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Abstract

Contour-based instance segmentation methods are at-

tractive due to their efficiency. However, existing contour-

based methods either suffer from lossy representation, com-

plex pipeline or difficulty in model training, resulting in sub-

par mask accuracy on challenging datasets like MS-COCO.

In this work, we propose a novel deep attentive contour

model, named DANCE, to achieve better instance segmen-

tation accuracy while remaining good efficiency. To this

end, DANCE applies two new designs: attentive contour

deformation to refine the quality of segmentation contours

and segment-wise matching to ease the model training.

Comprehensive experiments demonstrate DANCE excels at

deforming the initial contour in a more natural and effi-

cient way towards the real object boundaries. Effectiveness

of DANCE is also validated on the COCO dataset, which

achieves 38.1% mAP and outperforms all other contour-

based instance segmentation models. To the best of our

knowledge, DANCE is the first contour-based model that

achieves comparable performance to pixel-wise segmenta-

tion models. Code is available at https://github.

com/lkevinzc/dance.

1. Introduction

Instance segmentation has received much research at-

tention in the past few years due to its wide applications

such as autonomous driving [20, 8, 30], robotic manipula-

tion [22], etc. This task aims to locate all the objects in

an image, classify them and produce segmentation masks

delineating their shapes simultaneously. Instance segmen-

tation is mostly formulated as a per-pixel (binary) classi-

fication problem within each region of interest (RoI) de-

tected [10, 3, 15], which achieves good accuracy but of-

ten suffers heavy computation burden. Recently, some re-

search works [23, 17, 31, 28, 29] consider instance segmen-

tation as a contour vertices regression problem where each
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Figure 1: Speed vs. Accuracy on COCO test-dev. In-

ference time is measured using a single Tesla V100 GPU

on the same machine. Our DANCE significantly outper-

forms all state-of-the-art contour-based instance segmenta-

tion methods [28, 23].

instance is represented by a closed contour. Compared with

pixel-based approaches which require processing every sin-

gle pixel within each detected RoI (e.g. 28 × 28 = 784
in Mask R-CNN [10]), contour-based methods enjoy bet-

ter parametrization efficiency as they typically require much

less parameters to represent the same mask (e.g. 128× 2 =
256 values to represent the x, y coordinates of sampled con-

tour vertices in DeepSnake [23]). Furthermore, contour-

based models directly output the locations of predicted con-

tour vertices and need not perform costly post-processing

steps such as mask upsampling.

Although contour-based instance segmentation meth-

ods offer attractive efficiency, they usually struggle to

yield accurate masks especially on challenging datasets like

COCO [18] where large shape variations exist. For exam-

ple, in [28, 29], mask contours are constructed from a set

of end points of concentric rays emitted from object center,

thus limiting the models to only handling convex shapes.

Such lossy contour representation often suffers inevitable

reconstruction error.

Some other contour-based approaches [31, 17, 23] ac-

complish segmentation by gradually deforming an initial
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Figure 2: (a) Comparison between uniform matching [23] and our segment-wise matching. Uniform matching suffers from

correspondence interlacing, which is caused by accumulated error of perimeter length difference between initial and target

contours. (b) The learned attention map on which modulating coefficients are sampled to adjust contour deformation. (c):

Example showing learned contour deformation with our method.

contour towards the target object boundaries. This man-

ner greatly alleviates the reconstruction error. Among them,

the more recently published DeepSnake [23] demonstrates

state-of-the-art performance on several datasets [5, 24, 9].

However, we argue that its regression target (per-vertex

matching between uniformly sampled vertices on the ini-

tial and target contours) leads to correspondence interlac-

ing, where the deformation paths from the initial to ground

truth contour cross over one another. An example is shown

in the left subfigure of Figure 2a, where the learning offsets

(green lines) severely interlace near the person’s leg, mak-

ing the learning difficult. Moreover, DeepSnake is trained to

regress all vertices on the contour, including those vertices

that have already arrived at the object boundaries, degrading

its learning effectiveness.

In this paper, we present a deep attentive contour model

(abbreviated as DANCE) for instance segmentation, which

well tackles the aforementioned challenges in DeepSnake.

