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Abstract

In recent years, deep natural image matting has been

rapidly evolved by extracting high-level contextual features

into the model. However, most current methods still have

difficulties with handling tiny details, like hairs or furs. In

this paper, we argue that recovering these microscopic de-

tails relies on low-level but high-definition texture features.

However, these features are downsampled in a very early

stage in current encoder-decoder-based models, resulting

in the loss of microscopic details. To address this issue, we

design a deep image matting model to enhance fine-grained

details. Our model consists of two parallel paths: a con-

ventional encoder-decoder Semantic Path and an indepen-

dent downsampling-free Textural Compensate Path (TCP).

The TCP is proposed to extract fine-grained details such as

lines and edges in the original image size, which greatly

enhances the fineness of prediction. Meanwhile, to lever-

age the benefits of high-level context, we propose a feature

fusion unit(FFU) to fuse multi-scale features from the se-

mantic path and inject them into the TCP. In addition, we

have observed that poorly annotated trimaps severely affect

the performance of the model. Thus we further propose a

novel term in loss function and a trimap generation method

to improve our model’s robustness to the trimaps. The ex-

periments show that our method outperforms previous start-

of-the-art methods on the Composition-1k dataset.

1. Introduction

Image matting is one of the most important tasks in com-

puter vision community and is gaining increasing popularity

in recent years. It has been widely applied in many areas,

including film production, promotion image composition,

and etc. The goal of image matting is to estimate the trans-

parency, or alpha matte, of the target foreground object at

each pixel. Mathematically speaking, a digital image Ip can

be formulated as a linear combination of the foreground and

the background by the equation:

∗Corresponding author.

Ip = αpFp + (1− αp)Bp, αp ∈ [0, 1] (1)

where Fp and Bp denote the foreground and the background

color at pixel p respectively, and αp is the desired alpha

matte. Image matting problem is ill-posed because it tar-

gets to solve seven values (αp, Fp and Bp) with only three

known values (Ip), as seen in Eq. (1). For most of the ex-

isting approaches [27, 20, 14], a trimap that indicates the

“pure” foreground, “pure” background, and “unknown” re-

gion is provided with the image. It is used to reduce the size

of the solution space and to indicate that which object is the

target-of-interest if there are more than one foreground ob-

jects in the image.

There are many challenges in image matting. Firstly,

in natural images, due to the light environment and trans-

parency of the foreground, the color distribution of fore-

ground and background can be very similar. This causes

many traditional color-based methods suffering from severe

inductive bias. Secondly, some images contain microscopic

and detailed structures such as hairs or furs, which raises a

challenge to the fine-grained performance of algorithms. It

is easy to see that the first challenge is more related to high-

level contextual features, and the second one is more related

to low-level textural features that contains more spatial de-

tails. In recent years, deep learning based methods have

shown their potential in image matting area. These methods

not only make use of the color information of the original

image but also utilize the context information inside the im-

ages, which is beneficial to the first challenge. However, for

the second challenge, which requires the model to have the

ability to detect very fine details, there is still much room

for development.

Currently, most existing deep image matting works, e.g.,

[27, 14, 2], adopt the encoder-decoder architecture. How-

ever, in such architectures, the input image is downsam-

pled in the very early stage of the network, resulting in loss

of spatial details. To restore the spatial details, some ap-

proaches first use the encoder-decoder architecture to gen-

erate a coarse output, and then refines this coarse output

using postprocessing or refinement modules such as extra
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convolution layers [27] and LSTM units [2] in a cascading

manner. However, it is very hard to reconstruct the already

lost spatial details. In this work, we propose to learn high-

definition features to enhance fine-grained details for image

matting. Moreover, since the aim of image matting is to

regress the transparency value for each pixel, like its def-

inition, this task is still widely considered as a low-level

or mid-level computer vision task. Thus, it relies more on

lower-level features than most computer vision tasks. Based

on this observation, we propose that low-level but high-

resolution structural features contains essential details (e.g.,

corners, edges, lines, etc.) and should be utilized for infer-

ring matte estimation.

