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Abstract

Learning-based 3D reconstruction using implicit neural

representations has shown promising progress not only at

the object level but also in more complicated scenes. In

this paper, we propose Dynamic Plane Convolutional Oc-

cupancy Networks, a novel implicit representation pushing

further the quality of 3D surface reconstruction. The in-

put noisy point clouds are encoded into per-point features

that are projected onto multiple 2D dynamic planes. A

fully-connected network learns to predict plane parameters

that best describe the shapes of objects or scenes. To fur-

ther exploit translational equivariance, convolutional neu-

ral networks are applied to process the plane features. Our

method shows superior performance in surface reconstruc-

tion from unoriented point clouds in ShapeNet as well as an

indoor scene dataset. Moreover, we also provide interesting

observations on the distribution of learned dynamic planes.

1. Introduction

Exploiting 3D information, such as point clouds, has

become increasingly popular for various computer vision

tasks, such as self-driving vehicles, indoor navigation, and

robotics [35, 41]. 3D surface reconstruction from point

clouds promises better precision for these applications. In

recent years, learning-based 3D reconstruction using im-

plicit neural representations in the continuous domain has

gained much attention due to its ability to produce smooth

and expressive reconstruction with a significant reduction

of memory footprint [5, 23, 28].

However, the pioneering implicit 3D reconstruction ap-

proaches are limited to single objects and do not scale to

larger scenes due to the use of global embeddings. Some

recent works [2, 5, 13, 17, 28] noticed this problem and in-

troduced various ways to exploit the information of local

structures. While those works have introduced a significant

improvement in the object or scene-level reconstruction,

the work of Peng et al. on convolutional occupancy net-

∗Equal contribution. This is a 3D Vision course project at ETH Zurich.

works (ConvONet) [28] is the first to demonstrate an accu-

rate and efficient reconstruction of large-scale scenes from

point clouds without the need for online optimization. One

critical success factor of this work is encoding 3D inputs to

2D canonical planes, which are then processed by convo-

lutional neural networks (CNNs). In this way, the transla-

tion equivariant property of CNNs and the local similarity

of 3D structures are exploited, enabling the accurate recon-

struction of complex scenes. In their work, three canonical

planes are pre-defined following Manhattan-world assump-

tion [7] on the dataset orientation.

In this work, we propose Dynamic Plane Convolutional

Occupancy Networks1, an implicit representation that en-

ables accurate scene-level reconstruction from 3D point

clouds. Instead of learning features on three pre-defined

canonical planes as in [28], we use a fully-connected net-

work to learn dynamic planes, on which we project the en-

coded per-point features. The learned dynamic planes cap-

ture rich features over the most informative directions. We

systematically investigate the use of up to 7 learned planes

and demonstrate progressive improvements by increasing

the number of learned planes in our experiment. The de-

tailed architecture of our model is illustrated in Fig. 1. Com-

pared to [28], our model introduces another degree of pre-

cision by learning features that are more specific to every

object and plane.

In summary, the main contributions of our paper are as

follows:

• We fully leverage deep neural networks in feature

learning to predict the best planes for 3D surface re-

construction tasks from unoriented point clouds.

• We show superiority over state-of-the-art approaches

in the task of 3D surface reconstruction at both object

and scene level.

• We provide various observations on the distribution of

the dynamic planes from intensive experiments.

1Code is available at: https://github.com/dsvilarkovic/

dynamic_plane_convolutional_onet.
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Figure 1: Dynamic Plane Convolutional Occupancy Networks pipeline. N input point clouds are encoded to per-point

features by ResNet PointNet [30] with D as the feature dimension. Concurrently, a shallow plane predictor network learns

L dynamic planes and plane-specific features from the input point clouds. We sum the plane-specific features to all of the

encoded per-point features with respect to individual dynamic planes. Next, the summed features are projected to the dynamic

planes. The projected plane features are then processed using U-Net [32] with shared weights among planes. In the decoding

phase, the occupancy of a uniformly sampled point p is predicted by a shallow fully-connected network conditioned on the

queried local planar features.