DANCE incorporates two novel components. First, it ap-

plies a novel segment-wise matching scheme, which adap-

tively splits the contour into multiple smaller segments

where per-vertex matching is performed locally within each

contour segment. This process is performed by first spot-

ting the intersection points between the initial and target

contours, and then using them as breaking points for mit-

igating the correspondence interlacing problem. As shown

in the right subfigure of Figure 2a as well as Figure 2c, such

a matching scheme enables a smoother and more natural

deformation path from the initial contour to the target con-

tour, hence easing the learning process. In addition, we also

find this scheme pairs well with the bounding box initial-

ized contour, offering faster processing speed compared to

DeepSnake which requires converting the box into an oc-

tagon to serve as the initial contour for deformation.

Second, instead of regressing all vertices including those

which have already arrived at the target boundaries, we fur-

ther propose to apply an attention mechanism to the con-

tour deformation such that the model can better focus on

off-boundary vertices during deformation. We term this at-

tentive contour deformation. In particular, we incorporate

a lightweight attention module into DANCE, which learns a

modulation coefficient for each vertex with guidance from

the pixel-wise boundary prediction. An example of learned

attention is shown in Figure 2b, where the instance contours

are captured successfully. Therefore, as shown in Figure 2c,

only vertices that are far away from the object boundaries

are to be deformed and those on-boundary vertices are left

untouched.

In summary, we make the following contributions:

• We propose a novel segment-based matching scheme

that allows smoother deformation path for training;

• We design an attentive deformation mechanism to en-

courage the model to place more emphasis on off-

boundary vertices during deformation;

• As shown in Figure 1, our DANCE demonstrates state-

of-the-art performance among contour-based methods

on COCO, achieving 38.1% Mask mAP.

2. Related Work

Mask-based Instance Segmentation. The majority of

prior literature [3, 15, 10, 19] formulates instance segmen-

tation as per-pixel classification inside RoIs. Mask R-

CNN [10] is among the most representative works, which

adds a parallel head to the existing detector [26] for non-

competing pixel classification in a downsampled square re-

gion. In contrast to such a top-down paradigm, some other

methods [8, 20] make image-wise prediction to embed each

pixel first and then cluster or partition them into individ-

ual instance masks. However, these methods often require
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Figure 3: Overall Pipeline of DANCE. DANCE first samples on detected bounding boxes to obtain initial contours, which

consist of a set of uniformly spaced points. The initial contour is first deformed to a coarse shape, and then the proposed

attentive deformation is applied to those off-boundary points (purple) to refine and produce the final mask contour. For

simplicity, we only show 2 snake modules in this figure.

costly postprocessing. In more recent literature, YOLACT

[1] and BlendMask [2] propose to merge region-wise pre-

diction and image-wise prediction through cropping or mul-

tiplication, both achieving better accuracy-speed trade-off.

Contour-based Instance Segmentation. Comparatively,

the contour-based network is more lightweight. ESE-

Seg [29] integrates an additional branch into YOLOv3 de-

tector [25] to regress Chebyshev polynomial coefficients of

inner-center radius. PolarMask [28] extends the anchor-free

one-stage detector FCOS [27] to directly regress the lengths

of rays at a uniform angle interval. They are both center-

based and employ polar coordinate parameterization. Un-

fortunately, such methods usually suffer from reconstruc-

tion upper limit especially for non-convex shapes. There are

also some point-based methods [17, 31, 23] that regard the

contour as a polygon taking a set of points in the Cartesian

coordinate system as vertices, and generate per-vertex off-

sets to refine the contour towards the real object boundaries.

To anchor the initial contour vertices, Dense RepPoints [31]

initializes at every location on the 2D feature maps; Poly-

Transform [17] employs an additional model to generate a

coarse mask and samples vertices along the mask contour;

DeepSnake [23] proposes to locate the extreme points first

and generate an octagon on which contour vertices are uni-

formly sampled.

3. DANCE

We first revisit DeepSnake [23] based on which our

method is developed. Then we explain our segment-wise

matching scheme for enabling smooth contour deformation,

followed by attentive deformation that adaptively modulates

deformation offsets based on the guidance from pixel-wise

boundary prediction. An overview of our DANCE is shown

in Figure 3.

3.1. Preliminary: DeepSnake

DeepSnake [23] integrates the idea of classic snake al-

gorithm [13] into the instance segmentation framework by

making it learnable. The overall pipeline is as follows.

