network

output stride.

High-resolution Edge Stream. The goal of edge stream is

to extract object boundaries for guiding the segmentation of

thin structures. To prevent too much loss of image details

due to input downsampling, particularly for elongated thin

parts, the edge stream processes the high-resolution input

Ihr directly without resizing it to a fixed resolution as the

context stream. To facilitate edge learning, we additionally

append image gradient ∇Ihr as input, which can be easily

computed using Sobel filter.

We adopt an FPN-style [25] approach for the edge

stream. Specifically, the encoder progressively incorporates

multi-level semantic information from context stream while

the decoder gradually fuses high-level semantics from the

deeper layers with low-level details from earlier layers in

the encoder via lateral connection. Injecting semantic in-

formation in this way, edge stream can adopt a relatively

lightweight and shallow architecture for processing image

at high resolution. Similar to context stream, we also ap-

pend a 1×1 convolution layer with sigmoid activation at the

end to generate a boundary map Ehr ∈ [0, 1]H×W , which

has the same resolution as its input.

Although class-imbalance between thin and non-thin

pixels can be mitigated with the proposed edge-based rep-

resentation, this leads to another class-imbalance between

edge (foreground) and non-edge (background) pixels. For-

tunately, this issue has been extensively studied in edge de-

tection literature [7, 1]. In this work, we adopt a combi-

nation of balanced binary cross-entropy loss [48] and Dice

loss [7] for training the edge stream.

Fusion Stream. Fusion stream fuses semantic context from

context stream with high-resolution boundary features from

edge stream to produce a refined segmentation mask. In

particular, it consists of a 1 × 1 convolution layer for di-

mension reduction and a series of bottleneck layers [14],

followed by a 1× 1 convolution and a sigmoid layer to out-

put the final segmentation mask Mhr ∈ [0, 1]H×W . Note

we do not employ ground truth boundaries as the learning

target here, because the high-resolution edge stream already

well addresses the imbalanced thin/non-thin pixels distribu-

tion and also encodes fine-grained details for segmentation
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of elongated thin parts here. Furthermore, in this way post-

processing is also unnecessary for reverting the predicted

boundaries back to the object mask.

Training Losses. We train our context stream with a bal-

anced binary cross-entropy loss following DEXTR [32].

For edge stream, we employ a combination of balanced bi-

nary cross-entropy loss and Dice loss for training. We use

a combination of bootstrapped cross-entropy loss [37] and

Dice loss to supervise the training of the fusion stream.

Training and Inference. In order to encourage the network

to focus on learning the segmentation of elongated thin

structures, we randomly crop patches covering thin parts for

training. However, context stream which requires access

to the full input image is incompatible with such a patch-

wise training scheme. To address this problem, we employ

an RoIAlign [13] layer to extract semantic features from

the corresponding patches in context stream when fusing its

output with boundary features in edge stream. Similarly, the

same RoIAlign layer is used when fusing both region and

boundary features in fusion stream. During inference, al-

though one can replace the RoIAlign layer with a bilinear

interpolation operation, we observe this would cause fea-

ture misalignment, which subsequently results in significant

performance drop, particularly along object boundaries. In-

stead, we use the RoIAlign layer with RoI covering the

full input image during testing to mitigate the train-test dis-

parity.

4. Experiments

4.1. Datasets and Settings

Implementation Details. We train our TOS-Net on

ThinObject-5k train split which consists of 4,743 im-

ages. All the images are resized to have a shorter side of at

least 512 pixels and a longer side that does not exceed 1,980

pixels. The same resizing operation is applied during infer-

ence. We sample 5 cropped patches per image for training,

among which 4 patches are sampled from the regions cov-

ering thin structures and the remaining patch is randomly

sampled from the whole image. We employ a crop size of

512 pixels for training. Random horizontal flip augmenta-

tion is applied during training. The network is initialized

from ResNet-50 [14] pre-trained on ImageNet [39]. The

new layers including the additional channel in the first con-

volutional layer are randomly initialized from a Gaussian

distribution with standard deviation of 0.01. All models are

trained with batch size of 1, learning rate of 1× 10−3 with

“poly” learning rate policy, momentum of 0.9 and weight

decay of 5 × 10−4. In order to accommodate the batch

size of 1, we follow [10] by replacing all the batch nor-

malization (BN) layers with group normalization (GN) [47]

with weight standardization [38]. We train our model using

stochastic gradient descent for 50 epochs. All our experi-

Figure 7: Left: Green pixels denote the extracted thin parts.

