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Figure 1: (a) Input is an image. (b) Lens distortion corrected, and (c) Scene planes rectified. The method is fully automatic.

Abstract

This paper proposes minimal solvers that use combi-

nations of imaged translational symmetries and parallel

scene lines to jointly estimate lens undistortion with either

affine rectification or focal length and absolute orientation.

We use constraints provided by orthogonal scene planes

to recover the focal length. We show that solvers using

feature combinations can recover more accurate calibra-

tions than solvers using only one feature type on scenes

that have a balance of lines and texture. We also show

that the proposed solvers are complementary and can be

used together in a RANSAC-based estimator to improve

auto-calibration accuracy. State-of-the-art performance is

demonstrated on a standard dataset of lens-distorted ur-

ban images. The code is available at https://github.

com/ylochman/single-view-autocalib.

1. Introduction

Imaged scene plane rectification and single-view camera

auto-calibration are closely related computer-vision tasks.

Both tasks are ill-posed single-view geometry estimation

problems that are further complicated if the input image is

distorted [1, 23]. In the presence of imaging noise, good

feature coverage over large parts of the image is necessary

to observe the joint effects of perspective warp and lens

distortion. State-of-the-art techniques for auto-calibrating

or rectifying lens-distorted images use either circular arcs

fitted to edge detections or covariant region detections as

inputs [1, 33, 22, 21]. Complementary features can pro-

vide measurements on image regions that lack either tex-

ture or lines. Each feature type—circular arc or covari-

ant region—has distinct advantages. Circular arcs provide

accurate measurements of imaged scene lines. However,

it’s difficult to group arcs that are the images of paral-

lel scene lines by appearance. While regions do not give

the accuracy of circular arcs, discriminative embeddings

exist that can be used to cluster imaged coplanar repeats

[2, 3, 9, 15]. Furthermore, multiple point correspondences

can be extracted from one region correspondence. We

propose solvers that combine the best of both worlds and

demonstrate that solvers using complementary feature types

can extend high-accuracy rectification and auto-calibration

to challenging highly-distorted images with diverse scene

content (see Fig. 1).

A solver whose inputs are sets of different geomet-

ric primitives is called a hybrid solver or mixed solver

[5]. Minimal solvers constructed from points and lines

were used in pose estimation [24, 14] and combinations

of points and planes were explored in SLAM [27]. The

proposed hybrid solvers are the first affine-rectifying and

auto-calibrating solvers to admit complementary geomet-

ric primitives—combinations of point correspondences pro-

vided by a coplanar repeated region and circular arcs fitted

to the linked edge extractions of imaged parallel lines. In

addition, we propose two solvers whose inputs are circular

arcs in a novel configuration, which provides an additional

feature sampling flexibility.

The affine-rectifying solvers can be adapted for metric

rectification and auto-calibration, which are the tasks evalu-

ated in this paper. The relative angle between the preimage

of input features is assumed known, which provides suffi-

cient constraints for auto-calibration. Right angles are cho-
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Coplanar Configuration Manhattan Configuration
Inputs

Outputs
Inputs

Outputs
PC CA PC CA

5CA [33] 0 3+2 {1 VP, λ}! 1 VP ! f 0 3+1+1 {1 VP, λ}! {2 VP, f}

7CA [1] 0 4+3 2 VP ! {λ, c}! f - - -

4PC (EVP) [19] 2+2 0 {2 VP, λ, l}! f - - -

4PC+2CA 2+2 2 {3 VP, λ, l}! f 3 1+1 {1 VP, λ}! {2 VP, f}

2PC+4CA 2 2+2 {3 VP, λ, l}! f 2 2+2 {3 VP, λ, f}

5CA* 0 3+2 {1 VP, λ}! 1 VP ! f 0 3+1+1 {1 VP, λ}! {2 VP, f}

6CA 0 2+2+2 {3 VP, λ, l}! f 0 2+2+2 {3 VP, λ, f}

Table 1: Inputs and outputs of the state-of-the-art vs. the proposed solvers (shaded in grey). The inputs are counted by the

number of corresponded features required for each estimated vanishing point. Denotations are PC for point correspondence,

CA for circular arcs, VP for vanishing point, λ for the division model parameter, c for the distortion center, l for the vanishing

line, and f for the focal length. A sets of outputs is jointly recovered by the solver, and right arrows indicate a chain of

estimates. The output at each step depends on the configuration of VPs: either the VPs are coplanar, or they are oriented as a

Manhattan frame in the scene.

sen because they are the most common in man-made scenes.

Three mutually orthogonal directions in the scene are used

to define a linear basis called the Manhattan frame. The

presence of a Manhattan frame in the scene is assumed by

the auto-calibrating solvers.

All proposed solvers are derived from common con-

straints and are related by a unified derivation. The deriva-

tion uses elementary techniques from projective geometry,

which makes solver generation straightforward. The solvers

are fast, stable and robust, which makes them good candi-

dates to be used in RANSAC-based estimators [7].