Given a detected bounding box, the four center points on

box edges are first located (also known as ‘diamond’ ver-

tices according to [23]). Then, a deep snake module is

employed to shift these four diamond vertices to extreme

points [21] (i.e. top, bottom, leftmost and rightmost points),

which are used to construct an octagon following [33]. K
vertices are uniformly sampled along the octagonal contour.

Finally, three separate snake modules are used to process

the k vertices to iteratively refine the octagonal contour to-

wards the real object boundaries.

To formalize, let {(xk, yk)}k=1,...,K denote K uni-

formly sampled vertices on the initial contour, where

(xk, yk) refers to the the Cartesian coordinate of the k-th

vertex. This is an ordered point set with the first point be-

ing the top extreme point. Then the snake module outputs

per-vertex offsets as follows:

{(∆xk,∆yk)}
K
k=1

= snake({F(xk, yk)}
K
k=1

), (1)

where the input feature F(xk, yk) is the concatenation

of a learnable feature and the relative vertex coordinates

(x
′

k, y
′

k). The appended relative coordinates are obtained by

347



(1) uniformly sample 

on the box contour and 

locate intersections

(2) uniformly sample 

on the target segments 

broken by intersections

(3) perform segment-

wise matching between 

initial and target contours 

Figure 4: Segment-wise Matching Scheme. Purple dots in

the left subfigure denote the sampled points along the ini-

tial contour. After splitting the segments by contour inter-

sections, we denote the vertices in different segments with

different colors in the middle and right subfigures, and then

match them locally. In this illustrative example, the number

of vertices K is set to be 98 for better visualization purpose.

subtracting the vertex coordinates (xk, yk) by the minimum

value over all k vertices to ensure the deformation is invari-

ant to the translation of the contour. Given the predicted

offsets by the snake module, each vertex is then updated as

[

xnew
k

ynewk

]

=

[

xold
k

yoldk

]

+

[

∆xk

∆yk

]

. (2)

The snake module follows the structure of Deep-

GCNs [16] except that the GCN component is replaced with

the circular convolution for aggregating information along

the contour. In the original implementation, DeepSnake em-

ploys four snake modules, one for localization of extreme

points given the four center points on the bounding box, and

three others for iterative contour deformation from octagons

towards object boundaries. We refer the interested readers

to the original paper [23] for more details.

During training, for the ground truth contours, K ver-

tices are similarly uniformly sampled along the object

boundaries with the first vertex being the one closest to the

top extreme point in the initial octagon contour. The offset

of each vertex is then assigned accordingly, which defines

the learning target. Nevertheless, as shown in Figure 2a, we

notice that such a naı̈ve matching scheme completely disre-

gards the initial contour shape when assigning the ground

truth vertex offsets, which often results in correspondence

interlacing, where the deformation paths from the initial to

ground truth contours cross over one another. This leads to

greater difficulty of learning in the snake module. In the

next subsection, we introduce a novel segment-wise match-

ing scheme to overcome this limitation.

3.2. Segment­wise Matching Scheme

As above discussed, the default matching scheme used in

DeepSnake disregards the initial contour shape, which leads

to a sub-optimal regression target for learning. To tackle

this, we propose a novel segment-wise matching scheme

where the initial contour is first divided into multiple seg-

ments and the assignment of ground truth vertices is per-

formed locally within each segment. In this way, the cor-

respondence interlacing phenomenon can be effectively al-

leviated, yielding a much smoother deformation path for

learning. However, the criteria for contour splitting still re-

mains unclear. In this work, we propose a piece of sim-

ple heuristics for splitting the contour. In particular, we

first look for the intersection points of ground truth con-

tours and initial contours up to some tolerance margin 1

Then the ground truth contour can be decomposed into sev-

eral contour segments. Within each segment, we re-sample

the ground truth contour uniformly based on the number

of vertices on the corresponding segment of the initial con-

tour. Figure 4 depicts the process of such a segment-wise

matching scheme. With segment-wise matching, the ini-

tial bounding box already suffices and it becomes unnec-

essary to use an octagon as the initial contour. The addi-

tional snake module used in DeepSnake for locating ex-

treme points to construct octagons can thus be eliminated,

leading to faster training and inference speed.

