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Abstract

We propose a self-supervised method for image relight-

ing of single view images in the wild. The method is based

on an auto-encoder which deconstructs an image into two

separate encodings, relating to the scene illumination and

content, respectively. In order to disentangle this embed-

ding information without supervision, we exploit the as-

sumption that some augmentation operations do not affect

the image content and only affect the direction of the light. A

novel loss function, called spherical harmonic loss, is intro-

duced that forces the illumination embedding to convert to

a spherical harmonic vector. We train our model on large-

scale datasets such as Youtube 8M and CelebA. Our exper-

iments show that our method can correctly estimate scene

illumination and realistically re-light input images, without

any supervision or a prior shape model. Compared to su-

pervised methods, our approach has similar performance

and avoids common lighting artifacts.

1. Introduction

Relighting images in the wild has gained popularity re-

cently, especially since the development of mobile comput-

ing and video communication has led to an explosion in

the consumption of digital photography. The diversity of

the application environments, e.g. indoor, outdoor, day or

night, makes the task of realistically relighting images chal-

lenging. In an ideal use case scenario, users can choose the

desired illumination of an image, without having to consider

the illumination of the original image. However, even state-

of-art lighting algorithms meet three main problems. The

first problem is the lack of large-scale relighting datasets

since it is hard to manually label scene illumination, espe-

cially when there is more than one light source. The collec-

tion of image annotations has been the main bottleneck of

many supervised relighting methods. The second problem

is that most relighting algorithms need multiple views of

the same object for training, which hinders the algorithms

from learning from wild data. The third problem is that re-

lighting usually requires depth information to avoid artifacts

from shadows or over-lighting.

Figure 1. Relighted images with different target illumination con-

ditions. Our method can relight an image (a) based on given light

direction via spherical harmonic coefficients (b) as well as es-

timated illumination from a reference face (c) and environment

scenes (d).

The goal of this work is to design a single automatic im-

age relighting network with a large-scale single-view un-

labelled dataset. It takes a single image and target light-

ing as inputs then estimates the lighting of the input image

and subsequently generates a new, relighted image based

on the target lighting. Specifically, our approach uses a

self-supervised auto-encoder network which decomposes

the image into two embeddings: one for illumination and

one for content. There are two main challenges to this idea.

The first challenge is how to separate illumination informa-

tion from content information correctly. To address this,
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we can augment images in such a way that the geometry of

the objects stays the same while the direction of the light

changes. To satisfy this assumption, we consider four pos-

sible augmentations: two flipped images, a rotated image

and an inverted image. Each augmentation image is paired

up with the original image and used to train a Siamese auto-

encoder network. We assume that the image training pairs

have the same content but different illumination. Based on

this, we can decouple the image content embedding from

the image illumination embedding. The second challenge

is how to generate a semantically meaningful light repre-

sentation. Without ground truth light information, the illu-

mination embedding has a large number of possibilities. It

is impossible to relight images by adjusting the embedding

manually. Our solution is to design a spherical harmonic

(SH) loss that forces the illumination embedding to take

the form of Laplace’s spherical harmonics. When Spheri-

cal Harmonics [18] represent the illumination embedding,

the relighting can be meaningfully controlled.

The contribution of our work is two-fold: First, we

propose a relighting self-supervised auto-encoder network,

which is trained on image pairs and separates images into

content and lighting embeddings. Without ground-truth il-

lumination information, the proposed method can gener-

ate high-resolution (1024x1024) relighted images. Second,

a novel spherical harmonics loss is introduced, which is

based on the assumption that the proposed image augmen-

tations only affect the direction of the light in the images

and not the geometry of the objects. The relighting can be

controlled by adjusting the values in illumination embed-

ding. Finally, we test our method on both synthetic and real

data. We show that we achieve higher fidelity in the re-

lighted images compared to other supervised learning and

self-supervised methods.