From this point of view, in this paper we propose a

new deep image matting method that learns high-definition

structural features and high-level contextual features in par-

allel. The network consists of two paths, namely Semantic

Path (SP) and Textural Compensate Path (TCP). First of all,

like many previous deep image matting methods, we uti-

lizes an encoder-decoder backbone to infer rich high-level

contextual information for rough matting, which is the se-

mantic path in this work. Besides the semantic path, we ar-

gue that low-level but high-resolution features are desired

for inferring fine-grained matte estimation. To this end,

we introduce an independent downsampling-free module as

textural compensate path to learn the low-level but high-

definition features, which greatly enhances the fine-grained

details of prediction.

Moreover, among many test cases, especially cases with

mesh-like structure such as laces and embroidery, we have

observed that due to inaccurately labeled trimap, most of

deep image matting algorithms cannot detect some “abso-

lute” background well. To address this issue, we design a

novel term in loss function and a novel trimap generation

method, which enhances the performance of the network in

detecting “absolute” backgrounds without causing overuse

of video memory resource.

The major contribution of our paper can be summarized

as follows:

1. We present a novel perspective of image matting prob-

lem that explicitly divides this task into two parts: a

semantic part to extract high-level semantic clues and

a textural compensate part to provide fine-grained de-

tails and low-level texture clues;

2. Based on this point we propose a new deep image

matting method that explicitly defines two paths: an

encoder-decoder semantic path and downsampling-

free textural compensate path;

3. We further propose a novel loss term that helps the net-

work alleviate the inaccurately trimap issue and better

detect those “pure” background parts;

4. The proposed approach achieves new state-of-the-art

performance on the challenging Adobe Composition-

1k testing dataset.

2. Related Works

Early image matting methods can mainly be divided

into two categories: sampling-based approaches and

propagation-based methods. Sampling-based methods,

such as [4, 12, 11, 25, 26], sample and model the colors

distribution inside known foreground and the background

region, and the alpha value of the unknown pixel is esti-

mated using the sampled model by some defined metrics.

Recently, Tang et al. proposed a learning-based sampling

approach, which introduced a neural network prior to opac-

ity estimation and achieved remarkable performance [24].

In propagation methods, starts from the given foreground

or background region, alpha values are propagated in the

unknown region to background or foreground. One popular

propagation-based matting method is presented in [17].

Most current works in image matting are fully deep

learning based algorithms. In order to adopt more lavish

features instead of considering matting as a color problem

that relies solely on color information, Xu et al. first pro-

posed Adobe Deep Image Matting dataset, a large-scale

synthetic dataset for deep learning-based matting along

with a 2-step end-to-end image matting neural network [27].

The network achieved state-of-the-art performance on both

synthetic images and natural images at that time. Huang

et al. further designed an encoder-decoder architecture that

adopts a more complex structure like residual units [23].

Hou et al. designed a context-aware network composed of

two encoder-decoder structures, which can recover the al-

pha map and foreground image at the same time [14]. Cai

et al. presented a deep disentangled approach that splits

the image matting task into two parts: trimap adaption and

alpha estimation, which is a classification task and regres-

sion task, respectively [2]. Zhang et al. proposed a digital

matting framework in a late fusion manner that can predict

the alpha matte without the input trimap [28]. Lu et al. ar-

gue that the parameter indexes in the unpooling layers in

the upsampling decoder can influence the matting perfor-

mance and introduced a learnable plug-in structure, namely

IndexNet, to improve the pooling and upsampling process

[20]. Tang et al. combined deep neural network and tradi-

tional sampling-based approaches together by using CNNs

before opacity estimation [24]. Chen et al. also use a deep

neural network to solve a similar problem, namely environ-

ment matting [29].

