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Abstract

We seek to learn a representation on a large annotated

data source that generalizes to a target domain using limited

new supervision. Many prior approaches to this problem

have focused on learning “disentangled” representations

so that as individual factors vary in a new domain, only a

portion of the representation need be updated. In this work,

we seek the generalization power of disentangled representa-

tions, but relax the requirement of explicit latent disentangle-

ment and instead encourage linearity of individual factors

of variation by requiring them to be manipulable by learned

linear transformations. We dub these transformations la-

tent canonicalizers, as they aim to modify the value of a

factor to a pre-determined (but arbitrary) canonical value

(e.g., recoloring the image foreground to black). By creating

simple simulators with pre-specified factors of variation to

roughly approximate datasets such as SVHN and ImageNet,

we demonstrate experimentally that our method helps reduce

the number of observations needed to generalize to a similar

target domain when compared to a number of supervised

baselines.

1. Introduction

Most state-of-the-art visual recognition models rely on

supervised learning using a large set of manually annotated

data (21; 11; 10; 38). As recognition task complexity in-

creases, so does the number of potential real world variations

in visual appearance and hence the size of the example set

needed for sufficient test time generalization. Unfortunately,

large labeled data sets are laborious to acquire (5; 51), and

may even be infeasible for applications with evolving data

distributions.

Often a large portion of the variance within a collection of

data is due to task-agnostic factors of variation. For example,

the appearance of a street scene will change substantially

∗Majority of work done while at Facebook AI Research

based on the time of day, weather pattern, and number of

traffic lanes, regardless of whether cars or pedestrians are

present. Ideally, the ability to recognize cars and pedestrians

would not require labeled examples of street scenes for all

combinations of times of day, weather conditions, and geo-

graphic locations. Rather it should be sufficient to observe

examples from each factor independently and generalize to

unseen combinations. However, often the in-domain labeled

data available may not even linearly cover all factors of vari-

ation. This calls for methods that encourage such sample

efficiency by focusing on the individual complexities of the

factors of variation, as opposed to their product.

In this work, we propose learning a factored representa-

tion by leveraging a large collection of source domain data

with meta-labels specifying the factors of variation within an

image. Such a collection may be available from meta-data,

attribute labels, or from hyper-parameters used for genera-

tion of simulated imagery - which, we show experimentally,

need not be a realistic rendering of the target domain data

and can be easily approximated for common datasets such

as SVHN and ImageNet. Prior approaches to learn from

a source domain and ignore factors of variation consider

learning domain invariant representations (8; 45). While,

prior approaches to learning representations which isolate

factors of variation in the data have typically regularized the

representation itself, with the aim of learning “disentangled”

representations (22; 3; 12; 13; 1; 17).

In this work, we propose using the source data with

known factors of variation to regularize the way the represen-

tation can be manipulated rather than the representational

structure itself. Here, we take such an approach by intro-

ducing latent canonicalization, in which we constrain the

representation such that individual factors can be clamped

to an arbitrary, but fixed value (“canonicalized”) through a

simple linear transformation of the representation. These

canonicalizers are learned such that they can be applied in-

dependently or composed together to canonicalize multiple

factors. Latent canonicalizers are optimized by a pixel loss
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over pairs of ground-truth canonicalized examples and recon-

structions of images with various factors of variation whose

representations have been passed through the relevant latent

canonicalizers. By requiring the ability for manipulation

of the latent space according to factors of variation, latent

canonicalization encourages the linearization of such factors.

We evaluate our approach on its ability to learn general

representations after observing only a subset of all poten-

tial combinations of factors of variation. We first consider

the simple dSprites dataset, introduced to study disentan-

gled representations (30) and show qualitatively that we can

effectively canonicalize individual factors of variation. We

next consider the more realistic, though still tractable, task of

digit recognition on street view house numbers (SVHN) (34)

with few labeled examples. Using a simulator we designed

to roughly approximate SVHN, we train our representation

with latent canonicalization along multiple axes of variation

such as font type, background color, etc. and then use the

factored representation to enable more efficient few-shot

training of real SVHN data. Our method substantially in-

creased performance over standard supervised learning and

fine-tuning for equivalent amounts of data, achieving digit

recognition performance that was only attainable with 5⇥ as

much SVHN labeled training data for the best-performing

baseline method. Finally, to demonstrate that our approach

scales to naturalistic images, we evaluate our method on

a subset of ImageNet using a simulator constructed from

ShapeNet (2), again outperforming the best baselines. Our

experiments offer promising evidence that encoding struc-

ture into the latent representation guided by known factors of

variation within data can enable more data efficient learning

solutions.

