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Abstract

Contour-based instance segmentation methods are at-

tractive due to their efficiency. However, existing contour-

based methods either suffer from lossy representation, com-

plex pipeline or difficulty in model training, resulting in sub-

par mask accuracy on challenging datasets like MS-COCO.

In this work, we propose a novel deep attentive contour

model, named DANCE, to achieve better instance segmen-

tation accuracy while remaining good efficiency. To this

end, DANCE applies two new designs: attentive contour

deformation to refine the quality of segmentation contours

and segment-wise matching to ease the model training.

Comprehensive experiments demonstrate DANCE excels at

deforming the initial contour in a more natural and effi-

cient way towards the real object boundaries. Effectiveness

of DANCE is also validated on the COCO dataset, which

achieves 38.1% mAP and outperforms all other contour-

based instance segmentation models. To the best of our

knowledge, DANCE is the first contour-based model that

achieves comparable performance to pixel-wise segmenta-

tion models. Code is available at https://github.

com/lkevinzc/dance.

1. Introduction

Instance segmentation has received much research at-

tention in the past few years due to its wide applications

such as autonomous driving [20, 8, 30], robotic manipula-

tion [22], etc. This task aims to locate all the objects in

an image, classify them and produce segmentation masks

delineating their shapes simultaneously. Instance segmen-

tation is mostly formulated as a per-pixel (binary) classi-

fication problem within each region of interest (RoI) de-

tected [10, 3, 15], which achieves good accuracy but of-

ten suffers heavy computation burden. Recently, some re-

search works [23, 17, 31, 28, 29] consider instance segmen-

tation as a contour vertices regression problem where each
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Figure 1: Speed vs. Accuracy on COCO test-dev. In-

ference time is measured using a single Tesla V100 GPU

on the same machine. Our DANCE significantly outper-

forms all state-of-the-art contour-based instance segmenta-

tion methods [28, 23].

instance is represented by a closed contour. Compared with

pixel-based approaches which require processing every sin-

gle pixel within each detected RoI (e.g. 28 × 28 = 784
in Mask R-CNN [10]), contour-based methods enjoy bet-

ter parametrization efficiency as they typically require much

less parameters to represent the same mask (e.g. 128× 2 =
256 values to represent the x, y coordinates of sampled con-

tour vertices in DeepSnake [23]). Furthermore, contour-

based models directly output the locations of predicted con-

tour vertices and need not perform costly post-processing

steps such as mask upsampling.

Although contour-based instance segmentation meth-

ods offer attractive efficiency, they usually struggle to

yield accurate masks especially on challenging datasets like

COCO [18] where large shape variations exist. For exam-

ple, in [28, 29], mask contours are constructed from a set

of end points of concentric rays emitted from object center,

thus limiting the models to only handling convex shapes.

Such lossy contour representation often suffers inevitable

reconstruction error.

Some other contour-based approaches [31, 17, 23] ac-

complish segmentation by gradually deforming an initial
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Figure 2: (a) Comparison between uniform matching [23] and our segment-wise matching. Uniform matching suffers from

correspondence interlacing, which is caused by accumulated error of perimeter length difference between initial and target

contours. (b) The learned attention map on which modulating coefficients are sampled to adjust contour deformation. (c):

Example showing learned contour deformation with our method.

contour towards the target object boundaries. This man-

ner greatly alleviates the reconstruction error. Among them,

the more recently published DeepSnake [23] demonstrates

state-of-the-art performance on several datasets [5, 24, 9].

However, we argue that its regression target (per-vertex

matching between uniformly sampled vertices on the ini-

tial and target contours) leads to correspondence interlac-

ing, where the deformation paths from the initial to ground

truth contour cross over one another. An example is shown

in the left subfigure of Figure 2a, where the learning offsets

(green lines) severely interlace near the person’s leg, mak-

ing the learning difficult. Moreover, DeepSnake is trained to

regress all vertices on the contour, including those vertices

that have already arrived at the object boundaries, degrading

its learning effectiveness.

In this paper, we present a deep attentive contour model

(abbreviated as DANCE) for instance segmentation, which

well tackles the aforementioned challenges in DeepSnake.

DANCE incorporates two novel components. First, it ap-

plies a novel segment-wise matching scheme, which adap-

tively splits the contour into multiple smaller segments

where per-vertex matching is performed locally within each

contour segment. This process is performed by first spot-

ting the intersection points between the initial and target

contours, and then using them as breaking points for mit-

igating the correspondence interlacing problem. As shown

in the right subfigure of Figure 2a as well as Figure 2c, such

a matching scheme enables a smoother and more natural

deformation path from the initial contour to the target con-

tour, hence easing the learning process. In addition, we also

find this scheme pairs well with the bounding box initial-

ized contour, offering faster processing speed compared to

DeepSnake which requires converting the box into an oc-

tagon to serve as the initial contour for deformation.

Second, instead of regressing all vertices including those

which have already arrived at the target boundaries, we fur-

ther propose to apply an attention mechanism to the con-

tour deformation such that the model can better focus on

off-boundary vertices during deformation. We term this at-

tentive contour deformation. In particular, we incorporate

a lightweight attention module into DANCE, which learns a

modulation coefficient for each vertex with guidance from

the pixel-wise boundary prediction. An example of learned

attention is shown in Figure 2b, where the instance contours

are captured successfully. Therefore, as shown in Figure 2c,

only vertices that are far away from the object boundaries

are to be deformed and those on-boundary vertices are left

untouched.

In summary, we make the following contributions:

• We propose a novel segment-based matching scheme

that allows smoother deformation path for training;

• We design an attentive deformation mechanism to en-

courage the model to place more emphasis on off-

boundary vertices during deformation;

• As shown in Figure 1, our DANCE demonstrates state-

of-the-art performance among contour-based methods

on COCO, achieving 38.1% Mask mAP.

2. Related Work

Mask-based Instance Segmentation. The majority of

prior literature [3, 15, 10, 19] formulates instance segmen-

tation as per-pixel classification inside RoIs. Mask R-

CNN [10] is among the most representative works, which

adds a parallel head to the existing detector [26] for non-

competing pixel classification in a downsampled square re-

gion. In contrast to such a top-down paradigm, some other

methods [8, 20] make image-wise prediction to embed each

pixel first and then cluster or partition them into individ-

ual instance masks. However, these methods often require
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