Different from previous approaches, in this work, we ar-

gue that the low-level but high-resolution features are de-

sired for inferring fine-grained matte estimation. We present

a novel perspective of image matting problem that explicitly

divides this task into two parts: a semantic part to extract
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high-level contextual clues and a textural part to provide

fine-grained details and low-level spatial clues. The new

proposed textural part greatly enhances the fineness of al-

pha matte prediction.

3. Methodology

Our network consists of two parts, namely Textural

Compensate Path and Semantic Path. As shown in Fig. 1,

the proposed network takes a 6-channel maps as the input,

formed by the concatenation of the 3-channel RGB image

and the corresponding one-hot encoded 3-channel trimap.

The input is sent to the semantic path and textural compen-

sate path simultaneously, where each path generates a one-

channel output. Then, the tanh value of the sum of the two

outputs is the output of the network, i.e., the predicted alpha

matte.

This section will introduce the purpose and structure of

each part of the network.

3.1. Semantic Path

The semantic path is used to extract high-level contextual

representations. The encoder-decoder architecture has been

employed in many deep image matting works [27, 14, 20, 2]

and other computer vision tasks like semantic segmenta-

tion [1, 18, 6, 7, 8] and image generation [15]. Although

the size of the training dataset for image matting has been

significantly increased [27] recently, most popular datasets

are synthetic, and the total number of data available is still

limited compared to other computer vision tasks. Therefore,

our semantic path chooses U-Net [22], which is an encoder-

decoder architecture optimized for the small size of training

data.

The input of the semantic path is directly taken from the

network input. We slightly modify the U-Net architecture

by placing two convolution layers in each shortcut to pro-

vide an adaption from low-level features to high-level fea-

tures. Concretely speaking, the encoder part is built on the

basis of the ResNet-34 [13], and the decoder part is built as

a mirror structure of the encoder. The semantic path itself is

able to work independently, and can also produce remark-

able results, so that we also use the stand-alone semantic

path as our baseline model.

3.2. Textural Compensate Path (TCP)

As discussed in Section 1, low-level but high-resolution

features that carry textural details are vital to image matting

task, but these features are severe damaged due to the early

downsampling in many existing encoder-decoder based ap-

proaches. To qualitatively demonstrate this issue, we ran-

domly select a testing image from the Adobe Deep Image

Matting Dataset [27], as shown in Fig. 2. In the figure, we

first downsample the images by 4 times and then recover the

image to the original size using nearest interpolation, which

is the same with our baseline model do, to demonstrate the

detail loss in encoder-decoder models. It can be seen that

a considerable amount of details and fine-grained structures

are lost after the reconstruction. Although some previous

encoder-decoder based works have explored to restore the

lost details by postprocessing or refinement modules such

as extra convolution layers [27] and LSTM units [2] in a

cascading manner, it is very hard to reconstruct the already

lost fine-grained details. In addition, some simply stacked

strutures will bring extra difficulties on the training of the

network, e.g. making the network cannot be trained end-to-

end.

To address this issue, we propose to keep as many spatial

details as possible for image matting. To this end, we design

a dedicated downsampling-free Textural Compensate Path

(TCP) for extracting pixel-to-pixel high-definition informa-

tion from features whose size is as the same as the origi-

nal image, aiming to compensate for the lost pixel-to-pixel

feature caused by the early downsampling in the encoder-

decoder architecture in the Semantic Path. Besides the high-

resolution, another benefit is that the Textural Compensate

Path learns low-level structural features, which provide low-

level texture clues (e.g., edges, corners, etc) and help to es-

timate alpha matte in microscopic details. The architecture

of this path is show in Fig. 3, it consists of 3 parts: the first

part is the spatial feature extraction unit, which is formed

by one convolution layer followed by two residue blocks,

aiming to extract rich pixel-level structural features. This

module is downsampling-free, resulting in the output size

to be H ×W . At the same time, intermediate features from

the Semantic Path are taken and resized to H×W , the same

as the output of the spatial feature extraction unit. Next,

these two sets of features are sent to the Feature Fusion Unit

(FFU). This step is to provide multi-scale and pretrain infor-

mation in addition to the pixel-level spatial features. Then,

fused features are sent to the feature refinement unit that

consists 2 convolution layers, generating the output of TCP.