2. Related Work

2.1. Image Relighting

Relighting, especially for synthetic objects, has been a

popular task for over twenty years [16, 27]. Most of the im-

age relighting approaches which were introduced addressed

face portrait images. With relative geometry information,

landmarks and detectors of human faces, Zhou et al. [29]

accurately estimate surface normals required for relighting

from a single image based on an SFSNet network [20]. Sun

et al. [24] use a similar architecture, but the encoder extracts

lighting features in addition to facial features. However, the

objective functions are only applied to masked people and

the background are simply replaced by blurred environment

maps. While much of the previous works focus on portrait

relighting, only a few papers explicitly consider illumina-

tion estimation from environment images. Duchene et al.

[8] propose an outdoor scene relighting network, which re-

moves the shadows of the input images and adds new shad-

ows for the relighted images based on a Markov Random

Field over a graph of points. Philip et al. [19] further extend

this idea by casting shadows from a 3D geometric prior. A

SLAM algorithm is applied to estimate the position of the

main light sources based on the scene’s geometry and spec-

ular regions [26]. Zhang et al. [28] use RGB-D data to

relight the indoor environment and estimates the materials

of the furniture. However, most of the previous works need

2D/3D geometric priors or RGB-D sensors. Relighting a

single-view scene image is still a challenging problem.

2.2. Photo Style Transfer

Photo style transfer, where the input is a source im-

age and a reference image and the output is the illumina-

tion inversion image with the style of the reference image

[21, 22], is similar to image relighting. The most chal-

lenging problem of a machine learning method is the dif-

ficulty in designing a suitable loss function. Since gen-

erative adversarial networks (GANs) [9] can estimate the

loss from the training data, GANs are widely used in differ-

ent photo style translation problems, such as pix2pix [10]

and CycleGAN [30]. Instead of training the model with

loss function, the generator and discriminator are trained.

The generator learns to produce data similar to the train-

ing data, and discriminator learns to find the mistake of the

generator. Auto-encoder is also applied in the photo style

transfer [23, 14, 7]. For example, Shu et al. [23] propose

a physically grounded rendering-based disentangling net-

work specifically designed for faces. Landmarks and 3D

face model are applied with an auto-encoder for estimation

of face illumination. Li et al. [7] proposes a linear propaga-

tion module with a transformation to enable a feed-forward

network for photo-realistic style transfer. However, the ob-

ject shape in the transformed images is fuzzy, and the refer-

ence image affects the colour of transformed images.

2.3. Siamese network

The Siamese network architecture was proposed in the

1990s to solve signature verification as an image match-

ing problem [4], single-target tracking [13, 3] and one-shot

learning [11]. The pre-trained Siamese CNN features have

been used with Context-RNNGAN model for image gener-

ation [6]. Compared to the above work, the relighting auto-

encoder would replace the CNN network in the Siamese

network, which is trained without external supervision. To

the extent of our knowledge, our work is the first using a

Siamese network for relighting.

3. The relighting network

Our goal is to learn an image relighting model from large

unlabelled image datasets. The model receives a source im-

age and target illumination as input and outputs an estima-
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Figure 2. Auto-encoder: The input is the original image and target

illumination embedding. The output is the re-lit image with the

target illumination and estimated illumination embedding of the

input image.

tion of the source image illumination and the relighted im-

age. In this section, we provide the implementation details

for the self-supervised relighting auto-encoder. Since the

ground truth illumination information and relighted images

are not available for wild datasets, the objective function

and training detail of the relighting auto-encoder is further

discussed.

3.1. Relighting Autoencoding

The relighting network is an auto-encoder (AE), as

shown in Fig. 2. With the encoder E, the input im-

age IL is decomposed to a content embedding C (green

boxes) and an illumination embedding L̂ (orange boxes).

IL ∈ R
w×h×3 is the image I with illumination embed-

ding L, where w and h are the image weight and height.

C ∈ R
m×m×d and L̂ ∈ R

n are two tensors, where n is the

size of the illumination embedding, m is the size of the con-

tent embedding and d is the depth of the content embedding.