2. Related Work

2.1. Sim2Real

The setting of near-unlimited simulated data with ground

truth labels and scarce real data occurs often in computer

vision and robotics. However, the domain gap between sim-

ulated and real data reduces generalization capacity. Many

approaches have been proposed to overcome this difficulty

which are broadly referred to as sim2real approaches. A sim-

ple approach to closing the sim2real gap is to train networks

with combinations of real and synthetic data (47).

Transfer Learning and Few-shot Learning: Simulated

data is most useful when there is a shortage of labeled real

data (39). In this situation, one may make use of few-shot

learning techniques which seek to prevent over-fitting by

using a metric loss between data tripets (20), comparing

similarity between individual examples (50) or between a

prototypical class example and each instance (42). Other

techniques use meta-learning approaches (7). (33) mod-

eled object attributes as learned operators on object vectors,

though that work primarily focused on compositional gener-

alization.

Domain adaptation: With access to a large set of un-

labeled real examples, domain adaptation techniques can

be used to close the sim2real gap. One class of techniques

focuses on matching domains at the feature level (8; 29; 45),

aiming to learn domain-invariant features than can make

models more transferrable (53; 23). In fact, image-to-image

translation focuses on the appearance gap by bridging the

appearance gap in the image domain instead of feature

space (41; 27). Domain adaptation can also be used to learn

content gap in addition to appearance gap (16). Additional

structural constraints, such as cycle consistency, can further

refine this image domain translation (52; 14; 32). Finally,

image stylization methods can also be adapted for sim2real

adaptation (24).

Domain randomization: (DR) exploits control of the

synthetic data generation pipeline to randomize sources of

variation (44; 36). Random variations will likely be ignored

by networks and thus result in invariance to those variations.

A particularly interesting instantiation of DR was suggested

in (43) for pose estimation. Pose is an example of a factor

of variation which could be ambiguous due to occlusions

and symmetries. Instead of explicitly regressing for the pose

angle, the authors propose an implicit latent representation.

This is achieved by an augmented-autoencoder, a form of

denoising-autoencoder that addresses all nuisance factors of

variation as noise. This idea can be seen as a version of our

method in which all factors are canonicalized at once rather

than individually. Another interesting example is the quo-

tient space approach of (31) which removes pose information

for a 3D shape representation by max-pooling encoder fea-

tures over a sampling of object rotations. It, however, does

not consider how to perform canonicalization as a linear

transformation in latent space, nor how to compose different

canonicalizers.

2.2. Disentangling

A number of studies have sought to learn low-dimensional

representations of the world, with many aiming to learn “dis-

entangled” representations. In disentangled representations,

single latent units independently represent semantically-

meaningful factors of variation in the world and can lead

to better performance on some tasks (46). This problem

has been most commonly studied in an unsupervised setting,

often by regularizing latent representations to stay close

to an i.i.d Gaussian prior (12; 13; 1; 17). An extension to

long-tail distributions was shown in (18). Other popular

unsupervised approaches include maximizing the mutual

information between the latents and the observations (3) and

adversarial approaches (6; 37) and When supervision on the

sources of variation is available, it is possible to use this in

a weak way (22). Disentanglement to primitives functions
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was also studied in the context of compositional generaliza-

tion (26; 25).

Many of these works have explicitly endeavored to learn

semantically meaningful representations which are both lin-

early independent and axis-aligned, such that individual la-

tents correspond to individual factors of variation in the

world. However, recent work has questioned the impor-

tance of axis-aligned representations, showing that many of

these methods rely on implicit supervision and finding little

correspondence between this strict definition of disentangle-

ment and learning of downstream tasks (40; 28). Further,

while axis-alignment is useful for human interpretability,

for the purposes of decodability, any arbitrary rotation of

these latents would be equally decodable so long as factors

are linearly independent (28). In this work, we use explicit

supervision in a simulated setting to encourage linear, but

not necessarily axis-aligned representations.