Feature Fusion Unit (FFU). Though the primary pur-

pose of the Textural Compensate Path is to extract pixel-

level structural features. However, multi-scale and pretrain

features are also beneficial for generating robust output. In

order to introduce multi-scale features while keeping the pa-

rameter size controllable, we borrow the intermediate fea-

tures from the semantic path as multi-scale features. At the

same time, to ensure that the Textural Compensate Path fo-

cuses on low-level features, features are taken from very

shallow layer: the second layer in the U-Net semantic path,

for fusion. The features are firstly resized to the original

image size using nearest interpolation. Since the feature

representation in two paths can also be very different, sim-

ply adding the features from different path can be harmful

to training. Thus, as shown in Fig. 3 we multiply the weight
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Figure 1. An overview of the proposed network architecture. Our framework consists of two pathes: Semantic Path (SP) and Textural

Compensate Path (TCP). The outputs of two parts are added together to form the final predicted alpha matte.

Figure 2. Qualitative example for downsampling an image and re-

construct it again using upsampling methods. Fine-grained spatial

details are severely lost in such process even the downsampling

rate is small (4×). Accurate alpha matting will be almost im-

possible to generate using the reconstructed image. Top: image

overview; Bottom: a cropped patch of the original image and 4×
downsampled then 4× upsampled image.

from semantic path by a learnable weight wc to control its

influence.

3.3. Improving Model’s Robustness to Trimaps

We have also observed another challenging part caused

by the noisy trimap. As mentioned in Section 1, Trimap is

usually supposed to be provided by users. However, the cur-

rently most widely-used dataset Adobe Deep Image Mat-

ting Dataset does not provide trimaps for training and re-

quires models to generate trimap by themselves. In practice,

the user-provided trimaps might be very coarse because an-

notating trimap is a very bothering process, especially for

unprofessional users. We have observed that for a num-

ber of images in the Composition-1k testing set, nearly the

whole trimaps are annotated as “unknown region”, which

means that the trimap is very coarse and almost cannot pro-

vide any useful interaction information. In contrast, for

training set, model-generated trimaps are usually based on

the ground-truth alpha map, resulting in very high quality.

This causes the inconsistencies between training and test-

ing. Here we propose two methods to give the model more

robustness on handling different kinds of trimaps.

Trimap generation. Currently, most approaches generate

the training trimap according to the corresponding ground-

truth alpha map. Concretely speaking, the trimap of point p

is first decided by its corresponding alpha value αp:

trimapp =











Foreground αp = 1

Unknown 0 < αp < 1

Background αp = 0

(2)

Then the unknown region is enlarged by eroding foreground

and background regions. However, the dilemma is that a
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Figure 3. The detailed structure of our Textural Compensate Path (TCP). The original image is first sent to Spatial Feature Extraction Unit.

Then the output is sent to the Feature Fusion Unit (FFU) together with resized intermediate features from Semantic Path. Next, the Feature

Refinement Unit futher extract the useful information of the output of FFU, and generate the output of the TCP. The “×n” means that the

part inside the box is duplicated for n times.

Figure 4. Examples of our trimap generation method. From left

to right, top: image, alpha matte, trimap generated by Eq. 2; bot-

tom: generated trimap for semantic path, two trimaps generated

for textural compensate path.

large erosion kernel will be harmful to the network to learn

context information; yet a small kernel will make the incon-

sistencies between training and testing trimaps larger. Thus,

we take one step further. In our network, when training,

trimaps are first generated by the process mentioned above

with a relatively small erosion kernel size (randomly cho-

sen between 1 × 1 and 30 × 30) to keep more contextual

information. This trimap is used as a part of the input of the

semantic path. Next, we apply extra n steps of random mor-

phological operations to the unknown region of the seman-

tic path trimap to simulate the randomicity in noisy trimaps

provided by users. Each step is randomly chosen from a

p-iteration erosion and a p-iteration dilation, where n and p

are random numbers between 0 and 3. For each step, the

kernel size is randomly chosen from 1 × 1 to 30 × 30 for

dilation and from 1 × 1 to 10 × 10 for erosion. This nois-

ier trimap is used as the input of the textural compensate

path. Then when inferring, the user-provided trimap is used

for both paths. Some examples are shown in Fig. 4. This

process endows our model more robustness when handling

trimaps in different qualities.