The encoder network can be represented as:

{C, L̂} = E(IL) (1)

With the decoder D, the content embedding C and target

illumination embedding L′ (blue boxes) are used to rebuild

the relighted image ÎL′ . The decoder network can be rep-

resented as:

ÎL′ = D(C,L′) (2)

If the target and source illumination embedding are the

same, the AE network becomes a reconstruction network.

Otherwise, it is a relighting network. For training the re-

lighting auto-encoder, we employ three objective functions.

These are reconstruction loss, Spherical Harmonic loss and

discriminator loss.

3.2. Reconstruction Loss

An auto-encoder network can learn E and D that can re-

light images from a large number of relighted image pairs.

However, the ground truth illumination embedding and re-

lighted images are not available for the wild data. To ad-

dress this problem, two AE networks form a reconstruction

Figure 3. The Siamese reconstruction network. Two auto-encoders

have the same structure, and they share weights. The input is the

source image IL while the output is the reconstructed image ÎL.

L
′ is a random lighting illumination while L̂′ is the estimated il-

lumination.

network, as shown in Fig. 3. The two auto-encoders have

the same structure and their weights are shared. Therefore,

these two auto-encoders are called as Siamese auto-encoder.

IL is an image in the training dataset. L′ is a random illu-

mination embedding. ÎL′ and ÎL is the transferred image

with the illumination L′ and the estimated illumination L̂,

respectively. L̂ and L̂′ is the estimated illumination from

IL and ÎL′ , respectively. With the two transformation net-

works, the reconstruction network is setup. The network

then takes source image IL and target lighting L′ as input

and generates ÎL and L̂′. IL and L′ are used as ground

truth to supervise the training in this reconstruction task.

We use mean absolute error loss for the reconstructed im-

age ÎL and the estimated lighting embedding L̂′. The image

gradient is also considered with mean absolute error loss to

preserve edges and avoid blurring. The objective for this

reconstruction network is,

Lroc(IL,L
′) =

1

w ∗ h (
∥

∥

∥
IL − ÎL

∥

∥

∥

1

+
∥

∥

∥
∇IL −∇ÎL

∥

∥

∥

1

)

+
1

n

∥

∥

∥
L

′ − L̂′
∥

∥

∥

1

(3)

Lroc(IL,L
′) is simply represented as Lroc(IL), since L′ is

given and fixed in each epoch.

3.3. Spherical Harmonic Loss

Although the reconstruction loss can let the AE network

converge, ÎL′ and L̂ lack constraints. The AE network can

map the same image and illumination embedding to any

random image and illumination in the target domain. Any of

the learned mappings can induce an output distribution that

matches the target distribution. Thus, reconstruction losses

alone cannot guarantee that the AE network can relight im-

ages. To further reduce the space of possible mapping func-

tions, some constraints should be applied for ÎL′ and L̂. A

parametrization widely used in relighting tasks is a Spheri-

cal Harmonic, defined on the surface of a sphere. The de-

tails about calculating Spherical Harmonic can be found in

[18]. Here we introduce a novel loss function, based on

Spherical Harmonics, as a constraint on ÎL′ .
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Figure 4. Augmentation images: the original image is shown at the bottom. The definition of Spherical Harmonic illumination embedding

is given above the original image. The four kinds of augmented images are shown Ax, Ay , Axy and Az , which are obtained as horizontal

flip, vertical flip, rotation and inversion. These augmentations change some channels of the Spherical Harmonic illumination embedding

of image. The changed illumination embedding is given below the augmented images, where the white channel is unchanged. The value

in the orange channel turns negative. The blue channel is swapped with other blue channels as the orange lines.