3. Approach

Our goal is to learn representations which capture the

generative structure of a dataset by independently represent-

ing the underlying factors of variation present in the data.

While many previous works have approached this problem

by regularizing the representation itself (22; 3; 12; 13; 1; 17),

here we take a different approach: rather than directly en-

courage the representation to be disentangled, we instead

encourage the representation to be structured such that indi-

vidual factors of variation can be manipulated by a simple

linear transformation. In other words, we constrain the way

that the representation can be manipulated rather than the

structure of the representation itself.

3.1. Latent canonicalization

In our approach, we augment a standard convolutional

denoising autoencoder (AE) with latent canonicalizers. A

standard AE learns an encoder, Enc, which takes as input a

given image, x, and produces a corresponding latent vector,

z. At the same time, the latent vector is used as input to a

decoder, Dec, which produces an output image, x̂. Both the

encoder and decoder are learned according to the following

objective, Lae, which minimizes the difference between the

original input image and the reconstructed output image:

z = Enc(x; θe) ; x̂ = Dec(z; θd) ; (1)

Lae(θe, θd;x) =min
θe,θd

kx� x̂k22. (2)

To encourage noise-robustness, we augment the potential

input images following previous work on denoising autoen-

coders (48; 49), noising each raw input image, x, by adding

Gaussian noise, blur, and random crops and rotations, lead-

ing to our noised input image, x̃.

In this work, we additionally constrain the structure of

the learned latent space using a set of latent canonicalization

losses. We define a latent canonicalizer as a learned linear

transformation, C, which operates on the latent represen-

tation, z, in order to transform a given factor of variation

(e.g., color or scale) from its original value to an arbitrary,

but fixed, canonical value. So that individual factors can be

manipulated separately, we learn unique canonicalization

matrices, Cj , for each factor of variation, j 2 [1,K], present

in the dataset. In order to constrain the latent representa-

tion according to canonicalization along one factor, j, our

method yields the following basic form:

z
(j)
canon = Enc(x̃; θe) · Cj ; x̂(j)

canon = Dec(zcanon; θd) (3)

To supervise the learning of latent canonicalizers, we com-

pare the images generated by canonicalized latents, x̂canon, to

ground truth images with the appropriate factors of variation

set to their canonical values, xcanon. Canonicalizers can also

be composed together to canonicalize multiple factors (e.g.,

z
(j,k)
canon = z · Cj · Ck). During training, each image is passed

through a random subset of both individual and pairs of

canonicalizers. Given Q canonicalization paths for a given

image, x, the corresponding canonicalization loss for that

single image (red in Figure 1) is written as:

Lcanon =
1

Q

QX

q

kx̂(q)
canon � x(q)

canonk
2
2 (4)

Since many outputs are canonicalized, it is possible that

the decoder will simply learn to only generate the canon-

ical value of a given factor of variation. To prevent this

form of input-independent memorization, we also include

a “bypass” loss which is equivalent to the standard denois-

ing auto-encoder formulation (green in Figure 1) defined in

Equation (2), thus forcing information about each factor to

be captured in the latent vector, z.

Finally, we ensure that our representation not only allows

for linear manipulation along factors of variation, but does so

while capturing the information necessary to train a classifier

to solve our end task. To this end, we add a supervised

cross-entropy loss, LCE, which optimizes our end task using

available labeled data (cyan in Figure 1):

LCE = y log ŷ (5)

Combining equations 2, 4, and 5 with loss-scaling factors

(α and β) gives us our final per-example loss formulation:

L = y log ŷ+αkx̂� xk22+β
1

Q

QX

q

kx̂(q)
canon � x(q)

canonk
2
2 (6)

In practice, two canonicalizers are chosen at ran-

dom for each input batch, Ch and Cj , and the cor-

responding latent representation z is passed through

{Ch, Cj , ChCj , CjCh} generating four unique canonical-

ized latents: {z
(h)
canon, z

(j)
canon, z

(h,j)
canon , z

(j,h)
canon}. A diagram of
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Figure 1: Schematic representation of latent canonicalization: Colored paths correspond to different components of the loss (cyan: classification, green:

bypass, red: canonicalization). Four possible canonicalizations (two individual and two pairs) are shown along with example simulated SVHN images and

reconstructions.

the method is shown in Figure 1, illustrating each canonical-

ization path, the bypass path, and the classification model.