3.3. Attentive Deformation

Given ground truth vertex-wise offsets, DeepSnake is

trained to regress all vertices on the contour, including those

close to the object boundaries. However, such formulation

requires the model to learn to simultaneously regress both

the on- and off-boundary vertices, which have very different

dynamics that would make the learning less effective. In-

stead, we propose to decompose the regression process into

two components: 1) the offset regression similar as before,

and 2) an attention module that looks for the off-boundary

points among all the vertices, forcing the snake module to

focus on regressing those vertices during deformation while

leaving the others untouched. Altogether, we term this the

attentive deformation mechanism. To realize it, we propose

a simple yet effective attention module (Figure 5) which

outputs an attention map Fatt that adaptively re-weights the

offsets predicted by the snake module as follows:

[

∆x
′

k

∆y
′

k

]

= Fatt(xk, yk) ∗

[

∆xk

∆yk

]

. (3)

To further enhance the capability of the attention module

when assessing whether a vertex already reaches the object

boundary, we explicitly incorporate object boundaries infor-

mation into the attention module. Specifically, given a fea-

ture map extracted from the CNN, we inject class-agnostic

boundary prediction supervision on the feature map using

1In the special case where bounding boxes are taken as the initial con-

tours, these intersection points are extreme points
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a 1×1 convolution with sigmoid activation. The resulting

edge map is then passed to a few more convolutional layers

interleaved with GroupNorm and ReLU, followed by a sig-

moid activation function to produce an image level attention

map, based on which per-pixel modulation coefficients are

sampled and multiplied with the originally predicted offsets

as in Equation (3).

3.4. Better Contour Normalization

The original implementation of DeepSnake involves nor-

malizing the contour by subtracting each vertex coordinate

by the minimum value over all vertices on the contour to

enable translation-invariant contour deformation. However,

we argue that such a translation-invariant normalization is

not sufficient for stable learning, as the range of regression

offsets heavily depends on the object size, which inevitably

complicates the learning of the snake module. We address

this issue by introducing a scale- and translation-invariant

normalization scheme. Specifically, each vertex coordinate

is normalized in the following manner before appended as

the input feature of the snake module:

x
′

k =
xk − xmin

xmax − xmin

, y
′

k =
yk − ymin

ymax − ymin

, (4)

where (xmin, ymin) and (xmax, ymax) denote the minimum

and maximum values over all vertices for a specific object

contour, respectively. Since the input vertex coordinates are

now bounded to be within [0, 1], the resulting offset pre-

dictions should also be bounded. Therefore, we add a tanh

activation function to the snake prediction before multiply-

ing it by the object scale. Thus, Equations (1) and (2) are

adapted as follows:

{(∆xk,∆yk)}
K
k=1

= tanh
(

snake({F(xk, yk)}
K
k=1

)
)

;

xnew
k = xold

k + w ∗∆xk, ynewk = yoldk + h ∗∆yk,
(5)

where w and h denote the width and height of the object. In-

terestingly, the proposed normalization scheme plays a sim-

ilar role as the RoIAlign [10] operation used in mask-based

approaches which projects objects with varying size into a

fixed-sized feature map. In this way the model can focus on

learning to accurately delineate the object shape regardless

of its size and location in the image.

4. Experiments

Comprehensive experiments were conducted on two

commonly used instance segmentation benchmarks.

• MS COCO 2017 [18] consists of 118k training, 5k

validation and 20k testing images with 80 object cate-

gories. We use the COCO average precision (AP) met-

ric to evaluate our method.
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Figure 5: Attentive Deformation Mechanism. The Finput

is from FPN features; the current contour points are used

to extract point features as well as modulating coefficients,

which will be multiplied to get the final offsets result.

• SBD [9] contains 11,355 images with instance-level

boundary annotations of 20 classes. It is split into

5,623 training images and 5,732 validation images.

Following [23], we kept 500 images from the valida-

tion set as our mini-val set and only tested on the com-

plete validation set once for the final performance re-

port. Results are evaluated in terms of 2010 VOC [9]

APvol, AP50 and AP70.

