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Abstract

The aim of image-to-image translation algorithms is to

tackle the challenges of learning a proper mapping func-

tion across different domains. Generative Adversarial Net-

works (GANs) have shown superior ability to handle this

problem in both supervised and unsupervised ways. How-

ever, one critical problem of GAN in practice is that the

discriminator is typically much stronger than the genera-

tor, which could lead to failures such as mode collapse, di-

minished gradient, etc. To address these shortcomings, we

propose a novel framework, which incorporates a powerful

spatial attention mechanism to guide the generator. Specif-

ically, our designed discriminator estimates the probabil-

ity of realness of a given image, and provides an attention

map regarding this prediction. The generated attention map

contains the informative regions to distinguish the real and

fake images, from the perspective of the discriminator. Such

information is particularly valuable for the translation be-

cause the generator is encouraged to focus on those areas

and produce more realistic images. We conduct extensive

experiments and evaluations, and show that our proposed

method is both qualitatively and quantitatively better than

other state-of-the-art image translation frameworks.

1. Introduction

Generative Adversarial Networks (GANs) [13] have

drawn tremendous attention during the past few years, due

to their proven ability to generate realistic and sharp looking

images. Various computer vision problems are solved using

this framework, such as colorization [5], super-resolution

[23] and style transfer [44]. All these problems can be con-

sidered as an image-to-image translation problem: map-

ping an image from source domain to target domain. For

instance, the super-resolution problem tries to convert a

low-resolution image (source domain) to a corresponding

high-resolution image (target domain). Existing literatures

have show that variants of GAN achieve very impressive

results under both supervised and unsupervised settings

[7, 21, 24, 38, 46].

Even with such great success, most existing GAN-based

approaches are suffering from the imbalance issue between

the generator and discriminator [1]. In practice, the discrim-

inator is ordinarily too powerful compared to the generator.

As a consequence, the generator may obtain limited gra-

dients from discriminator and is hard to converge. Most

state-of-the-art solutions are trying to either find an alterna-

tive objective function [2, 15, 27, 32] or plugin some new

regularization terms [1, 18, 43]. However, such paradigms

ignore the rich information inside the discriminator, which

may lead to blurry and artificial regions.

On the other hand, the attention mechanism has been

widely adopted in image translation algorithms. Recently,

Mejjati et al. [29] concatenates an attention network before

the generator and mask out the background of the output

image, so merely the objects are translated into the tar-

get domain. They achieved superior performance on the

object-only translation while cannot be easily generalized

to scene translation. InstaGAN [31] achieves object defor-

mation (e.g. sheep → giraffe) on the image by using the

attention mask from an auxiliary network. A contemporary

work proposed by Emami et al. [11] utilizes the internal

activation from the discriminator to guide the translation.

However, this approach can only be applied to the unsuper-

vised setting. In our paper, we propose that attention mech-

anism should not be restricted to object translation and can

be further applied to both supervised and unsupervised set-

tings.

Inspired by the close-loop feedback control systems [4],

we propose that the high intensity regions in the attention

map are more significant during the translation, so that the

generator should allocate more resource on these particular

areas. Our framework focuses on this key idea, which aims

to compute an attention map based on the discriminator’s

internal activation, and then feed it back to the generator.

Imagine that a student is learning how to draw an apple. The

standard discriminator, as a painting master, merely grades

the student’s painting and hopes that can help the student

improve his work. On the other hand, another master point
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Figure 1. The discriminator distinguish real/fake image based on unrealistic regions. In this paper, we propose a novel framework that

utilizes the internal information of the discriminator to enhance generator’s capacity.

out areas for the student to improve for the next painting,

such as incorrect regions (e.g. skin or stem). That is ex-

actly our idea: we believe that the student (generator) would

gain benefit from the second master (attention embedded

discriminator), which provides better lead regarding spatial

guidance. Our main contributions are threefold:

• A flexible attention-augmented discriminator: such

discriminator provides not only the probability of real-

ness, but also a valuable spatial attention map from its

internal activation. We propose two types of attention

mechanism in this paper.

• A unified GAN framework with spatial attention

feedback: we propose two concatenation methods to

combine the attention map with raw input 1) Adding

an alpha channel; 2) compute the Residual Hadamard

Production of the attention map and raw input. Noted

that these methods naturally preserve the information

of original input and amplify the signal of crucial re-

gions.