We have thus far has focused on the single image loss for

simplicity. The full model averages the per image loss over

mini-batch before making gradient updates.

Latent canonicalizer constraints: Our approach relies

upon constraining the way a representation can be manipu-

lated. As a result, the specific choice of constraints should

have a significant impact on the representations which are

ultimately learned. Here, we limit ourselves to only two con-

straints: the transformations must be linear and canonicaliz-

ers must be composable, at least in pairs. If we were to allow

non-linear canonicalizers, there would be little incentive

for the encoder to learn an easily manipulable embedding.

This would only be exacerbated as the non-linear canonical-

izer is made more powerful by e.g., additional depth. By

requiring canonicalizers to be composable, we encourage

independence as each canonicalizer must be able to be ap-

plied without damaging any other. We explore some other

potential constraints in Section 5.

3.2. sim2real evaluation

A main motivation of latent canonicalization is to lever-

age structure gleaned from a large source of data with rich

annotations to better adapt to downstream tasks. A natu-

ral such setting for performance evaluation is sim-to-real.

Specifically, we make use of the Street View House Numbers

(SVHN) dataset and a subset of ImageNet (5) as our real

domains. To simulate SVHN, we built a SVHN simulator

in which we have full control over many factors of variation

such as font, colors and geometric transformations (a de-

tailed description of the simulator is given in Section 4.2.1).

To simulate ImageNet, we built a simulator which renders

3D models from ShapeNet (2) to generate ImageNet-like

images (see Section 4.3.1 for details).

We first pre-train on the synthetic data with latent canoni-

calization. Following this step, we freeze the canonicalizers

and investigate whether the learned representations can be

leveraged as the input to a linear classifier for few-shot learn-

ing on real examples, labeled only with the class of interest

(e.g., no meta-labels for additional factors of variation). Dur-

ing this stage, the encoder is also refined.

Majority vote: Because latent canonicalization manipu-

lates the latent representation, we can use canonicalization

as a form of “latent augmentation.” In this setting, we can

aggregate the predictions of the digit classifier across many

canonicalization paths, each of which confers a single “vote.”

Critically, such an approach requires the ability to cleanly

manipulate the learned representation, and is therefore only

possible for our proposed method. For a more detailed ex-

ploration of the impact of majority vote, see Section 5.

3.3. Baselines

We compare our proposed latent canonicalization with

several baselines. For fair comparison, we fixed as many

hyperparameters as possible: we use the same backbone

architecture in all our networks (details are in Section 3.1);
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Figure 2: Canonicalization of dsprites images: Input dsprites images

(left), reconstructions of inputs with one factor canonicalized (middle), and

rotation, scale, and x-position canonicalized (right). Each row shows how

images change as a single factor of variation is altered.

the same number of epochs for pre-training (learning from

synthetic data); and a carefully chosen number of epochs

at the refinement stage to fit well the method overfitting

rate. For all latent canonicalization experiments we trained

three models on the simulated data and then performed five

refinements of each pre-trained model, for a total of 15

replicates. Results are reported as mean ± standard deviation.

For baselines, 15 independent replicates were trained.

Our simplest baseline, which is meant as a lower bound,

is simply a classifier trained only on the low-shot real data.

For pre-training methods, we compare to two categories of

baselines: purely unsupervised methods and methods which

have access to supervision on the simulated data. Among

unsupervised methods, we compare against simple determin-

istic and variational autoencoders pre-trained on synthetic

data, after which a linear classifier is trained on low-shot

real data (Vanilla AE and VAE, respectively), the beta-VAE

model with two values of beta (12), and a self-supervised

rotation prediction task (9). We include these comparisons

for context and completeness, but emphasize that these meth-

ods do not have equivalent supervision to our method. A

better comparison is to models which have equivalent access

to supervision on the synthetic data. We therefore compare

to a classifier pre-trained on synthetic data and refined on

low-shot real data and to a deterministic and variational

autoencoder pre-trained with a digit classifier during both

pre-training (on synthetic data) and training on few-shot real

data. Not surprisingly, these are generally the strongest of

our baselines. The loss weighting was determined individu-

ally for each model. Finally, to measure the importance of

using constrained, linear canonicalizations, we also include a

latent canonicalizer baseline that does not impose a linearity

constraint on the latent space, i.e., we replace the learned

linear transformation C by a 2-layer MLP.