Loss Function The main loss function used in our net-

work is the alpha-prediction loss introduced by Xu et al.

[27]. The loss is simply the absolute difference between the

ground truth and predicted alpha map in each pixel. The

loss value across the image is formulated as:

La =
1

NU

∑

p∈U

√

(αp − α̂p)2 + ǫ2 (3)

where U is the “unknown” region annotated in the trimap,

NU is the number of pixels inside region U . αp and α̂p

is the ground-truth and predicted alpha value of pixel p. ǫ

is a small positive number to guarantee the full expression

differentiable.

One thing to notice here is that this alpha-prediction loss

only considers the unknown region in the trimap and ig-

nores the contents in the absolute foreground and back-

ground regions. This characteristic makes the network eas-

ier to train because it reduces the solution space by filling

the absolute background and foreground with value 0 or

389



(a) Ground-Truth alpha matte

(b) Predicted alpha matte

Figure 5. Alpha matte predicted by our baseline model and

ground-truth. Some areas that supposed to be “Absolute” back-

grounds are contrastly predicted as “Absolute” foregrounds. The

trimap of the whole region is annotated as “unknown”.

1 according to the trimap after prediction. However, this

brings a significant drawback: lots of contextual informa-

tion are lost, causing the network hard to handle the “pure”

background inside the unknown region, as shown in Fig. 5.

Some works address this issue by deriving a more accurate

trimap [2]. However, this will bring extra complexities to

the network design. Instead, we propose another auxiliary

loss, Background Enhancement Loss. This loss term rec-

ognizes the “pure” background inside the unknown region,

and make use of these areas to give contextual guidance for

the network. Our Background Enhancement Loss is defined

as follows:

Lbg =
1

Nbg

∑

p∈Rbg

√

(αp − α̂p)2 + ǫ2

Rbg = {αp < θ, ∀p ∈ U}

(4)

where Rbg is the “absolute” background part inside the un-

known region; Nbg is the number of pixels of Rbg , and θ

is the background threshold to control the size of Rbg . The

full loss of the network is then a weighted sum of the two

loss terms: L = w1 · La + w2 · Lbg . In our settings, we

fix w1 = 0.9, w2 = 0.1 and θ = 0.1. Note that though

currently the dataset we used is synthetic, only images and

trimaps that are already synthesized are used in training.

This makes our network available to work on both synthetic

and real-world datasets.

Method SAD MSE Grad Conn

Baseline 42.1 0.011 20.4 40.7

Baseline+TCP 38.8 0.011 19.2 36.4

Baseline+TCP+IMRP 37.6 0.009 18.3 35.4

Table 1. Quantitative comparisons to the baseline on Composition-

1k dataset. “IMRP” represents Improving Model’s Robustness to

Trimaps in Section 3.3

Methods SAD MSE Grad Conn

Global Matting [12] 133.6 0.068 97.6 133.3

Closed-Form [17] 168.1 0.091 126.9 167.9

KNN Matting [3] 175.4 0.103 124.1 176.4

Deep Matting [27] 50.4 0.014 31.0 50.8

AdaMatting [2] 41.7 0.010 16.8 -

IndexNet [20] 45.8 0.013 25.9 43.7

SampleNet [24] 40.4 0.010 - -

Ours 37.6 0.009 18.3 35.4

Table 2. Testing results on the Composition-1k Dataset. The best

results in each metric is emphasized in bold. For all metrics,

smaller is better.