Right: Mask used for IoUthin metric where the gray pixels

(“void” label) will be excluded from evaluation.

ments are conducted on the PyTorch framework [35]. Note

that our method does not require any post-processing other

than simple thresholding. On average, our TOS-Net takes

0.45s for a 1980×1980 cropped image on a PASCAL Titan

Xp GPU, thus being suitable for real time applications.

Datasets. We evaluate the performance of our proposed

TOS-Net on the following benchmarks:

• ThinObject-5K (test split). This dataset contains 500

synthetic images with elongated thin structures.

• HRSOD [52]. The HRSOD dataset was initially proposed

for high-resolution salient object detection tasks. We ex-

tract a subset of 287 images which contains 305 objects with

elongated and thin parts for evaluation.

• COIFT [33, 34]. We combine 3 datasets of birds and

insects from [33, 34] and denote this dataset as COIFT

dataset, which contains 280 images. Note that the aver-

age image resolution is much smaller than the other two

datasets.

Evaluation Metrics. For all the experiments, we evaluate

segmentation performance in terms of IoU given 4 clicks (4

extreme points in our case). However, the actual segmen-

tation performance on elongated thin parts is significantly

over-estimated when using the full ground truth mask for

evaluation, because the number of pixels belonging to thin

regions is often too small compared to the whole objects

to contribute meaningfully to the overall IoU. To address

this problem, we propose a new metric that measures IoU

only on the regions surrounding the thin structures, which

is denoted as IoUthin. The detailed steps for extraction of

thin structures from ground truth masks for evaluation are

explained at below.

Intuitively, for a region covering thin parts, even the in-

nermost pixel should be close to its nearest boundaries. We

therefore first compute a Euclidean distance transformation

of the ground truth object mask. We then extract the local

peaks in the distance map and only retain those peaks whose

distance values are smaller than a threshold τ . Finally, we

aggregate all the foreground pixels surrounding these peaks

to obtain the thin parts. For evaluation, we also consider

a thin strip of background pixels around the extracted thin

regions to prevent a trivial solution that predicts the entire
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No.
Train Input Edge Training

DGF
ThinObject-5K COIFT [33] HRSOD [52]

Data Res Stream Loss IoU IoUthin F IoU IoUthin F IoU IoUthin F

M1 PASCAL-10K Fixed No BBCE No 61.8 43.5 49.0 70.6 36.8 74.4 69.5 35.4 66.1

M2 ThinObject-5K Fixed No BBCE No 88.8 74.0 89.3 88.2 68.3 93.4 82.5 57.7 84.8

M3 ThinObject-5K Fixed No 3-class balanced No 79.9 61.6 76.5 79.8 51.0 86.7 75.3 46.8 77.3

M4 ThinObject-5K Fixed No BootCE+Dice No 91.0 77.9 91.8 90.3 72.1 94.3 83.3 59.0 85.9

M5 ThinObject-5K High No BootCE+Dice Yes 91.6 79.2 91.8 89.9 70.0 92.6 82.8 61.6 84.8

M6 ThinObject-5K Fixed Yes BootCE+Dice No 89.7 75.8 89.8 89.8 69.7 91.9 81.7 56.8 83.4

M7 ThinObject-5K High Mask BootCE+Dice No 93.9 85.5 93.6 92.2 77.9 94.2 84.4 63.6 82.9

M8 (ours) ThinObject-5K High Yes BootCE+Dice No 94.3 86.5 94.8 92.0 76.4 95.3 86.4 65.1 87.9

Table 1: Quantitative results on ThinObject-5K test set, COIFT [33] and HRSOD [52] dataset. DGF: deep guided filter [46];

Input Res: input resolution; BBCE: balanced binary cross-entropy loss; BootCE: boostrapped cross-entropy loss.

image to be foreground. More details can be found in the

supplementary material. An example is shown in Fig. 7

where the grey pixels denote “void” labels that will be ex-

cluded from evaluation of IoUthin.

In addition, we also adopt the boundary measure F from

video object segmentation literature [36] to better assess the

quality of segmented edges.

4.2. Ablation Studies

We perform ablation experiments to justify various de-

sign choices for tackling the thin object segmentation task.

The results are summarized in Table 1. All the models adopt

the same backbone, i.e. ResNet-50-based DeepLabv3+ [5],

for fair comparison. Note that the model M1 and M2

without edge stream (and fusion stream) simply reduce to

DEXTR [32] except for using our proposed adaptive relax-

ation scheme; M8 denotes our full TOS-Net model.

Finely annotated training data. When trained on our

ThinObject-5K dataset, we can see that M2 outperforms

the counterpart trained on PASCAL-10K (M1) by a large

margin, suggesting that finely annotated datasets offer much

benefit to improving thin object segmentation.