4. Experiments

4.1. Latent canonicalization of dSprites

Key to our method is the use of latent canonicalizers,

which are learned linear transformations optimized to elim-

inate individual factors of variation. As a first test of the

effectiveness of latent canonicalization, we evaluated our

framework using the toy data set, dSprites (30), which was

designed for the exploration and evaluation of disentangle-

ment methods. Specifically, dSprites is a dataset of images

of white shapes on a black background generated by five in-

dependent factors of variation (shape, scale, rotation, and x-

and y-positions). Training our model (Figure 1) on dSprites,

we demonstrate the effect of applying different individual

canonicalizers to various values of the input factors (Figure

2 left and middle). We therefore also applied a set of three

canonicalizers (scale, rotation, and x-position) sequentially

as shown in Figure 2, right. Encouragingly, we found that

not only did individual canonicalizers effectively canonical-

ize their factor of interest, multiple canonicalizers can be

applied in sequence. Furthermore, although models were

trained with only pairs of canonicalizers, triplets of canoni-

calizers also performed well (Figure 2, right).

4.2. Latent canonicalization of SVHN

4.2.1 Simulating SVHN

To support our proposed training procedure, we require a

comprehensive dataset with detailed meta-data about ground-

truth factors of variation. While this is possible for a natural

dataset, such data can also be generated for visually realistic,

but fairly simplistic datasets such as SVHN. To this end, we

built a procedural image generator that simulates the SVHN

dataset by rendering images with digits on a constant-colored

background (see Figure A1). Apart from digit class variation,

we also simulate: font color, background color, font size,

font type, rotation, shear, fill color for newly created pixels,

scale, number of digit instances, translation, Gaussian noise,

and blur. A detailed description is provided in Section B.

Among these factors we chose the first six for supervision,

noise and blur as a joint noise model, and the rest as addi-

tional factors to enrich the data variety without supervised

canonicalization. Some of the resulting images can be seen

in Figure 3 (see Appendix B for further simulator details).

To enable reproducibility across comparisons, and to mini-

mize unaccounted for variability in the data, we generated a

fixed training set with 75,000 images along with targets for

all possible canonicalization paths. We emphasize that this

training set represents a small fraction (⇠ 0.2%) of the total

number of possible combinations of factors. We used such

a small fraction of the total space to demonstrate that latent

canonicalization is feasible even if the factor space is only

sparsely sampled. The simulator along with the generated

train set will be made publicly available.

4.2.2 sim2real SVHN transfer using latent canonical-

ization

We want to learn representations which enable models to

generalize to novel data with consistent underlying structure.
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Figure 3: Example targets and reconstructions of canonicalized simu-

lated SVHN images.

Model 10 shot 20 shot 50 shot 100 shot 1000 shot

Vanilla AE 15.39± 6.12 21.55± 9.16 41.98± 16.62 51.18± 19.80 58.51± 19.68

VAE 15.73± 2.48 22.02± 2.76 44.57± 4.34 68.73± 2.41 84.41± 0.52

beta-VAE (12) (β = 5) 12.09± 0.67 13.33± 0.23 17.20± 1.10 25.85± 3.02 56.23± 3.28

beta-VAE (12) (β = 10) 12.20± 0.95 13.53± 0.50 15.10± 1.86 19.47± 1.41 35.82± 4.90

RotNet (9) 49.25± 1.04 66.42± 2.16 79.38± 0.5 86.26± 1.11 90.58± 0.17

Classifier (real only) 20.86± 2.03 36.08± 2.49 72.75± 1.99 82.24± 0.78 92.84 ± 0.39

Classifier (synth only) 76.50± 2.06 80.07± 1.09 83.95± 0.79 85.65± 1.17 89.82± 0.60