4. Experiments

4.1. Implementation Details

The encoder of our model is first initialized with a pre-

trained ResNet-32 model on ImageNet [5] and then trained

end-to-end on the Adobe Deep Image Matting Dataset. The

network is trained for 300,000 steps in total including 7500

warmup steps [10]. The Adam optimizer [16] with β1 = 0.5
and β2 = 0.999 is used for training the network. Inspired by

[19], we apply the cosine annealing training strategy with

the initial learning rate λ = 4× 10−4. Our model is trained

on four 8GiB Nvidia GTX1080s with the batch size of 24

in total. All convolution layers in the textural compensate

path except the output layer, are followed with a ReLU acti-

vation function and a synced batch normalization. Full size

images in Adobe Deep Image Matting Dataset can be in-

ferred on one single Nvidia GTX1080 card.

We test the performance of our model on the

Composition-1k dataset [27].The Composition-1k testing

set has 50 unique foreground objects. 1000 testing samples

is sampled by using 20 randomly chosen backgrounds from

Pascal VOC [9] for each foreground. We use the original

code provided in [27] for both generating test samples and

evaluating performance.

4.2. Ablation Study

In this section we report the ablation study results to

show the effectiveness of all parts of our network. The re-
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Figure 6. Example results of our method on image with low-quality trimap. The trimap contains no “foreground” region. From left to right:

original image, trimap, ground-truth, IndexNet [20], our baseline, our proposed.

sults are listed in Table 1. Besides the popular SAD (Sum

of Absolute Distance) and MSE (Mean Squared Error) met-

rics, we also use another two metrics: Gradient and Connec-

tivity [21] proposed by Rhemann et al. to evaluate the per-

ceptually matting performance. It can be seen from the Ta-

ble 1 that the performance of the model with Textural Com-

pensate Path is significantly improved in terms of all met-

rics compared to the baseline model. This proves that the

TCP successfully extracted useful features that are lost in

the baseline encoder-decoder model. Moreover, our trimap

generation methods and the novel Background Enhance-

ment Loss further improved the overall results. Besides,

to show the effectiveness of our trimap generation method

more clearly, we give an intuitionistic demonstration of a

test case whose trimap is poorly annotated, as shown in

Fig. 6. In this case, the whole foreground region in the

given trimap are annotated with “unknown”, which means

the trimap do not provide any information on the “absolute

foregrounds”. Our model successfully detected foreground

regions without the direct guidance of the trimap.

4.3. Experiment Results

In this section we compare the performance of our model

with other state-of-the-art works. We compare our result

with 3 non-deep-learning methods: Global Matting [12],

Closed-Form Matting [17] and KNN Matting [3] as well as

4 deep learning based methods: Deep Image Matting [27],

AdaMatting [2], IndexNet [20] and SampleNet [24].

The results are reported in Table 2. It can also be seen

that our model outperforms other state-of-the-art models in

terms of SAD, MSE and Conn metrics [21]. Example re-

sults are shown in Fig. 7. In the figure, it can be seen that

our model preserved significantly more fine-grained textu-

ral details while keeping the “absolute” background cleaner

than our baseline and other methods.

5. Conclusions

In this work, we propose a novel perspective of deep

image matting that low-level but high-resolution features

are heavily relied for recovering fine-grained details, but

the downsampling operations in the very early stages of

encoder-decoder architectures are harmful to these fea-

tures. To prove this, we propose a deep image matting

framework with two independent paths, including a dedi-

cated downsampling-free Textural Compensate Path and an

encoder-decoder based Semantic Path. The Textural Com-

pensate Path provides more clues about fine-grained de-

tails and low-level texture features while the Semantic Path

provides more high-level contextual information. Further

more, we propose a novel Background Enhancement Loss

and a trimap generation method to endow the model with

more robustness to trimaps with various characteristics. The

experimental test shows that our proposed framework sig-

nificantly enhances the performance compared to the base-

line, and our model outperforms other advanced start-of-

the-art models in terms of SAD, MSE and Conn metrics on

the Composition-1k dataset.
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