Spherical Harmonic loss is a novel loss to guarantee

that the illumination embedding is represented by Spherical

Harmonic lighting. For controlling the illumination, Spher-

ical Harmonic lighting is used to represent the illumination,

shown above the original image in Fig. 4, where b is the

bias and its value is
√
π

2
. X , Y , Z means the channels is lin-

early dependent on the x, y and z axis in the space. Since

the Spherical Harmonics of the training data is unknown,

some augmented images A are used as the associated im-

ages to calculate the Spherical Harmonic Loss. Four image

augmentations are considered. A horizontally flipped im-

age Ax, a vertically flipped image Ay , a rotated 90 degrees

image Axy , and an inverted image Az (discussed later), as

shown in Fig. 4. These augmentations change some val-

ues in the illumination embedding. The changes are given

below each augmented images. The unchanged channel is

shown as the white block, while the value in the orange

block turns negative. Since Axy is given by rotation, the

order of some channels (blue channels) is changed. Specifi-

cally, the 2-nd and 6-th channels are swapped with 4-th and

8-th channels, respectively. Although Ay and Axy intro-

duces unnatural upside down or tilted images, this does not

make the job of the auto-encoder more difficult in our ex-

periments.

Different from Ax, Ay and Axy which can be calculated

based on the flip and rotation operations, the inversion aug-

mentation Az is using a more sophisticated approach, as we

need to approximate a lighting change in depth direction.

We include a pretrained intrinsic image network, similar to

SFSnet [20], since the illumination information in depth can

not be directly given in the input images. The process of es-

timation of Az is shown in Fig. 5. Firstly, the input image

is converted from RGB into CIELAB (LAB) colour space.

The L channel of the input image is shown as ”L channel”.

Secondly, the depth information, shown as ”depth”, is esti-

mated from the input image by a pre-trained depth predic-

tion model [5]. The depth value of I is shown as D(I).
The depth information is applied to separate the foreground

Figure 5. Az pipeline: the ”L channel” and ”depth” information

are estimated from the input LAB image. The ”L channel” and

”depth” information are further merged into ”inverted L” as Eq.

(4). Finally, Az is build up from the ”inverted L” and the AB

channel of input image.

objects (faces, cars and so on) from the background. The

pixels with low depth value belong to the objects while pix-

els with high depth value belong to the background. Apart

from that, we assume light sources are normally located at

the front of the objects. When the light sources are moved to

the back of the objects, the luminance of objects decreases

while the luminance of background stay the same since it

has different light sources. The L channel of input images

should be inverted based on the depth information to calcu-

late Az . We tested a multitude of inversion approximations

and found the following inversion equation to visually pro-

vide the best results:

L(Az) =
‖(1w∗h −D(I)) ◦ L(I) +D(I) ◦ tanh(L(I))/2‖

1

w ∗ h
(4)

where ◦ is the Hadamard product. L(.) is function to cal-

culate the L channel information in LAB colour space and

tanh is a tanh function. Az is the image with L(Az).
tanh(.)/2 is the scale function, which can be adjusted for

different tasks.

Based on the above properties, the relighting task is con-
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verted to a comparison task, as shown in Fig. 6. IL is a

random image in the dataset, whose illumination embed-

ding is the L and L′ is the random illumination embed-

ding. The augmented image of IL is shown as the A, where

A ∈ {Ax,Ay,Axy,Az}. The relighted IL and A with

the target illumination embedding L′ are shown as ÎL′ and

ÂL′ , respectively. The estimated illumination embedding

of IL and A are L̂ and L̂A. By comparing L̂ and L̂A,

Spherical Harmonic loss Lsh(IL,A) is defined as:

Lsh(IL,A) = 1
T
9∗1L̂+ C(A)L̂A −

√
π (5)

where

C(A) =



















[1,−1,−1, 1, 1,−1,−1, 1,−1]T A = Ax

[1, 1,−1,−1, 1, 1,−1,−1,−1]T A = Ay

[1,−1,−1,−1, 1,−1,−1,−1, 1]T A = Axy

[1,−1, 1,−1,−1, 1,−1, 1,−1]T A = Az

(6)

where 1
T
9×1

is a 9× 1 vectors, where each element value is

1. Eq. (5) is introduced based on the relationship between

the input image IL and its augmented image A, as shown

Fig. 4. The sum of first channel of IL and A should be

equal to
√
π, since the bias is

√
π/2. For 2-9 channel of the

illumination embedding of IL and A, the different of the

unchanged channel and sum of the unchanged channel are

both equal to 0.