AE + Classifier 79.61± 1.18 81.63± 1.00 84.66± 0.76 85.86± 0.82 88.80± 0.62

VAE + Classifier 78.46± 0.18 80.77± 0.71 84.49± 1.00 86.16± 0.30 90.05± 0.59

Our (nonlinear C) 79.13± 0.28 81.61± 0.67 85.18± 0.72 87.01± 0.42 89.98± 0.35

Ours (linear C) 82.55± 0.86 84.83± 0.76 87.82± 0.57 89.40 ± 0.48 91.21± 0.24

Ours + majority vote 83.41 ± 1.23 85.41 ± 0.88 88.17 ± 0.53 89.58 ± 0.57 91.34± 0.34

Table 1: SVHN sim2real transfer results Model performance on the

SVHN test set using low-shot labeled real examples for method and base-

lines. Table entries represent mean ± std.

Moreover, the effectiveness of disentangling for acquisi-

tion of downstream tasks has recently been called into ques-

tion (28). We therefore evaluate the quality of our learned

representations by measuring their ability to adapt to real

examples. Specifically, we consider a few-shot setting where

models pre-trained on simulated data have access to a small

refinement set of a few annotated examples per class. We

ran this experiment with per-class set sizes of 10, 20, 50,

100 and 1000. To measure sim2real transfer, we train a fresh

linear classifier on the representation learned by the encoder

pre-canonicalization, z, while also allowing the encoder to

be refined. We report accuracy on the unseen SVHN test set.

As a measure of the pre-trained model, Figure 3 includes ex-

amples of reconstructions generated by canonicalized latents.

When small train-sets are used, results may vary substan-

tially depending on the selection. To account for this, we

(a) use the same train set across methods, and (b) ran each

experiment 15 times: 3 different networks were trained on

simulated data with different random seeds and 5 replicate

refinements were performed per pre-trained network.

Table 1 shows the sim2real SVHN results for our method

with eight baselines discussed in Section 3.3. For all settings

with fewer than 1000 examples per class, we found that our

model outperformed the best competing baseline by ⇠ 3-

4%. Notably, the use of constrained, linear canonicalizers

Figure 4: Linear decodability of factors of variation. Performance of a

linear classifier trained on the frozen, pre-canonicalized representation, z,

for each factor of variation. Chance is 1.6% for background and font color,

33.3% for rotation, 10% for shear, and 16.7% for font type and size. Error

bars represent mean ± std across three pre-trained networks.

substantially improved performance over more expressive,

nonlinear canonicalizers, highlighting the importance of con-

strained manipulations of latent space. We further improved

performance by taking a “majority vote” approach, in which

we pass the representation through multiple latent canoni-

calizers in parallel to generate multiple votes as discussed

in Section 3.2. Consistently, we found that majority vote

boosted performance, by up to ⇠ 0.9%, with the largest

gains coming for the lowest-shot settings. In Section 5, we

discuss four additional directions for improvement which,

unfortunately, either harmed or left unchanged sim2real per-

formance relative to our best-performing models.

To contextualize the importance of this improvement, one

can see that to match our reported performance on 20 shot

with the best baseline of an AE + Classifier, a 5 times larger

train set of 100 is required. This demonstrates the potential

of our proposed method in better utilizing access to meta-

labels for better adaptation to real data.

4.2.3 Analysis of representations

Linear decodability of factors of variation from repre-

sentations: While latent canonicalization encourages rep-

resentations to be linearly manipulable, it does not explicitly

encourage linear decodability. However, since our canoni-

calizers are constrained to be linear, latent canonicalization

may also encourage linear decodability. To test this, we

trained linear classifiers on the pre-trained, frozen encoder

for each factor of variation. We ran this experiment sepa-

rately for each factor and compared linear decodability to our

best baseline, AE+Cls (yellow), and to models trained with

nonlinear canonicalizers (red; to measure the importance of

constrained, linear canonicalizers). For background color,

font color, and rotation angle, the canonicalized represen-

tation was noticeably more linear than the baseline (shown

here by higher accuracy on a held-out test set), whereas

font type showed a smaller improvement and font size and

shear showed no improvement in linear decodability (Fig-

ure 4). One possible explanation for the discrepancy across
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Figure 5: Linear properties of the representation. Each row shows the first principal component of z
(j)
canon − z for a source of variation. A clear pattern is

visible for rotation (left to right tilted), and font size (small to big). 20 normally distributed samples from a batch of 1000 are shown above. See supplementary

for more visualizations.