In addition, we exploit the use of positional encoding

proposed in [24], which maps the low dimensional 3D point

coordinates to higher-dimension representations with peri-

odic functions under various frequencies. While [24] shows

its effectiveness on image rendering tasks, we demonstrate

that the same positional encoding is also useful for 3D re-

construction tasks.

Additionally, we formulate a similarity loss function to

govern the orientations of dynamic planes to orient in di-

verse directions. By using a high number of dynamic

planes trained with the additional similarity loss function,

we observe a considerable improvement in the reconstruc-

tion from point clouds with unseen orientations.

2. Related Work

Existing works on learning-based 3D reconstruction can

be broadly categorized by the output representation: voxels,

points, meshes, or implicit representations.

Voxel representations: Voxel might be the most widely

used representation for 3D reconstruction [6, 36, 39], but is

limited in terms of resolution due to its large memory con-

sumption. To alleviate this problem, several works consider

the multi-scale scheme or octrees for efficient space parti-

tioning [11, 16, 22]. Even with these modifications, these

approaches are still restricted by computation and memory.

Point representations: Point clouds are widely used ei-

ther in robotics or computer graphics [12, 30, 31]. How-

ever, there are no topological relations among points, so

extra post-processing steps are required [8, 10]. Several

works also propose learning-based convolution operations

on point clouds to describe the relation among points,

analogous to the 2D convolution on image pixels in con-

volutional neural networks [19, 29, 34, 38]. Similar to

our method in encoding point cloud representation, FP-

Conv [19] aggregates features from point clouds onto 2D

grids using a learned local flattening operation. Likewise,

Point-PlaneNet [29] introduces a point cloud convolution

operation called PlaneConv, which computes distances be-

tween points and aggregate them in a set of learned planes.

Nevertheless, all these methods do not consider the surface

reconstruction task, which is the focus of our paper.

Mesh representations: Meshes [14, 15, 18] emphasize

topological relations by constructing vertices and faces, but

mesh-based methods suffer from generating either shapes

with only simple topology or self-intersecting meshes.

Implicit neural representations: Recently, implicit oc-

cupancy [23] and signed distance field [27] have been ex-

ploited for 3D reconstruction. In contrast to the aforemen-

tioned explicit representations, implicit representation can

model shapes in a continuous manner. Therefore, better

detail preservation and more complicated shape topologies

can be obtained from the implicit representation. Many

recent works explore various applications, e.g., learning

the implicit representation only from 2D observations [20,

21, 25], encoding texture information [24, 26], or learn-

ing gradient fields [1]. Unfortunately, all these methods are

still limited to the reconstruction of single objects or small

scenes with restricted complexity and struggle to generalize

to scenes outside of the training distribution.

The notable exception is Peng et al. [28]. They propose

an architecture that enables large-scale 3D scene recon-

struction by training on synthetic indoor scene dataset and

testing its generalization to larger scenes such as ScanNet

[9] and MatterPort3D [3]. Specifically, given a point cloud,

this method projects point-wise features onto the canonical

planes or volume grids and then use U-Net [32] to aggregate

both local and global information. In this way, the inductive

biases are effectively exploited. However, considering only

canonical planes may cause performance loss when some

object parts do not align well with the canonical directions

(e.g., a wired lamp with complicated geometry, see the first

row of Fig. 4). Therefore, we propose to learn planes with
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a network. With such learned dynamic planes, our system

shows better 3D reconstruction quality.

3. Method

Our goal is to reconstruct 3D scenes with fine details

from noisy point clouds. To this end, we first encode the

input point clouds into 2D feature planes, whose parame-

ters are predicted by a fully-connected network. These fea-

ture planes are then processed using convolutional networks

and decoded into occupancy probabilities via another shal-

low fully-connected network. Fig. 1 illustrates the overall

workflow of the proposed method.
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Figure 2: Encoder architecture. We use a ResNet Point-

Net [23, 28] to extract the per-point features. On top of it,

we add a plane predictor network to predict the dynamic

plane parameters, which consists of a simple PointNet [30].

The architecture of our encoder is illustrated in Fig. 2.