• Extensive validation on different benchmarks: we

provide extensive experimental validation of our pro-

posed framework on different benchmarks. Both

the qualitative results and quantitative comparisons

against state-of-the-art methods demonstrate the effec-

tiveness of our approach.

Different from previous approaches, our framework

strengthens the communication and guidance between the

generator and discriminator. At a high level, our work shed

the light upon using auxiliary network attention information

to improve the performance of image to image translation,

which could be influential to other related research in the

future as well.

2. Related Works

Generative Adversarial Network GANs have achieved

impressive results in image translation tasks [10, 21, 22,

23, 33]. Typically, GAN consists of two components: a

generator and a discriminator. The generator is trained to

fool the discriminator, which in turn tries to distinguish be-

tween real and synthetic samples. Various improvements to

GANs have been proposed regarding different aspects, for

instance, improved objective functions [2, 27] and advanced

training strategies [14, 32, 39]. A recently proposed frame-

work, FAL [20], iteratively improves synthetic images with

the signal returned by a well designed spatial discriminative

decoder. However, they either don’t collect enough infor-

mation from the discriminator, or are computational expen-

sive because of multiple forward passes.

Image Translation Image-to-image translation can be con-

sidered as a generative process conditioned on an input im-

age. pix2pix [21] was the first unified framework for su-

pervised image-to-image translation based on conditional

GAN (cGAN) [30]. TextureGAN [41] solves the sketch-to-

image problem using user defined texture patch, and Con-

textualGAN [25] addresses the same problem by learning

a joint distribution of the sketch and its image. More re-

cently, Gonzalez et al. [12] adopted disentanglement rep-

resentation to improve the rendering process and Tang et

al. [36] utilized the extra semantic information to guide the

generation.

Despite the promising results they achieved, the above

methods are generally not applicable in practice due to the

lack of paired data. Several interesting frameworks have

been proposed to solve the unsupervised image-to-image

translation problem. Cycle consistency loss is first intro-

duced in CycleGAN [46] and is then widely used by other

unsupervised image translation frameworks. For example,

UNIT [24] improves the translation with shared latent space

assumption, and MUNIT [19] later uses it as backbone to

handle multi-modal translation. In contrast, our flexible

framework can be applied on both supervised and unsuper-

vised settings.

Attention Mechanism Generally, the attention mechanism

can be viewed as guidance to bias the allocation of available
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processing resources towards the most informative com-

ponents of an input.It’s divided into two categories: post

hoc network analysis and trainable attention module. The

former scheme has been predominantly employed to ac-

cess network reasoning for the visual object recognition

task [6, 34, 35, 45]. Trainable attention models fall into

two main sub-categories, hard (stochastic) that requires re-

inforcement training and soft (deterministic) that can be

trained end-to-end [18, 37, 40].

The attention mechanism is quite useful to solve the

image-to-image translation problem. Ma et al. [26] use a

deep attention encoder to discover the instance level cor-

respondences. AGGAN [29] utilizes an auxiliary trainable

attention network to separate the instance and background.

InstaGAN [31] further incorporates the instance informa-

tion to improve the multi-instance transfiguraiton. Noted

that any attention mechanism producing an attention map

can be integrated into our framework. Without loss of gen-

erality, we implement one representative attention model

each category in this paper.

3. Method

3.1. Overview

Consider images from two different domains, source do-

main X and target domain Y . Data instances in source do-

main x ∈ X follow the distribution Px, whereas instances

in target domain y ∈ Y follow the distribution Py . Our

goal, in the problem setting of image-to-image translation,

aims to learn mapping functions across these two different

image domains, G : x → y and/or F : y → x, such that

the differences between Px and F ◦ Py and the difference

between Py and G ◦ Px are minimized.

The main idea of our approach is to incorporate a spatial

attention map generated by the discriminator, i.e., augment

a space of attention map M to the original input space X , to

improve the image-to-image translation task. Formally, our

approach can be described as a joint-mapping learning from

attention-augmented space X ⊕MX to Y , and Y ⊕MY to

X if cycle consistency is applied, where ⊕ is the concate-

nate operation. Our method explicitly forces the generator

to allocate more processing resources to the attended areas

so it can conduct a sharp and clear translation. Generally,

our method can be applied to any conditional GAN-based

translation.