3.4. Discriminator loss

Since our network is trained using image flipping and

rotation, they may contain artifacts due to inaccurate esti-

mation of object depth and lighting. Apart from that, the

relighted images lack the constraint condition. A GAN loss

is proposed to improve the quality of the generated images.

WGAN-GP is applied to force the distribution of local im-

age patches to be close to that of a natural image. The ob-

jective is given as:

Ldis(IL) = EIL
C (D(E(IL),L

′))
2 − EIL

(C(IL))2 (7)

where C is the critic (discriminator) where the re-light im-

ages are E(IL) and IL are the real images.

3.5. Implementation Details

The overall loss for our network is a linear combination

of the losses mentioned:

L =Lroc(IL) + αLdis(IL)

+
1

4

∑

A∈{Ax,Ay,Axy,Az
}
Lroc(A) + βLsh(IL,A)

(8)

where α = 0.5 and β = 0.25. We train our network with

images of resolution 1024 × 1024. More specifically, the

Figure 6. The Siamese comparison network. The two auto-encoder

have the same structure, and they share weights. The input is

source image IL and augmented image A while the output is the

illumination estimation L̂ and L̂A.

source images pass through six down-sampling layers and

eight residual blocks. Then the embedding passes through

three residual blocks and two residual blocks with a fully-

connected layer to get the content and illumination embed-

dings, respectively. The size m and depth d of the content

embedding are set as 64 and 512, respectively. Then these

embeddings are added after several residual blocks. Finally,

a relighted image is generated after six up-sampling layers.

Since the encoder losses some information present in the in-

put images, the reconstructed image appears blurry. There-

fore, six skip layers are added between the down-sampling

and up-sampling layers. We train our network for 5000

epochs (about 300 hours) using the Adam optimizer with

default parameters.

4. Experiments

In this section, we will evaluate our proposed method

performance and compare it with previous state-of-the-art

methods. Since our network can predict lighting, the model

is evaluated in two ways: (A) Given a source image and an

SH lighting, relighting an image (denoted as the SH-based

relighting). (B) Given a source image and a reference im-

age, estimating SH lighting from the reference image and

using the estimated lighting to relight the source image (de-

noted as the image-based relighting).

4.1. Setup

Datasets: We show the effectiveness of the proposed

method on three different datasets: CelebA [17], Youtube

8M [1] and synthetic face dataset [12]. CelebA is a large-

scale face attributes dataset with about 200k portrait images.

The persons shown in the dataset have large pose variation

with different backgrounds. CelebA has large diversities

36



Model RMSE (10−3) DSSIM (10−3) RMSE-s (10−3)

(1)Ours full 6.8 3.8 9.9

(2)w/o Lroc 16.2 3.9 10.0

(3)w/o Lsh 20.3 4.3 15.8

(4)w/o Ax 18.6 4.5 15.7

(5)w/o Ay 19.8 3.8 17.9

(6)w/o Axy 10.7 3.8 10.8

(7)w/o Az 7.3 3.8 13.1

(8)w/o Ldis 7.1 3.9 10.4

(9)w/o skip 7.9 3.9 10.6

Table 1. Ablation study. Ablated model, which some part of the

proposed model is removed, is evaluated.

and large quantities. However, the ground truth of illumina-

tion is not provided. Since image data of CelebA is limited,

and we hope the model can accurately estimate the illumina-

tion of background. We pre-trained our model on Youtube

8M, where 6 million videos are included. We only choose a

subset of the full dataset. The included categories are ”bus”,

”metro”, ”park”, ”shopping mall”, ”street”, ”road”, ”office”

and ”room” which provide common use case scenarios. For

each video, a frame is captured for every 1 minute. Fi-

nally, there are nearly 1 million scene images. Synthetic

face dataset is generated by a synthetic face framework [12].