We describe each part as follows.

Point cloud encoding: Given a noisy point cloud, we

first form a feature embedding for every point with ResNet

PointNet [23], in which we perform local pooling accord-

ing to the predefined plane resolution [28]. We are applying

a rather simple network here for the proof of concept, but

other advanced feature extractors, e.g., PointNet++ [31] or

Tangent Convolution [33], can also be used.

Dynamic plane prediction: Having the point-wise fea-

tures, we can then construct the planar features. Mathemat-

ically, a plane is defined by a normal vector n = (a, b, c)
and a point (x, y, z) which a plane passes through [29]:

ax + by + cz = d. Peng et al. [28] simply project features

onto canonical planes, i.e., 3 planes aligned with the axes

of the coordinate frame, x = 0, y = 0, z = 0. Unlike [28],

we introduce another shallow fully-connected network to

regress the plane parameter (a, b, c). As illustrated in the

upper branch of Fig. 2, we perform max pooling globally

on all points in the point cloud because a global context is

needed to search for the proposal of the best possible planes.

Since different input point clouds might be predicted with

different planes, we call this process dynamic plane predic-

tion. Note that we directly set the intercept of the plane d

to 0 because the shifts along the normal direction do not

change the feature projection process.

After the prediction of plane parameters, we pass it

through one layer of FC to obtain a feature for every dy-

namic plane. This feature is expanded, matching the num-

ber of input point cloud and summed up with the last layer

of ResNet PointNet with respect to the individual dynamic

plane, and thus we call it the plane-specific feature. Our

main intention is to allow backpropagation into the plane

predictor network, but we also empirically find that this in-

dividual summation operation improves the reconstruction

quality. One possible reason is that it allows the networks

to learn varying emphasis over the feature dimension of the

last layer of ResNet PointNet with respect to the individual

dynamic plane.

Once having the predicted plane parameters, we project

the summed-up features onto the dynamic planes with a de-

fined size of H ×W grids and apply max pooling for the

features falling into the same grid cell.

Planar projection: In order to project the encoded features

to the dynamic planes, whose normals can point to any di-

rections, we sequentially apply basis change, orthographic

projection, and normalization to always keep them inside

H ×W grids. Denoting the three basis vectors of canoni-

cal axes, i, j, k, where k is the basis vector of the ground

plane and n is the learned plane normal, those operations

are detailed as follows and illustrated in Fig. 3.

To perform basis change, we normalize n into a unit vec-

tor n̂ and obtain the rotation matrix R that aligns k with n̂.

Let v =
[

v1 v2 v3
]⊤

= k× n̂, the rotation matrix R is

defined as:

R = I + [v]× + [v]2×
1− k · n̂

‖v‖2
, (1)

where [v]× is the skew matrix:

[v]× :=





0 −v3 v2
v3 0 −v1
−v2 v1 0



 (2)

With the rotation matrix R, we rotate the axes i and j to

obtain ip and jp. Now, the vectors ip, jp and n̂ are orthogo-

nal to each other, serving as the basis of the predicted plane

coordinate system.

Next, we convert point coordinates from the world coor-

dinate to the plane coordinate system and project the fea-

tures orthographically to the predicted plane (”new ground
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Figure 3: Planar projection. To obtain the projected

feature plane, we sequentially apply basis change, ortho-

graphic projection, and normalization.

plane”). However, as our dynamic plane can orient to any

direction, the orthographic projection of a point far from the

centroid of 3D space might fall outside the H ×W grids.

To ensure all possible points after orthographic projection

are inside the grids, we divide the coordinates after projec-

tion by a normalization constant c ≥ 1. To find c, we first

convert ip and jp to be inside the positive octant by taking

their absolute values i+p and j+p . Next, we obtain orthogonal

projections of the vector 1 = [1, 1, 1]⊤ to i+p and j+p :

ai =
1 · i+p

i+p · i+p
i+p , aj =

1 · j+p

j+p · j+p
j+p (3)

Subsequently, we set c to be the maximum value be-

tween the lengths of these two projected vectors, c =
max(|ai|, |aj|). The point coordinates under the plane co-

ordinate system are divided by c so that all points lie inside

the dynamic plane, where the point features are stored.