3.2. Architecture

Our framework, as illustrated in Figure 2, is built upon

GAN and attention mechanism. For the supervised learn-

ing setting, it consists of three components, a generator G,

a discriminator DY and an attention transfer block T . It can

be extended to unsupervised setting by simply enforcing cy-

cle consistency, which now has five components, including:
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Figure 2. Overview of our framework. Left: standard GAN with

an attention embedded discriminator. Mx is the attention map pro-

vided by the discriminator. The L1 loss between generated y′

i and

corresponding ground truth yi is computed. Right: the frame-

work for unsupervised translation using cycle consistency. yi is

not available and the L1 loss between x and x′ is calculated in-

stead.

two generators G and F , two domain discriminators DX

and DY , and one shared attention transfer component T .

The training is based on each generator-discriminator

pair. Considering a standard GAN, the generator G trans-

lates an image xi in X to an image in domain Y , and

the discriminator DY tries to distinguish whether its in-

put is a real or fake image in domain Y . Here, we denote

ŷi = G(xi) as the output of generator, given xi. Our at-

tention embedded discriminator not only returns the prob-

ability of realness, DY(ŷi) ∈ [0, 1], but also an attention

map Axi
that highlights the attending areas of DY . This at-

tention map then will be transferred to a pixel-level weight

map, Mxi
via the attention transfer block T and concate-

nated with the raw input. It’s worth noting that the actual

input of our generator G is the concatenation of xi and Mxi
,

formulated as x′
i = xi⊕Mxi

. At the start of the training, the

attention map of each image is not available so we initialize

it as an all-ones matrix Axi
∈ Rm×n, where m × n is the

shape of the input image. Other initialization methods, like

random noise, have also be examined but have limited im-

pact on the final result. The translation process of generator

G can be formulated as:

ŷ
(k+1)
i = G(xi ⊕ T (D(ŷ

(k)
i )); θ), k = 0, 1, 2, . . . (1)

where k and k + 1 denote the index of iteration and θ is

the parameter of G. Please note that we use the attention

feedback from previous iteration for the same input, which

is more efficient comparing to FAL [20] that requires mul-

tiple forward passes per instance. Assume we only provide

the raw input to the generator, G may waste its processing

resources on some peripheral locations thus DY can beat

it easily. As a consequence, the loss of the discriminator

quickly converges to zero and the generator can no longer

efficiently update its parameter. Alternatively, by concate-
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Figure 3. The architecture of different type of discriminator. Left:

PHA that builds attention map from a specific layer. Right: TAM

that builds attention map from an additional network branch.

nating the raw input with Mx, the generator knows exactly

where the discriminator is noticing and can manage its re-

sources appropriately. As illustrated in Figure 2, we can

extend this framework to perform the unsupervised transla-

tion by adding another GAN component and enforcing cy-

cle consistency.

3.3. Attention Map

Our discriminator provides an extra attention map Axi

for each image generated from xi. We consider both

post hoc attention (PHA) that leaves the discriminator un-

touched, and trainable attention module (TAM) that leads

to better distinguishing power.

Given input x, the PHA attention map can be constructed

from the backward gradients, forward activation, or the

mix of them [34]. We build our discriminator based on

the classical PatchGAN [21]. The network is presented

as D = {l0, l1, . . . , lm} where li denotes i-th convolution

layer in the network, and ActD = {a1, a2, . . . , am} is the

set of activation map of corresponding layer. The PHA at-

tention is sensitive to layer selection, as different layer acti-

vation leads to different attention map [28]. Specifically, if

lt is the chosen layer, the attention map can be described as:

M = norm(
1

c

c∑

i=1

|at,i|) (2)

where c is the number of channels in t-th layer and norm(·)
applies the min-max normalization. As suggested by [28],

we chose the 4-th convolution layer in our experiment. This

attention map only requires minor computation and works

surprisingly well in most cases, but it may not achieve

promising results facing complex images (e.g. scene im-

ages). On the contrary, a TAM is suitable for such complex

input since it simultaneously increases the capacity of gen-

erator and discriminator.

Our TAM follows the same 2-branch architecture of the

attention block in RAM [37]. Noted that the discriminator

is ordinarily powerful than the generator, the enhancement

over discriminator must be chosen wisely. Thus, we re-

placed the Resblock [16] by a simple convolution layer. As

presented in the right part of Figure 3, first few layers of the

discriminator extract the low-level information of the input,

and passes it through following branches. Given the trunk

branch output T (x) with the input x, the attention branch

learns an attention map A(x) that softly weights the output

of trunk branch. The output of such module is:

EC = (AC(x) + 1)× TC(x) (3)

where C is the set of channels. Finally, a convolutional

layer computes the probability of realness based on E and

an attention map from the attention branch output, M =
Avg(AC(x)), will be returned.