The illumination can be manually controlled. Therefore,

this data is used to evaluate our proposed method. Note that

this dataset is not used to train our methods.

Evaluation metric: Three error metrics are used to mea-

sure the relighting performance across our validation set and

testing. They are the Root Mean Square Error (RMSE),

Structural dissimilarity (DSSIM) [25], and scale-invariant

RMSE (RMSE-s) [2]. RMSE is a common metric for eval-

uating the reconstruction task. DSSIM is invariant to local

and global scaling and tinting. The DSSIM implementation

uses a 11 × 11 Gaussian filter with α = 1.5, k1 = 0.01 and

k2 = 0.03, as set in [25]. DSSIM is computed on each RGB

channel of the input image and relighted image individually.

It is not sensitive to global and local scaling or colour shifts.

RMSE-s is introduced to solve the lighting scale problem

(SH is affected by scale factors, such as the exposure time,

except the lighting conditions). The RMSE-s solves for the

single scale-factor applied to the predicted image,

RMSE-s(IL, ÎL) =
1

w ∗ h min
α

∥

∥

∥
IL − αÎL

∥

∥

∥

2

(9)

where α is a scalar. This metric solves for a single global

scaling rather than a per-channel scaling. It is still sensitive

to erroneous tints in the relighting image.

4.2. Ablation Study

To understand the influence of the individual parts of the

model, we remove them one at a time and evaluate the per-

c
Figure 7. The first row shows the input image, the ground truth of

the relighting image and the target SH. (1-9) show the relighted

images of our full model, w/o Lroc, w/o Lsh, w/o Ax, w/o Ay ,

w/o Axy , w/o Az , w/o Ldis and w/o skip connection models, re-

spectively.

Figure 8. Reconstruction result of the reconstruction model build

up two auto-encoder networks on the synthetic face, CelebA and

Youtube 8M.

formance of the ablated model in Table 1 and Fig. 7. Model

(1) shows the performance of the full model with the recon-

struction loss, SH loss and discriminator loss pre-trained on

Youtube 8M and fine-tuning trained on the CelebA dataset.

Model (2) does not use the reconstruction loss. Thus, it

fails to light the image and some detail information is lost.
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Figure 9. The estimated Spherical harmonic lighting of our

method. The first column is the source images. The second col-

umn is the ground truth Spherical harmonic lighting. The third

column is the estimated Spherical harmonic lighting of the source

image.

The performance is lower than the full model. Model (3)

does not use our proposed Spherical Harmonic Loss. In

this case, the illumination embedding cannot be controlled

in a semantically meaningful way. This also harms perfor-

mance significantly. For further analysis, the performance

SH loss, models (4-7) is shown. In rows (4-7), one of Ax,

Ay , Axy and Az the SH loss is removed. Model (4) does

not have a horizontal flip augmentation. Thus, the horizon-

tal illumination can not be estimated and controlled and the

performance decreases. Model (5) does not have a vertical

flip, with a similar effect to Model (4). Model (6) shows

the effect of Axy is not significant, since only two channels

are affected by Axy in Eq. (6). Model (7) does not use the

illumination inversion images, Az . The performance is in-

fluenced by over-exposure and under-exposure. Model (8)

does not use Discriminator loss. We’ve found that the dis-

criminator loss improves the visual quality of the relighted

images and makes the relighted images sharp. Model (9)

does not use the skip connection. Due to the limited space

of embedding, some detail information lost. The accuracy

drops significantly. As a result, we conclude that our full

model can achieve a good balance between the accuracy and

quality of the generated images.

4.3. Reconstruction and Lighting Estimation

In Fig. 8, we show the reconstruction results based on

the model shown in Fig. 3. It is tested on synthetic face,

CelebA and Youtube 8M, including generated face and real

face. The reconstructed images contain fine details of the

nose, eyes, mouth, even in the presence of extreme facial

expression. The SH of the input image and estimated SH are

shown in In Fig. 9. Our method can estimate the SH light

from a single background image. For further evaluating our

proposed method, the images of Youtube 8M dataset are

applied as the reference background images to relight face.