Once constructing the projected feature planes, we pro-

cess them using U-Net [32] with shared weights for ev-

ery plane. The final planar features have a dimension of

H ×W ×D, where D is the predetermined hidden dimen-

sion.

3.2. Decoder

The goal of the decoder is to obtain the occupancy pre-

diction of any point p ∈ R
3 given the aggregated planar

features. Similar to how we project features in the encoder,

we project p onto all dynamic planes. Next, we query the

feature through bilinear interpolation of the planar features

encoded at the four neighboring plane grids.

Occupancy prediction: Given an input point cloud x, we

predict the occupancy of p based on the feature vector at

point p, denoted as ψ(p,x):

fθ(p, ψ(p,x)) → [0, 1] (4)

We use the same network as [25], which consists of 5

ResNet blocks with ψ added to the input features of every

block. The hidden dimension of all fully-connected layers

is set to 32, which results in only 16, 000 parameters.

3.3. Training and Inference

During training, we apply binary cross-entropy loss be-

tween the occupancy prediction fθ(p, ψ(p,x)) and the true

occupancy value of p. During inference, we apply Mul-

tiresolution IsoSurface Extraction (MISE) [23] to construct

meshes.

3.4. Positional Encoding

The work of Mildenhall et al. [24] suggests that mapping

input to higher dimension features using high-frequency

functions before feeding into neural networks can result in

the better fitting of data containing high-frequency varia-

tions. They introduce the positional encoding function:

γ(p) = (sin(20πp), cos(20πp), . . . ,

sin(2L−1πp), cos(2L−1πp))
(5)

where L is the frequency band. While [24] verifies its ef-

fectiveness for image rendering tasks, we show that its func-

tionality also generalizes to 3D point cloud reconstruction,

as seen in Table 1.

Specifically, we apply the positional encoding for the in-

put 3D coordinates. Setting L to 10, we map the input point

cloud x and query points p from R
3 to R

60.

4. Experiments

To evaluate our method, we conduct two experiments on

surface reconstruction from noisy point clouds. We perform

object-level reconstruction using ShapeNet [4] subset of

Choy et al. [6], and scene-level reconstruction using syn-

thetic indoor scene dataset from [28].

Metrics: We follow the metrics used by [28]: Volumetric

Intersection over Union (IoU) measuring the matching vol-

ume of meshes intersection (higher is better), Chamfer-L1

measuring the accuracy and completeness of the mesh sur-

face (lower is better), Normal Consistency measuring the

accuracy and completeness of the mesh normals (higher is

better, and F-score measuring the harmonic mean of preci-

sion and recall between the reconstruction and ground truth

(higher is better). The mathematical details are presented in

the supplementary of [28].

Implementation details: We use 32 as the hidden feature

dimension for both encoder and decoder in all experiments,

and Adam optimizer with a learning rate of 10−4. The depth

of U-Net is chosen such that the receptive field is equal to

the size of the feature plane. We choose a rather shallow

fully-connected network as the plane predictor network. It

has only around 13K parameters that are insignificant in

size compared to the entire model, e.g., containing around

1.99M parameters for the model with 3 planes with a res-

olution of 64 × 64. The same depth of plane predictor net-

work is used for the scene experiment. We run validation
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GPU IoU Chamfer- Normal F-score

Memory L1 C.