4.1. Implementation Details

Detector. While our method does not depend on any spe-

cific detector, we adopt both CenterNet [32] and FCOS [27]

for initializing mask contours. The former one allows fair

comparison with DeepSnake2 [23], while the latter one is

more powerful to handle challenging dataset like COCO. In

addition, we also re-implemented DeepSnake with FCOS

as the object detector for fair comparison.

Attentive Deformation. Following DeepSnake [23], we

also perform three iterations of contour deformation by ap-

plying three individual snake modules. We only apply at-

tentive deformation to the last two snake modules since

most vertices on the initial contour are far from the true ob-

ject boundaries. We take the P2 feature from FPN as input

for attentive deformation (Finput in Figure 5).

Losses. In addition to the detection losses used in the object

detector, the vertex-wise offset prediction is trained using a

smooth l-1 loss. The loss is averaged across K sampled

points. Unless specified otherwise, we set K to 196 in all

experiments, which can cover most object shapes. We no-

tice that the loss is sensitive to the object size as the object

with larger size tends to produce larger offsets. To stabilize

the learning, we weight the loss of the individual instance

2DeepSanke bases their experiments on CenterNet
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ID Initial Matching Attentive Normalized MS-Feature AP AP50 AP75 APs APm APl

M0 octagon uniform 30.6 51.4 31.6 15.1 33.3 43.0

M1 octagon uniform 32.1 53.5 33.4 16.1 34.9 45.1

M2 octagon segment 32.9 54.3 34.4 16.3 35.6 46.5

M3 box segment 32.7 54.0 33.7 16.2 36.9 45.5

M4 box segment X 33.4 54.9 34.8 16.7 36.6 46.3

M5 box segment X 33.4 54.3 35.1 16.5 36.4 47.1

M6 box segment X X 34.2 55.1 35.9 16.9 37.4 47.6

M7 box segment X X X 34.5 55.3 36.5 17.2 37.5 48.0

Table 1: Ablation Results. The first two rows denote our baseline models. Model M0 is a direct combination of FCOS and

DeepSnake; model M1 is our augmented baseline which employs a modified FCOS (with direct extreme points prediction

in an anchor-free manner) to efficiently generate initial octagon contours; model M7 is our finalized model. Performance is

evaluated on MS COCO val2017.

Matching AP AP50 AP75 APs APm APl

Chamfer 27.4 49.8 26.5 13.7 30.3 38.7

uniform 31.4 52.9 32.5 15.9 34.5 43.6

segment 32.7 54.0 33.7 16.2 36.9 45.5

Table 2: Different Matching Methods. Both unordered

(Chamfer loss) and ordered (either uniformly sampled or

segment-wise sampled) matching methods are evaluated us-

ing object boxes as initial contours. Chamfer loss seeks the

nearest points to apply distance penalty, which could not

ensure point correspondences.

by the inverse of its bounding box’s side lengths. Mathe-

matically, the loss for training each snake module is

Lsnake =
1

K

K
∑

k=1

smoothL1

([

x̃k/w
ỹk/h

]

−

[

x∗
k/w
y∗k/h

])

, (6)

where x̃k, ỹk denote the updated contour vertices using

Equation (5) whereas x∗
k, y

∗
k are the target vertex locations.

Following [7], we employ Dice loss for supervising the

boundary prediction in attentive deformation. The overall

loss is as follows:

L = Ldet + αLsnake + βLedge, (7)

where α and β are empirically set to 10 and 1, respectively.

Training & Testing. For COCO dataset, we employ

ResNet-50 [11] pre-trained on ImageNet [6] as the back-

bone and train for 12 epochs (1× schedule) for all experi-

ments unless otherwise specified. All models are trained us-

ing stochastic gradient descent with learning rate of 0.005.

The weight decay and momentum are set to be 0.0001 and

0.9, respectively. The learning rate is decreased by 10× at

iteration 120k and 160k. Random horizontal flipping and

multi-scale training is adopted while no testing augmenta-

tion is used. For the SBD dataset, we exactly follow the

training and testing settings of DeepSnake [23] so that all

other factors remain unchanged.

4.2. Ablation Results

In order to justify our design choices, we conduct abla-

tion study on COCO dataset to quantitatively analyze the

effect of each component. Results are given in Table 1.