3.4. Concatenation

In this section, we propose two methods to blend the at-

tention map Mx with its corresponding input x. The first

one is based on the aforementioned TAM. We compute the

Residual Hadamard Production (RHP) of the attention map

and original input. Such operation is superior comparing to

dot production because dot production with the weight fac-

tor range from zero to one will degrade the pixel value and

cause fractional pixel problem [29]. RHP can be formulated

as:

x′ = x⊕Mx = (g(Mx; θ) + 1)× x (4)

where g(; θ) is the attention transfer block T that transfer

the attention map to corresponding pixel weight map. It’s

implemented as a small 3-layers convolution network.

Another intuitive concatenation is called Alpha concate-

nation and is inspired by RGBA and Depth image, which

contains three-channel RGB color model supplemented

with a 4-th channel that provides additional information,

like the opaque level of each pixel. By using this method,

the importance of each pixel is observed by the generator

explicitly. Formally, it is described as:

x′ = x⊕Mx = {xr, xg, xb, g(Mx; θ)} (5)

where g(; θ) is the same transfer function in RHP. Remeber

that a gray scale image can be transformed into RGB image

by repeating its intensity for each RGB channel. It’s worth

noting that these two concatenate methods only allow the

attention map to amplify the pixel signal, and the genera-

tor can always receive the original input. It is crucial for

the trick we used during the test since the generator won’t

completely rely on the attention map.

3.5. Training loss

Let’s start with the supervised translation setting. The

adversarial loss of a vanilla GAN consists of one generator

G and one discriminator D can be expressed as:

LGAN (G,D) = Ey∼Y [logD(y)]+

Ex∼X [log(1−D(G(x′)))]
(6)
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where x′ is computed from Eq 4 or 5. This cost function is

well known for its training difficulty [1]. We adopt the mod-

ified least-squares loss [27] to further stabilize the training

process and improve the quality of generated images:

LGAN (G,D) = Ey∼Y [(D(y)− 1)2]+

Ex∼X [(G(x′))2]
(7)

Noted that adversarial loss alone does not guarantee a

sound translation. It is beneficial to mix traditional loss like

L1 or L2 distance between synthesized image and ground

truth. Based on the suggestion from pix2pix [21] that L1

loss encourages less blurry, L1 loss has be chosen as part of

our supervised training objective:

LL1(G) = Ex,y[‖y −G(x′)‖1] (8)

The final objective function in this setting is:

argmin
G

max
D

LGAN (G,D) + λLL1(G) (9)

We can extend this framework to further conduct the un-

supervised translation task by adding another pair of gen-

erator and discriminator, and enforcing cycle consistency.

Assume the generator G simulates the map function G :
X → Y and discriminator DY are trying to distinguish be-

tween G(x) and y, the objective of this GAN component is

LGAN (G,DY). The generator F and discriminator DX is

doing the same task in the opposite direction, its loss func-

tion is LGAN (F,DX ). Cycle consistency is employed in

such unsupervised setting because it alleviate the shortness

of paired data. It assumes that if a image x from domain X
has be translated to a fake image in domain Y , we should get

the same image x by applying F : Y → X . This behavior

is formally presented as:

Lcyc(G,F ) = Ex∼X [‖F (G(x))− x‖1]+

Ey∼Y [‖G(F (y))− y‖1]
(10)

The final objective in the unsupervised setting is:

argmin
G,F

max
DX ,DY

LGAN (G,DY) + LGAN (F,DX )

+λLcyc(G,F )
(11)

4. Experiment

To verify the effectiveness of our proposed framework,

we evaluate it on both unsupervised setting and super-

vised setting in this paper. The source code is available at

https://github.com/voidstrike/ASGIT

A crucial point of our framework is how can we perform

the inference in test phase. The attention map of each im-

age is not available beforehand, and some placeholders are

Figure 4. Examples of attention maps. Left: Attention maps gen-

erated by PHA; Right: Attention maps generated by TAM.

required. Based on the training phase and the concatenation

in Sec 3.4, an all-one attention is used as the placeholder as

we assume the whole image is important by default.