Learning target. We train a baseline to output 3-class

segmentation (background/thin/non-thin) using a balanced

softmax cross-entropy loss that weighs each pixel with the

inverse normalized frequency of labels within a minibatch.

During testing, the predictions of thin and non-thin classes

are combined to obtain the final output. However, this re-

sults in a significant performance drop (M3 vs. M2) possibly

due to the heuristic definition of thin and non-thin pixels,

which makes the learning difficult.

Training losses. When comparing M4 and M2, we can

see that thin object segmentation is significantly benefited

from using bootstrapped cross-entropy loss and Dice loss

for training. Bootstrapped cross-entropy can be interpreted

as Online Hard Example Mining (OHEM) [40] where only

gradients for the examples leading to the top K highest loss

(which are usually thin pixels) are back-propagated whereas

Dice loss jointly optimizes the global similarity between the

network prediction and ground truth. Altogether, these two

losses are beneficial to the task of thin object segmentation.

High-resolution edge information. When comparing M8

to M4, we can see that edge information plays a crucial role

in thin object segmentation. However, interestingly, the per-

formance degrades when a fixed-resolution edge stream is

used (M6 vs. M4). This is possibly because downsampled

inputs suffer from loss of high-frequency details, and there-

fore are not suitable for thin object segmentation where fine-

grained details particularly matter. Nevertheless, one may

argue that the performance gain from M4 to M8 is partially

due to the increased number of parameters. We therefore

disentangle the two sources of performance boost by com-

paring with a baseline whose network architecture is the

same as our TOS-Net, but edge supervision now replaced

with mask supervision (M7). While performing better on

the smaller COIFT dataset, we notice a significant perfor-

mance drop on both ThinObject-5K and HRSOD datasets

when removing edge supervision. This verifies our finding

that high-resolution boundary information is essential to ad-

dressing the highly imbalanced thin/non-thin pixels distri-

bution in mask-based representation.

High-resolution features. To further investigate the impact

of high-resolution features upon thin object segmentation

performance, we additionally compare our models with a

baseline that incorporates high-resolution inputs for refine-

ment. Specifically, we insert a deep guided filtering layer

(DGF) [46] at the end of M2 to recover the details of elon-

gated thin structures when upsampling back to its original

resolution. We can see this model (denoted as M5) is still

much inferior to our TOS-Net. This demonstrates the ef-

fectiveness of our proposed three-stream design for the thin

object segmentation task.

4.3. Qualitative Results

We also present some qualitative comparison between

our TOS-Net (M8) and DEXTR [32] (M2) given the same

set of user inputs (Fig. 8). As compared to the baseline, we

can see that our TOS-Net in general produces crisper seg-
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Figure 8: Qualitative results on ThinObject-5K, COIFT [33] and HRSOD [52] datasets. Each result is arranged in the order

of: (i) input image, (ii) DEXTR [32] trained on ThinObject-5K dataset (M2), (iii) our TOS-Net (M8) and (iv) ground truths.

The input extreme clicks are marked red.

mentation, especially along thin parts (e.g. hair brush, bird

cage, bench). Moreover, our model performs well even on

challenging scenes where the color distribution of thin parts

and background significantly overlap, e.g. pole cables, but-

terfly and bug antenna. More qualitative examples can be

found in the supplementary material.

4.4. Limitations

We also show some failure cases of our approach in

Fig. 9. We notice that ThinObject-5K-trained models (both

DEXTR and our TOS-Net) exhibit strong bias towards

selecting the segmentation with elongated thin structures

when the same set of extreme points allow multiple pos-

sible segmentations (e.g. sheep or fence in the first row of

Fig. 9). However, depending on applications, this behaviour

could be desirable. Another limitation lies in the incapabil-

ity of tackling transparent objects, which has been an un-

solved problem in computer vision.

5. Conclusion

In this work, we first studied the critical factors behind

the failure of segmenting objects with elongated thin struc-

tures. We find that lack of finely annotated training data and

extremely imbalanced thin/non-thin pixels distribution are

the main reasons for the poor performance of existing inter-

active segmentation models. To address these problems, we

presented a large-scale dataset specifically for segmentation

Input Image TOS-Net Ground truth

Figure 9: Failure cases. Our model is (top) biased to-

wards segmenting thin structures when the extreme points

allow multiple possible segmentations and (bottom) unable

to handle transparent object.

of thin elongated objects, named ThinObject-5K. In addi-

tion, we design a three-stream network called TOS-Net that

integrates high-resolution boundary information with fixed-

resolution semantic contexts for effective segmentation of

thin parts. Extensive experimental results well demonstrate

the effectiveness of our proposed solution.
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