Baselines. The model M0 denotes the vanilla baseline

model, which directly combines FCOS [27] with Deep-

Snake [23]. Model M1 is our augmented baseline which

employs a modified FCOS to efficiently generate initial oc-

tagon contours. We extend the bounding box regression

branch in FCOS to predict four additional relative gliding

offsets in an anchor-free manner. It is supervised via smooth

l-1 loss, which is appended to the total loss with weight 1.

We empirically find this simple modification is more effec-

tive than introducing an additional snake module as used

in DeepSnake [23] and saves about 7ms computation time.

Matching. We also compare our proposed segment-based

matching scheme with ‘Chamfer’ (applying Chamfer loss

between two unordered point sets) and uniform matching

(smooth l-1 loss on orderly matched points). As shown

in Table 2, our segment-based matching scheme yields the

best performance. The ablation in Table 1 also shows re-

placing uniform matching scheme used in [23] by our pro-

posed segment-wise matching (M1 → M2) offers 0.8% AP

improvement. Moreover, the learned deformation path is

more natural thus yielding better mask quality as compared

in Figure 6. When comparing models M2 and M3, we can

see that our segment-wise matching scheme is robust to dif-

ferent contour initialization (octagon and box contour). In

the remaining experiments, we use bounding box as our ini-

tial contour due to its faster speed while sampling.

Attentive Deformation. Comparing model M4 and M3,

our proposed attentive deformation mechanism further im-

proves the performance by 0.7% AP, demonstrating the im-

portance of decoupling the regression task into offset learn-

ing and classification of on- and off-boundary vertices.

Contour Normalization. We can see that a scale- and
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Figure 6: Example Result Pairs. We compare deformation paths learned from uniform matching [23] (left) and our segment-

wise matching (right). The left images are from the baseline model M1 and right ones are from model M3 as numbered in

Table 1. The lines show the initial and intermediate contour results, while the final mask results are overlaid. Our method

produces more natural deformation paths and hence higher quality masks. Better viewed in color pdf with zoom-in.

Method Backbone Epoch Aug. AP AP50 AP75 APs APm APl

pixel-based

Mask R-CNN* [10] R-50-FPN 24 ◦ 34.9 56.8 36.8 15.1 36.7 50.6

Mask R-CNN* R-101-FPN 72 X 38.3 61.2 40.8 18.2 40.6 54.1

BlendMask [2] R-50-FPN 36 X 37.0 58.9 39.7 17.3 39.4 52.5

BlendMask R-101-FPN 36 X 38.4 60.7 41.3 18.2 41.5 53.3

CenterMask [15] R-101-FPN 24 X 38.3 - - 17.7 40.8 54.5

contour-based

ExtremeNet [33] Hourglass-104 100 X 18.9 44.5 13.7 10.4 20.4 28.3

Dense RepPoints [31] X-101-DCN 12 X 30.0 57.2 28.2 - - -

PolarMask [28] R-101-FPN 12 ◦ 30.4 51.9 31.0 13.4 32.4 42.8

DeepSnake [23] DLA-34 160 X 30.3 - - - - -

DANCE R-50-FPN 12 X 34.6 55.9 36.4 19.3 37.2 43.9

DANCE R-50-FPN 36 X 36.8 58.5 39.0 21.1 39.1 46.9

DANCE R-101-FPN 24 X 38.1 60.2 40.5 21.5 40.7 48.8

Table 3: Quantitative Results on MS COCO [18]. We compare our DANCE with state-of-the-art models on test-dev.

‘R’ and ‘X’ denote ResNet and ResNeXt, respectively. ‘Aug.’ denotes using multi-scale augmentation for training. Mask

R-CNN* refers to re-implementation in [4].

translation-invariant normalization scheme outperforms the

default translation-invariant version as used in DeepSnake

by 0.8% AP (model M6 v.s. model M4). Since objects have

different sizes, the model needs to predict offsets with high

diversity, which means difficulty in optimization. With ob-

ject scales normalized, our snake modules can focus more

on learning to accurately delineate the object shapes.

Multi-scale Feature. We also experiment by replacing the

Finput with a multi-scale feature for stronger representa-

tion. Specifically, we apply feature pyramid fusion follow-

ing [14] to fuse the FPN features P2 to P5. As shown in the

last row of Table 1, this further improves the performance

by 0.3% AP as compared to using P2 alone as the input

for the snake module, demonstrating the effectiveness of

multi-scale features for prediction of deformation offsets.