4.1. Settings

4.1.1 Datasets

We evaluate our method on four benchmarks for unsu-

pervised translation. orange2apple, horse2zebra [9] are

for object transfer; summer2winter [46] and day2night

are two challenging scenery tasks. day2night contains

7870 daytime street images and 8592 night street images

cropped from BDD110k [42]. Furthermore, we evaluate on

Cityscape [8] for both supervised and unsupervised transla-

tions. All data are randomly split into train and test (80/20

split).

4.1.2 Baselines

For the unsupervised translation setting, we compare our

framework to CycleGAN [46] that enforces cycle consis-

tency, and UNIT [24] that leverages the latent space as-

sumption between source/target images. Also, we compare

with StarGAN [7], which is capable for multiple domains

translation. Additionally, we include AGGAN algorithm

[29] in the comparison, which separates the foreground and

background via an attention network.

For the supervised translation setting, we compare to

GAN [13] and cGAN [30]. The only difference between

them is that cGAN is conditioned on the input. We also con-

sider pix2pix [21] in the comparison, which extends cGAN

by adding a reconstruction loss. Moreover, we compare

with FAL [20], which iteratively modifies the hidden fea-

ture according to the discriminator’s feedback.

4.1.3 Metrics

To be comparable with previous approaches [21, 29, 46],

FCN score is computed to evaluate Cityscape tasks and Ker-

nel Inception Distance (KID) [3] is for unsupervised trans-

lation. KID computes the squared MMD (Maximum Mean

Discrepancy) between feature representations of real and
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generated images. Different from the Fréchet Inception Dis-

tance [17], KID is more reliable because of the unbiased es-

timator. While KID is unbounded, the lower its value, the

more shared visual similarities there are between real and

generated images.

Two types of KID are reported based on the task. Target-

KID measures the distance between generated images and

target domain, while fused-KID denotes the distance be-

tween synthesized images and both domains. Generally,

target-KID is suitable for object translation since we only

care about the target object rather than the background. On

the other hand, fused-KID is good for scenery task because

both foreground and background matter [29].

4.1.4 implementation

To be comparable with previous methods [20, 21, 46], we

use 256×256 images for the unsupervised Cityscape trans-

lation and all object and scenery tasks, and 128 × 128 im-

ages for the supervised Cityscape translation. In the pre-

processing step, we resized the input image to 286 × 286
(143 × 143) then randomly cropping back to 256 × 256
(128 × 128). For all the unsupervised experiments, we set

the weight factor of the GAN loss to 1, λGAN = 1, and the

weight factor of cycle consistency to 10, λCyc = 10. On

the other hands, we set λGAN = 1 and λL1 = 100. for the

supervised setting.

We used Adam optimizer with batch size 1, training on a

Quadro 8000 GPU. All networks were trained from scratch,

with learning rate of 0.0002 for both the generator and dis-

criminator, and β1 = 0.5, β2 = 0.999 for the optimizer. We

kept learning rate for first 100 epochs and linearly decayed

to 0 for next 100 epochs.

4.2. Attention and Concatenation

Recall that we implement two attention mechanisms and

two concatenations for our experiment. The remaining

problem is how to combine them properly. We first present

qualitative results in Figure 5. As discussed in Section 3,

TAM is not good at handling simple datasets, e.g. ap-

ple2orange, while the results are more attractive for more

complex summer2winter dataset. By comparing alpha con-

catenation with RHP under post hoc attention, we find that

the contrast ratio of the synthesized image is usually too

high and leads to unrealistic images.

We also present attention map examples in Figure 4 and

a quantitative evaluation for each combination in Table 1.

Numerical results in the table justify our previous obser-

vations. Based on the overall performance across different

tasks, most experiments use PHA and RHP in the following

sections.

PHA+
Alpha

PHA+
RHP

TAM+
Alpha

TAM+
RHPSource

Figure 5. Different combination of attention and concatenation on

apple2orange and summer2winter. First column is the real input.

From second column to the right: PHA and alpha, PHA and RHP,

TAM and alpha, TAM and RHP

4.3. Object and Scenery Translation

We present target-KID in Table 2 and fused-KID in Ta-

ble 3. Our proposed framework outperforms all baselines in

all tasks except day→night. Nevertheless, our result is very

close to the winner. This observation is consistent with our

qualitative evaluation in Figure 6, where our fake horse (ze-

bra) is much more realistic than the counterparts produced

by baselines. However, our method dramatically changes

the background comparing to other methods, which means

it is a better choice if the background doesn’t play a impor-

tant role in the translation.