The relighted images with the new background are shown

in Fig. 10. In our future work, we would test our proposed

method on the asymmetric geometry and faces with strong

shadows.

Figure 10. Visual lighting transformation results of the proposed

method. The first column is the source images, the second column

is the reference background images and the third column is the

relighted images.

4.4. Comparison with Stateoftheart Methods

In this section, we compare our method with [20, 15, 29]

on the synthetic face and CelebA dataset. Since the illumi-

nation information in unknown in CelebA dataset, image-

based relighting is used to evaluate our proposed method

and baseline methods in Fig. 11. More specifically, tar-

get lighting used for relighting is extracted from a reference

image. The proposed method, SFSNet [20] and DPR [29]

can extract the lighting of the reference image with its own

lighting estimation method. Li et al. [15] is a state-of-the-

art portrait style transfer method, which takes the source

image and reference image as input and relights the source

image as the illumination of the reference image. Since Li

et al. and DPR are applied on the L channel of the input

images, the input images are transferred from RGB image

to Lab image. Our method and SFSNet are applied on the

RGB channels of the input images. We notice that the edge

of the relighted images of the proposed method is underex-

posed and some detail of face is lost. This is probably due to

the gap between the training dataset and testing dataset. The

results show that our proposed method can generate high-

quality light estimations (1024 × 1024). Compared with

DPR and SFSNet, our proposed method successfully over-

comes the over-exposed images and the over-lighting prob-

lem of the nose and eyes. Li et al. do not generate images

under the correct lighting. Since Li et al. uses reference im-

ages as input, the high-resolution images would improve the

relighting performance while the low-resolution images can

not estimate the reference lighting accurately. Since the illu-
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Figure 11. Visual lighting transformation results of the proposed method and state-of-the-art methods on CelebA dataset. The first three

columns are the source image, the reference image and the estimated SH. Columns (4-7) shows the performance of the our proposed

method, DPR [29], SFSNet [20] and Li et al. [15], respectively.

Figure 12. Visual lighting transformation results of the proposed method and state-of-the-art methods on synthetic face. The first three

columns are the source image, the target SH and the target (ground truth) image. Columns (4-7) shows the performance of the our proposed

method, DPR [29], SFSNet [20] and Li et al. [15], respectively.

mination information is known in synthetic faces, relighting

based on the SH is applied to evaluate our proposed method

and baseline methods by comparing with the ground truth

images in Fig. 12. Our method can provide more face de-

tails and does not exhibit the over-lighting problem. In the

second column, the skin colour of our relighted image is

closer to the target image, since our proposed method input

is a colour image, while the input to DPR is the L channel

of the source image only. For further testing our proposed

method, the RMSE-s between the target image and the re-

lighted images of the different methods are calculated. The

RMSE-s of ours (8.4 ×10−3) is only 79% of the RMSE-s

of DPR (10.6×10−3), SFSNet (10.8×10−3) and Li et al.

(11.3×10−3). We also evaluate our proposed method on

Multi-PIE shown in our Github page, due to the limitation

of pages.

5. Conclusion

We have proposed an automatic, unsupervised relighting

algorithm trained on a large collection of unlabelled data.

The relighting algorithm is build up by a Siamese Auto-

encoder, where the source image information is split into

content embedding and illumination embedding. Several

auto-encoder networks are trained on the reconstruction,

comparison and illumination estimation tasks. To provide

target lighting, a Spherical Harmonic loss is first proposed,

and four kinds of augmentation images are applied. We

show that our training procedure, which combines recon-

struction, Spherical Harmonic loss and adversarial losses,

can estimate the illumination of the reference image and

relight the source image. In addition, as our approach is

trained on a large number of unlabelled data, it is less prone

to exhibit common lighting artifacts and be applied on real

as well as synthetic faces.
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