Figure 6: SynthImageNet dataset

factors is that font color, background color and, rotation are

the most visually salient factors with the largest range of

variability. Critically, linear canonicalization outperformed

nonlinear canonicalization for all properties, demonstrating

the importance of using constrained, linear canonicalizers.

Visualizing the impact of canonicalization: If these rep-

resentations were indeed linear, we would expect them to

be easily decomposable using principal component analysis

(PCA), the components of which we can visualize. How-

ever, the latent codes from each of the canonicalizers remove

the effect of a source of variation while keeping the oth-

ers. We therefore compute the principal components (PCs)

of z
(j)
canon � z, i.e., the difference between a canonicalized

latent and the pre-canonicalized latent, such that PCs now

represent the removed factor of variation. In Figure 5, we

show sorted images along the first PC, showing a clear linear

sorting of rotation, and font size. This visually demonstrates

that our approach is able to extract latents that have strong

linearity.

4.3. Latent canonicalization of ImageNet subset

4.3.1 Simulating ImageNet: SynthImageNet

To demonstrate the few-shot sim2real transfer capability of

our method on a more naturalistic, complex dataset, we built

a simulator to synthesize images similar to ImageNet (5).

Our simulator uses 3D models from ShapeNet (2) to render

plausible images of different shapes from various camera

Model 10 shot 20 shot 100 shot

Vanilla AE 19.27± 4.44 24.60± 2.25 34.33± 2.00

VAE 19.47± 0.64 23.87± 1.86 33.13± 1.55

β-VAE (12) (β = 5) 18.87± 0.7 22.87± 1.63 31.93± 1.81

β-VAE (12) (β = 10) 16.20± 1.40 19.00± 2.43 28.93± 2.00

RotNet (9) 22.07± 0.42 26.13± 1.42 37.13± 0.31

Classifier (real only) 23.13± 1.50 29.07± 3.01 38.27± 4.00

Classifier (synth only) 36.00± 1.91 38.87± 0.99 45.13± 0.76

AE + Classifier 33.93± 0.58 37.07± 3.23 43.07± 1.86

VAE + Classifier 34.73± 0.90 37.73± 0.83 44.27± 0.81

Ours (nonlinear C) 35.33± 0.50 37.47± 1.15 44.40± 1.22

Ours (linear C) 39.66 ± 1.40 40.84 ± 1.36 46.07 ± 2.12

Ours + majority vote 39.00 ± 0.72 40.47 ± 1.86 46.00 ± 0.80

Table 2: sim2real transfer on ImageNet subset Model performance on

the 10 class ImageNet test set using low-shot labeled real examples for

method and baselines. Table entries represent mean ± std.

orientations and scales (Figure 6). To evaluate few-shot

transfer from simulated to real ImageNet, we chose a subset

of 10 classes which overlapped with ShapeNet categories

(“ImageNet subset”). For each class, we rendered a total of

5000 frames, each containing a randomly chosen 3D model

instance from the category. To increase variability, we also

augment the background of each image with a randomly

chosen texture from the Describable Textures dataset (4).

We consider 4 factors of variation for this synthetic dataset,

which we call SynthImageNet: camera orientation (latitude,

longitude), object scale, and background texture.

4.3.2 sim2real ImageNet subset transfer using latent

canonicalization

Table 2 shows sim2real results on the 10-class subset of Im-

ageNet. Our method shows consistent improvement over

baselines demonstrating that latent canonicalization can gen-

eralize to more naturalistic and complex settings.

5. Alternative design decisions

Latent canonicalization opens up many additional av-

enues for modification to potentially produce better repre-

sentations and, consequently, better sim2real performance.
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In the previous section, we showed how incorporating ma-

jority vote further increased performance. Here, we discuss

several other modifications we explored, which resulted in

no change or a decrease in sim2real performance.

Idempotency reconstruction loss: To encourage compos-

ability of canonicalizers, we trained them in identical pairs

with alternating orders for consistency (e.g., z · C1C2 and

z · C2C1). We also tried encouraging idempotency, such that

the same canonicalizer can be repeatedly applied without

changing the reconstruction (e.g., z · C1C1). We found that

applying this loss actually harmed performance, reducing

pre-majority vote classification accuracy by ⇠ 0.5% (Table

3, second row).