Without PE

ONet [23] 7.7G 0.761 0.087 0.891 0.785

ConvONet (3C) [28] 2.9G 0.884 0.045 0.938 0.943

Ours (3D) 3.2G 0.888 0.044 0.939 0.945

Ours (5D) 4.4G 0.889 0.043 0.940 0.948

Ours (7D) 5.5G 0.888 0.043 0.940 0.947

Ours (3C + 2D) 4.4G 0.890 0.043 0.940 0.947

Ours (3C + 4D) 5.5G 0.890 0.043 0.940 0.947

With PE

ConvONet (3C) [28] 2.9G 0.889 0.043 0.938 0.945

Ours (3D) 3.2G 0.892 0.043 0.940 0.947

Ours (5D) 4.4G 0.894 0.042 0.941 0.950

Ours (7D) 5.5G 0.895 0.042 0.941 0.951

Ours (3C + 2D) 4.4G 0.892 0.043 0.941 0.948

Ours (3C + 4D) 5.5G 0.894 0.042 0.941 0.950

With PE + SL

Ours (3D) 3.2G 0.891 0.043 0.940 0.948

Ours (5D) 4.4G 0.891 0.043 0.941 0.949

Ours (7D) 5.5G 0.895 0.042 0.941 0.952

PE = positional encoding. C = canonical planes. D = dynamic planes. SL

= similarity loss.

Table 1: Object-level 3D reconstruction from point

clouds. Results under all metrics are the mean for all 13

ShapeNet classes. The results for ONet [23] is taken from

[28]. Class-specific results can be found in supplementary.

every 10,000 iterations and choose the best model based on

the validation IoU.

4.1. Object­Level Reconstruction

We first evaluate the task of single object reconstruction.

We sample 3000 points from the surface of ShapeNet ob-

jects and then apply Gaussian noise with zero mean and a

standard deviation of 0.05. As for the query points (i.e., oc-

cupancy supervision), we follow [28] and uniformly sample

2048 points. We use a plane resolution of 642 and U-Net

with a depth of 4. The batch size during training is set to

32. All of the object-level models are trained until at least

900,000 iterations to ensure convergence.

We run experiments with different combinations of

canonical and dynamic planes. The results are summa-

rized in Table 1. As we can notice, different variants of our

method achieve state-of-the-art reconstruction accuracy on

all metrics. Specifically, we outperform [28] while keeping

the number of parameters at the same scale. We also ob-

serve progressive improvement when increasing the num-

ber of dynamic planes. Additionally, all results with posi-

tional encoding are better than without positional encoding.

Moreover, as shown in our supplementary Section 2, we ob-

serve that adding positional encoding enables faster conver-

gence. Qualitatively, the comparison against baselines is il-

lustrated in Figure 4. In general, the improvement from our

models is more pronounced on the challenging classes and

objects with intricate structures, such as thin components

and holes. More elaborated results detailing per-category

performance and more qualitative results are presented in

the supplementary materials.

Observation on plane distribution: Here, we discuss our

observations on the distribution of the predicted dynamic

planes. In the case of 3 dynamic planes, our network pre-

dicts three canonical planes for all objects. This finding is

interesting because it verifies the use of canonical planes

in [28], and the canonical planes indeed describe various

shapes most effectively, as ShapeNet objects are aligned

along those axes. In the case of 5 and 7 dynamic planes,

there are combinations of flipping sets of normals (e.g. one

normal pointing upward and the other downward). Such

flipping sets of normals are equivalent to applying a hor-

izontal flip on the projected encoded features. This ob-

servation is appealing because some recent works [37, 40]

explicitly inject the object symmetry prior knowledge dur-

ing training and show superior performance, while in our

case, this symmetric property is implicitly encoded into our

learned feature planes. Indeed, many objects in ShapeNet

are symmetric about a plane, e.g., most cars and airplanes

are horizontally symmetric. We also conduct an ablation

study evaluating the performance of ConvONet [28] with 5

and 7 pre-defined static planes. The results of this ablation

study further verify the superiority of our method. Details

are in the supplementary materials.

Similarity loss: To test whether having diverse plane nor-

mals that are neither aligned nor flipping to each other can

have a significant impact on the model performance, we try

another variant where we restrict the learned plane normals

to be diverging by adding a pairwise cosine similarity loss

among plane normals, as defined below:

Lsimilarity =
1

M

M
∑

i,j
i 6=j

|(cos(θi,j))
d| (6)

where θi,j is the angle between the pairwise plane normal

pair, and M is the total number of pairs. To ensure diverg-

ing plane normals, we set d = 10 so that the similarity loss

starts penalizing when θi,j < 45◦ or θi,j > 135◦. With the

additional similarity loss, the loss function is in the follow-

ing form:

L = LCE + C · Lsimilarity (7)

where LCE is the binary cross-entropy loss on the predicted

occupancy in Eq. (4). In our experiments, we set C to be

10 ×M . The component from the similarity loss quickly

converges to 0 when the predicted planes become diverse.