Scenery translation results are presented in Figure 6. It’s

surprising to see the simplest CycleGAN model got first

place in day2night, which is harder than two aforemen-

tioned object transfer datasets. Notwithstanding, Cycle-

GAN got 2nd place on night→day, which is commonly con-

sidered easier. Another interesting observation is AGGAN

does not perform any translation these cases. Based on the

idea of AGGAN, it will decompose the image into fore-

ground and background. But a proper ’foreground’ cannot

be found in scenery translation, thus no translation can be

conduct. To sum up, our method produces more realistic

scenery images comparing to baselines.

4.4. Cityscape translation

We evaluate our method on Cityscape [8] for both su-

pervised and unsupervised settings. We train photo→label

and label→photo on the Cityscape, and compare the output

images with the ground truth.

As shown in Table 4, our method significantly outper-

821



Source Ours CycleGAN StarGAN UNIT AGGAN

Figure 6. Image-to-Image translation results generated by different approaches on object translation and scenery translation. Every two

rows from top: apple↔orange, zebra↔horse, night↔day and winter↔summer. More result is available in the supplementary
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(A)pple↔(O)range (S)ummer↔(W)inter (A)pple↔(O)range (S)ummer↔(W)inter

Method A→O O→A S→W W→S A→O O→A S→W W→S

PHA+Alpha 7.25 ± 0.83 3.69 ± 0.41 1.86 ± 0.24 1.01 ± 0.23 4.02 ± 0.37 4.11 ± 0.31 1.04 ± 0.12 1.23 ± 0.12

PHA+RHP 6.31 ± 0.60 2.99 ± 0.38 1.98 ± 0.33 1.03 ± 0.26 3.69 ± 0.27 4.30 ± 0.31 1.18 ± 0.16 1.55 ± 0.13

TAM+Alpha 10.80 ± 0.71 7.26 ± 0.47 2.37 ± 0.35 1.76 ± 0.37 5.93 ± 0.31 6.70 ± 0.36 1.45 ± 0.18 1.71 ± 0.15

TAM+RHP 10.06 ± 0.64 6.81 ± 0.45 1.34 ± 0.29 1.73 ± 0.30 5.54 ± 0.31 6.47 ± 0.37 0.82 ± 0.14 1.72 ± 0.15

Table 1. KID ± std. (scaled by 100) computed for different combination on apple2orange and summer2winter. Left 4 columns shown the

target-KID and the rest 4 columns show the fused-KID (Lower the better).

(A)pple↔(O)range (H)orse↔(Z)ebra (D)ay↔(N)ight (S)ummer↔(W)inter

Method A→O O→A H→Z Z→H D→N N→D S→W W→S

CycleGAN 8.48 ± 0.53 5.94 ± 0.65 3.94 ± 0.41 4.87 ± 0.52 2.63 ± 0.20 7.68 ± 0.35 2.78 ± 0.22 1.86 ± 0.26

StarGAN 13.32 ± 0.52 11.19 ± 0.51 12.42 ± 0.74 12.21 ± 0.89 5.37 ± 0.43 8.49 ± 0.34 8.05 ± 0.37 8.72 ± 0.47

AGGAN 10.61 ± 0.79 4.57 ± 0.30 4.12 ± 0.80 4.46 ± 0.40 8.09 ± 0.37 7.85 ± 0.29 3.45 ± 0.43 2.75 ± 0.20

UNIT 17.41 ± 1.13 7.26 ± 0.57 12.25 ± 0.74 12.37 ± 0.84 2.83 ± 0.30 11.00 ± 0.53 6.20 ± 0.25 5.99 ± 0.28

Ours (PHA+RHP) 6.31 ± 0.60 2.99 ± 0.38 1.03 ± 0.35 3.42 ± 0.51 2.76 ± 0.32 6.96 ± 0.38 1.98 ± 0.33 1.03 ± 0.26

Table 2. Target KID ± std. (scaled by 100) computed for different methods and on different datasets. Best results are bolded.