4.3. Comparison with State­of­the­Arts

MS-COCO. We compare our DANCE with the state-

of-the-art instance segmentation methods on COCO

test-dev. As shown in Table 3, we first observe our

DANCE with ResNet-50 as backbone trained for 1× sched-

ule (34.6% AP on test-dev) already surpasses all other

contour-based methods by a large margin. Moreover, it also

achieves competitive performance with pixel-based meth-

ods such as Mask R-CNN [10] or BlendMask [2]. Since

the models in ablation study are under-fitted, we extend

the training to 3× schedule and apply stronger ResNet-101

backbone, boosting the performance to 38.1%AP, which is

comparable with the top performing pixel-based methods.

Some qualitative results are presented in Figure 7.

SBD. We also compare our DANCE with top-performing

contour-based segmentation methods on the SBD dataset.

We adopt the same backbone, detector, training and test-

ing configuration as DeepSnake [23], and validate that our

method outperforms all other methods (Table 4).

Real-time Setting. Moreover, we construct a real-time ver-

sion of our DANCE model, called DANCE-RT, for com-
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Figure 7: Qualitative Results. Our DANCE model produces high quality segmentation results on COCO val images.

Method APvol AP50 AP70 FPS

Embedding-20 [12] 31.5 34.6 15.0 35.7

ESE-Seg-20 [29] 35.3 40.7 12.1 41.7

DeepSnake [23] 54.4 62.1 48.3 34.6

DANCE 56.2 63.6 50.4 38.3

Table 4: Results on SBD Validation Set. We compare our

DANCE with top contour-based methods on SBD valida-

tion set. Results show that our methods outperform them by

a large margin. Inference time for DeepSnake and DANCE

is measured using a single V100 GPU on the same machine

to give direct comparison, while that for the other methods

is cited from the corresponding paper.

parison with other real-time instance segmentation mod-

els. Inspired by FCOS-RT [27], we first make the detec-

tor lighter by using only 3 FPN levels (P3∼P5). Instead

of using the same structure for all the snake modules as

in DeepSnake [23], we customize each snake module with

different atrous circular convolution rates and numbers of

layers. Specifically, the earlier snake modules responsi-

ble for providing large deformation are assigned with larger

atrous rates and bigger numbers of layers as compared to

the latter ones which aim at fine-grained refinement. Due

to limited space, we refer the readers to the supplementary

material for more details. The number of sampling points

is decreased to 96 to reduce computation. We adopt 4×
training schedule and downsize the input images for both

training and testing. During inference, we can optionally

remove the last snake module to trade off between speed

and accuracy. As reported in Table 5, DANCE-RT† gets

1.4 ms speed-up at the cost of 0.5% AP drop. Table 5

also demonstrates that our DANCE-RT outperforms other

real-time instance segmentation methods in terms of both

Method Backbone
Time

(ms)

AP

(test-dev)

AP

(val)

ESE-Seg [29] Dark-53 26.0 - 21.6

YOLACT [1] R-101 34.2 29.8 29.9

DeepSnake [23] DLA-34 36.8 30.3 30.5

DeepSnake∗ R-50 37.3 31.0 30.6

DANCE-RT† R-50 33.8 34.1 33.8

DANCE-RT R-50 35.2 34.6 34.2

Table 5: Real-time Setting Results. We compare our

DANCE with other real-time instance segmentation mod-

els on COCO val and test-dev, proving its real-time

effectiveness. † denotes our DANCE-RT model without the

last snake module for faster inference speed. ∗ denotes the

DeepSnake model with exactly the same backbone and de-

tector as our DANCE-RT.

accuracy and speed, except ESE-Seg [29] which has much

inferior segmentation accuracy as compared to ours.

5. Conclusion

In this work, we presented two novel designs, atten-

tive deformation mechanism and segment-wise matching

scheme, that are essential for contour-based instance seg-

mentation models to learn more effective deformation. Our

best model achieves 38.1% AP on COCO test-dev,

which is comparable to existing top-performing pixel-based

models. We also proposed a real-time variant with good

speed-accuracy trade-off, demonstrating its potential for

real-time applications.
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jects as points. In arXiv preprint arXiv:1904.07850, 2019.

[33] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krähenbühl.
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