Classifier location during pre-training: In our model,

the classifier is placed at the output of the encoder prior to

canonicalization, z. However, one might imagine that latent

canonicalization could serve as a form of data augmentation,

such that placing the classifier after the canonicalization step,

zcanonCanon, might increase performance. In contrast, we

found that placing the classifier after the canonicalization

step harmed performance, reducing pre-majority vote classi-

fication accuracy by ⇠ 3% (Table 3, third row). Interestingly,

however, we found that the majority vote method, which can

also be viewed as a form of data augmentation, did in fact

increase performance.

Latent consistency and idempotency loss: The impact

of latent canonicalization was supervised at the image level,

by comparing the reconstruction to a target image. However,

we could also use a self-supervised loss at the latent level, by

enforcing consistency (i.e., minkz · C1C2 � z · C2C1k2) and

idempotency (i.e., minkz · C1C1 � z · C1k2). To account for

the scale of this latent loss, which was much larger than the

other loss components, we used a very small scale factor for

the latent loss to maximize performance (1e-7). Even with

an appropriately scaled loss, however, the latent loss either

had little impact or harmed sim2real performance (Table 3,

fourth row).

Alternative majority votes: We found that a simple ma-

jority vote containing the pre-canonicalized and individually

canonicalized representations (1 and 6 votes, respectively)

increased performance by ⇠ 0.5%. To further augment the

vote set, we also tried adding votes via idempotency (6 ad-

ditional votes) and pairs (30 additional votes). We found

that neither of these additions further improved performance

over the simplest majority vote approach (Table 4).

Model Variants 10 shot 20 shot 50 shot 100 shot 1K shot

No maj vote 82.55 ± 0.86 84.83 ± 0.76 87.82 ± 0.57 89.40 ± 0.48 91.21 ± 0.24

+ idem 81.77± 1.23 84.08± 0.98 87.08± 0.64 88.96± 0.51 90.74± 0.35

+ classifier after 79.69± 1.22 81.14± 1.00 84.21± 0.74 86.42± 0.54 88.62± 0.24

+ latent loss 1e-7 82.74 ± 0.58 84.74 ± 0.84 87.47± 0.50 88.88± 0.33 90.58± 0.18

Table 3: Summary of model additions which did not change or harmed

performance. Table entries represent mean ±std.

Model Variants 10 shot 20 shot 50 shot 100 shot 1K shot

+ maj vote 83.41± 1.23 85.41± 0.88 88.17± 0.53 89.58± 0.57 91.34± 0.34

+ maj vote & idem 83.44± 1.21 85.44± 0.87 88.20± 0.55 89.60± 0.58 91.35± 0.36

+ maj vote all-pairs 83.26± 1.12 85.26± 0.80 88.14± 0.53 89.59± 0.58 91.33± 0.33

Table 4: Summary of alternative majority vote methods. Table entries

represent mean ± std.

6. Conclusion

We have introduced the notion of latent canonicaliza-

tion, where latent representations are manipulated through

constrained transformations that set individual factors of vari-

ation to fixed values (“canonicalizers”). We show that latent

canonicalization encourages representations with markedly

better sim2real transfer than comparable models on both the

SVHN dataset and on an ImageNet subset, even when only a

small sample of the possible combination space was used for

training. Notably, latent canonicalized pre-trained models

reached few-shot performance with 5⇥ less data than for

comparable baselines. Our analysis found that the represen-

tation of factors of variation was linearized, as measured by

decodability and linear dimensionality reduction (PCA).

We primarily analyzed a realistic but simple SVHN

dataset, but also found that latent canonicalization was

markedly helpful on an ImageNet subset. The strong perfor-

mance on both of these datasets (ImageNet in particular) is

encouraging for more complex larger-scale data. Interest-

ingly, by focusing the learning on manipulations instead of

the samples themselves, we were able to get good perfor-

mance even with a simplistic simulators that clearly has a

non-negligible appearance gap with respect to the real data.

This suggests that in the future it would be interesting to try

and relax the requirement of a simulator even further.

Our results suggest the promise not only of latent canon-

icalization, but, more broadly, methods which encourage

representational structure by constraining transformations

rather than a particular structure itself.
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