(A)pple↔(O)range (H)orse↔(Z)ebra (D)ay↔(N)ight (S)ummer↔(W)inter

Method A→O O→A H→Z Z→H D→N N→D S→W W→S

CycleGAN 11.02 ± 0.60 9.82 ± 0.51 10.25 ± 0.25 11.44 ± 0.38 1.95 ± 0.13 3.63 ± 0.20 2.05 ± 0.12 3.34 ± 0.12

StarGAN 9.15 ± 0.43 8.31 ± 0.48 7.14 ± 0.48 4.50 ± 0.36 3.43 ± 0.20 5.18 ± 0.23 3.95 ± 0.17 4.14 ± 0.21

AGGAN 6.44 ± 0.69 5.32 ± 0.48 6.93 ± 0.27 6.71 ± 0.27 4.14 ± 0.14 4.97 ± 0.18 3.15 ± 0.19 2.45 ± 0.13

UNIT 11.68 ± 0.43 10.48 ± 0.67 4.91 ± 0.36 4.39 ± 0.33 2.48 ± 0.16 6.12 ± 0.29 3.51 ± 0.15 2.83 ± 0.12

Ours (PHA+RHP) 3.69 ± 0.27 4.30 ± 0.31 8.42 ± 0.47 8.46 ± 0.41 2.48 ± 0.15 4.58 ± 0.23 1.18 ± 0.16 1.55 ± 0.13

Table 3. Fused KID ± std. (scaled by 100) computed for different methods and on different datasets. Best results are bolded.

Label→Photo Photo→Label

Method Per-pixel acc. Per-class acc. IoU Per-pixel acc. Per-class acc. IoU

CycleGAN 0.42 0.15 0.10 0.56 0.21 0.17

UNIT 0.48 0.17 0.11 0.58 0.18 0.14

AGGAN 0.37 0.11 0.09 0.49 0.14 0.10

StarGAN 0.47 0.16 0.11 0.61 0.21 0.17

Ours (PHA) 0.52 0.20 0.12 0.60 0.24 0.19

Ours (TAM) 0.49 0.19 0.10 0.59 0.23 0.19

Table 4. FCN-scores (Higher is better) for different methods, eval-

uated on Cityscape label↔photos in unsupervised setting.

Label→Photo Photo→Label

Method Per-pixel acc. Per-class acc. IoU Per-pixel acc. Per-class acc. IoU

GAN 0.22 0.05 0.01 0.32 0.08 0.02

cGAN 0.57 0.20 0.14 0.71 0.26 0.21

FAL 0.57 0.18 0.13 0.77 0.25 0.21

pix2pix 0.61 0.22 0.16 0.80 0.43 0.32

Ours(PHA) 0.63 0.23 0.16 0.81 0.42 0.32

Ours(TAM) 0.63 0.22 0.16 0.75 0.40 0.30

Table 5. FCN-scores (Higher is better) for different methods, eval-

uated on Cityscape label↔photos in supervised setting.

forms the baselines in the unsupervised experiments. The

compelling improvement in the pixel-level accuracy comes

from the guidance of the attention map, which aligns with

our expectations. However, the improvement of other met-

rics is somehow limited. We suggest that it’s because only

few domain specific classes are highlighted in the attention

map, and the generator works too hard on these objects and

ignores others. Another possible cause would be the num-

ber of classes per image, which is small in this task and we

cannot increase the score for nonexistent classes. Since it’s

not our major contribution, we leave the justification in the

supplementary.

Meanwhile, the improvement of the supervised transla-

tion is not as sharp as the unsupervised translation according

to Table 5, yet it still shows that further improvement can be

achieved with little extra computation. We believe that it’s

majorly due to the strong regularization enforced by the L1

norm. Note that pix2pix and our framework share λ = 100
in Eq. 9, but FAL has λ = 10 in their implementation.

This may explain why FAL, as a recurrent modification of

pix2pix, got worse performance. It also further justified that

L1 loss may sufficient for the supervised case already.

5. Conclusion

This work argues for spatial attention, which unveils

the regions of an image for the discriminator to determine

whether that image is real or fake, can significantly im-

prove the performance of GANs on image-to-image trans-

lation tasks. It is noteworthy that no additional supervision

is needed to generate this attention map. Our method not

only shows compelling improvement on both unsupervised

and supervised learning tasks compared to state-of-the-art

algorithms, but also demonstrates an insightful investiga-

tion to the behaviors of GANs. We further remark that our

idea can apply on any GAN-based model with little mod-

ification. According to our experiment, we observe that

the performance of our proposed framework is sensitive to

the selection of attention module and concatenation method.

Investigating the impact of different attention mechanisms

and new tasks could be an interesting research direction in

the future.
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