With the similarity loss, diverging plane normals are ob-

served. For 3 dynamic planes, the predicted planes are al-
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Figure 4: Object-level 3D reconstruction from point clouds. Qualitative comparison of our method to ONet [23] and

ConvONet [28] on ShapeNet.

most identical sets of planes in canonical axes. Adding

more planes, e.g. in 5 and 7 dynamic planes, gives predicted

planes whose normals diverge from the canonical axes with-

out any flipping or redundant set where slight variations be-

tween objects are observed. The plane distributions of the

models with 5 and 7 planes trained with similarity loss (both

with positional encoding) are illustrated in Fig. 6. We ob-

serve that within the plane predictions with slight variations,

objects having different global structures favor different re-

gions, corroborating our networks’ ability to learn planes

that can vary based on the shape of an individual object. In

terms of performance, however, we see little or no improve-

ment compared to the unrestricted version. The results with

the similarity loss are shown in Table 1.

Interestingly, as shown in Fig. 5, we see that the mod-

els trained with similarity loss have better generalization to-

wards inputs with unseen orientations that have not been

trained on, especially when using a high number of planes.

We test the generalization towards different orientation by

applying random rotation to the input in ShapeNet test set

along x, y, and z axes with angles θx, θy , and θz drawn uni-

formly from [0◦,Θmax] for each sample. Figure 5 shows

the results of the experiments where the models are trained

with all objects in canonical pose and tested on rotated

poses. We can clearly notice the progressive drop of IoU

when the test set is rotated with random angles up to Θmax.

0 15 30 45 60
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Ours (5D) with PE + SL
Ours (7D) with PE + SL

C = canonical planes. D = dynamic planes. PE = positional encoding. SL

= similarity loss.

Figure 5: Rotation experiment on ShapeNet. Comparison

of IoU on ShapeNet test set rotated with angles uniformly

sampled from [0◦,Θmax]

It can be seen that there is a considerable generalization im-

provement when using 7 dynamic planes trained with sim-

ilarity loss. Comparing [28] with or without positional en-

coding, we also see that positional encoding improves the

generalization towards input in different orientations.
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Figure 6: Plane normal distribution when trained with similarity loss. We consider 5 and 7 dynamic plane models. In the
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normal has +z direction, while ”⋆” indicates −z direction. Left: 5 dynamic planes (all classes). Middle: 7 dynamic planes

(all classes). Right: The distribution of one of the plane normals with slight variations of class ”lamp” in 7 dynamic planes.

It is observed that within this small variation, objects with different global structures favor different regions.

4.2. Scene­Level Reconstruction

For the scene-level experiment, we uniformly sample

10,000 points from the ground truth meshes as input and ap-

ply Gaussian noise with a standard deviation of 0.05. Dur-

ing training, we query the occupancy probability of 2048

points. We set the plane resolution 1282 and use U-Net

with a depth of 5. The batch size during training is set to

32 for all experiments with 3 planes, while a batch size of

16 is used for experiments with 5 and 7 planes to accommo-

date the higher GPU memory requirement. The models are

IoU Chamfer- Normal F-score

L1 C.

Without PE

ONet [23] 0.475 0.203 0.783 0.541

ConvONet (3C) [28] 0.789 0.044 0.902 0.950

ConvONet (3C + 0.816 0.044 0.905 0.952

323 grids) [28]

Ours (3D) 0.795 0.043 0.907 0.954

Ours (5D) 0.791 0.043 0.905 0.955

Ours (7D) 0.810 0.042 0.909 0.957

Ours (3C + 2D) 0.837 0.042 0.910 0.958

Ours (3C + 4D) 0.831 0.044 0.906 0.953

With PE

ConvONet (3C) [28] 0.797 0.046 0.902 0.946

Ours (3D) 0.814 0.042 0.910 0.958

Ours (5D) 0.800 0.042 0.912 0.960

Ours (7D) 0.819 0.043 0.910 0.957

Ours (3C + 2D) 0.797 0.043 0.908 0.959

Ours (3C + 4D) 0.831 0.043 0.910 0.956
PE = positional encoding. C = canonical planes. D = dynamic planes. SL

= similarity loss.

Table 2: Scene-level reconstruction on synthetic rooms.

Our results on the synthetic indoor scene dataset.

trained for at least 500,000 iterations.

We train our models for synthetic indoor scene dataset

by applying the similarity loss (Eq. 6) and disabling af-

ter 20,000 iterations, which enables more robust training

in our experiments. The reason for doing so is: we find

several of our runs without the similarity loss initialization

have considerably higher training loss and lower validation

score. We observe those models do not predict one of the

canonical planes and have planes angled less than 45◦. Our

speculation of this occurrence is because the scene dataset

has similar global structures of rectangular shapes, it is dif-

ficult for our plane predictor networks to recover from bad

minimas when the plane prediction is not governed by the

similarity loss.

As shown in Table 2, our models achieve better accuracy

in all metrics. Moreover, it can be seen from Fig. 7 that our

models preserve better fine-grained details than the baseline

methods.

5. Conclusion

In this work, we introduced Dynamic Plane Convolu-

tional Occupancy Networks, a novel implicit representation

method for 3D reconstruction from point clouds. We

proposed to learn dynamic planes to form informative

features. We observe that 3 canonical planes are always

predicted, and the symmetric property of objects are

implicitly encoded. We also find that enforcing a similarity

loss on the predicted plane normals considerably improves

the performance on unseen object poses. In future work,

we plan to assess the theoretical support for the dynamic

plane prediction.
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Figure 7: Scene-level reconstruction on synthetic rooms. Qualitative comparison of synthetic indoor scene reconstruction

from point clouds.

1836



References

[1] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun

Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan.

Learning gradient fields for shape generation. In Proc. of the

European Conf. on Computer Vision (ECCV), 2020.

[2] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt,

Julian Straub, Steven Lovegrove, and Richard Newcombe.

Deep local shapes: Learning local sdf priors for detailed 3d

reconstruction. In Proc. of the European Conf. on Computer

Vision (ECCV), 2020.

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-

ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d

data in indoor environments. Proc. of the International Conf.

on 3D Vision (3DV), 2017.

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[5] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.

Implicit functions in feature space for 3d shape reconstruc-

tion and completion. In Proc. IEEE Conf. on Computer Vi-

sion and Pattern Recognition (CVPR), 2020.

[6] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3d-r2n2: A unified approach for

single and multi-view 3d object reconstruction. In Proc. of

the European Conf. on Computer Vision (ECCV), 2016.

[7] James M Coughlan and Alan L Yuille. Manhattan world:

Compass direction from a single image by bayesian infer-

ence. In Proc. of the IEEE International Conf. on Computer

Vision (ICCV), 1999.

[8] Brian Curless and Marc Levoy. A volumetric method for

building complex models from range images. In Proceedings

of the 23rd annual conference on Computer graphics and

interactive techniques, 1996.

[9] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proc. IEEE Conf. on Computer Vision and Pattern Recog-

nition (CVPR), 2017.

[10] Angela Dai, Christian Diller, and Matthias Nießner. Sg-nn:

Sparse generative neural networks for self-supervised scene

completion of rgb-d scans. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2020.

[11] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.

Shape completion using 3d-encoder-predictor cnns and

shape synthesis. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2017.

[12] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017.

[13] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,

and Thomas Funkhouser. Local deep implicit functions for

3d shape. In Proc. IEEE Conf. on Computer Vision and Pat-

tern Recognition (CVPR), 2020.

[14] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh

r-cnn. In Proc. of the IEEE International Conf. on Computer

Vision (ICCV), 2019.

[15] Thibault Groueix, Matthew Fisher, Vladimir G Kim,

Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
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