The solvers are also used as an ensemble in a RANSAC

estimator that samples combinations of arcs and point cor-

respondences according to the required input of the invoked

solver. Solvers are invoked with different frequencies de-

pending on the content of the scene. The use of multiple

solvers that have different input types is similar to the hy-

brid RANSAC approach introduced in [5, 13]. We show

that sampling combinations of regions and arcs improves

auto-calibration accuracy over using either only regions or

arcs.

2. Related Work

The state of the art has extended scene-plane rectification

and single-view auto-calibration to lens-distorted images.

The common choice of parameterization for lens undistor-

tion is the division model. It is preferred in ill-posed settings

since it has only one parameter and can effectively model a

wide range of radial lens undistortions [8].

Antunes et al. [1] and Wildenauer et al. [33] are two

methods that recover vanishing points from distorted im-

ages by using the constraint that parallel scene lines are

imaged as circles intersecting at their distorted vanishing

point under the division model [4, 8, 26, 31]. The same

constraint is used for the proposed solvers. Sets of circular

arcs whose preimages are parallel lines are used to induce

constraints on the division-model parameter and vanishing

point. Vanishing points are recovered, and auto-calibration

is estimated by assuming that vanishing points correspond

to imaged Manhattan frame directions. Antunes et al. [1] re-

quire a set of four circular arcs for the first vanishing point

and three for the second, while Wildenauer et al. [33] re-

quires three for the first and two for the second or three for

the first, one for the second, and one for the third.

Pritts et al. [19, 20, 22, 21] proposed a suite of solvers

that can jointly undistort and affinely-rectify from the im-

aged translation directions of coplanar repeated scene tex-

ture. The solvers directly estimate the vanishing line of the

scene plane but also return the vanishing directions of the

imaged translations that are consistent with the recovered

vanishing line. The solver variant of [19, 21] requiring two

correspondences of covariant regions can be directly used

for auto-calibration, if the recovered vanishing points are

imaged Manhattan frame directions.

See Table 1 for a comparison of the proposed solvers to

the state of the art. The solver notation refers the input con-

figurations, e.g., 4PC means four point correspondences,

while 6CA means six circular arcs are required.

3. Preliminaries

We assume the division model [8] of lens undistortion

g(x̃,λ) =
�

x̃, ỹ, 1 + λr̃2
�>

, (1)

where λ encodes the magnitude and type (by sign) of ra-

dial distortion, x̃ =
�

x̃, ỹ, 1
�>

is a homogeneous image

point with radius r̃2 = x̃2 + ỹ2, and the origin is at the

distortion center. We assume an orthogonal raster with unit

aspect ratio and fix the distortion center and the principal
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(a) Coplanar Configuration (b) Manhattan Configuration

Figure 2: Input configurations of the proposed solvers. The

vanishing points are constructed from either circular arcs or

point correspondences. Inputs are color coded with respect

to their corresponding vanishing points that are (a) coplanar

(see Sec. 4.1) or (b) mutually orthogonal (see Sec. 4.2).

point at the image center. In this setting the camera’s in-

trinsic matrix is K = diag(f, f, 1), where f is the focal

length in pixels. The projection of a homogeneous scene

point X =
�

X, Y, Z, 1
�>

onto x̃ is as following

γg(x̃,λ) = K

⇥

R | t
⇤

X, (2)

where R is a 3⇥ 3 rotation matrix, t is a translation vector.

4. Minimal Solvers

All the proposed solvers use the invariant that imaged

parallel scene plane lines intersect at the vanishing point of

their imaged translation direction. A vanishing point u(λ)
is constructed as the meet of the undistorted images m(λ)
and m

0(λ) of parallel lines,

u(λ) = m(λ)⇥m
0(λ). (3)

The undistorted images of parallel lines can be constructed

from distorted measurements under (1). There are two dif-

ferent parametric forms of m(λ) and m
0(λ) depending on

the type of measurements used: either circular arcs or point

correspondences.

The relative orientation of the detected vanishing points

in not known apriori. The solvers handle two cases: either

the vanishing points are coplanar, or they are the image of a

Manhattan frame (see Fig. 2).

4.1. Coplanar Vanishing Points

The joint rectifying solvers share a common derivation

based on the invariant that vanishing points are incident

to the scene plane’s vanishing line. The vanishing point-

vanishing line incidence equation is u
>
l = 0. There are

four unknowns to be recovered, namely l =
�

l1, l2, l3
�>

and the division model parameter λ. The vanishing line l is

homogeneous, so it has only two degrees of freedom. Thus,

three scalar constraint equations of the form ui(λ)
>
l = 0

are needed, where {ui }
3
i=1 are three distinct vanishing

points constructed as in (3). With a matrix U(λ) formed

(a) VP Labeling (b) VL Labeling

Figure 3: (a) The distorted vanishing points of the imaged

Manhattan frame are colored RGB. Circular arcs and region

correspondences are colored w.r.t. their assigned VPs. (b)

Imaged vanishing lines (VL) are colored CMY Covariant

regions are colored w.r.t. their assigned VLs.

by the vanishing points {ui}, the point-line incidence con-

straints can be concisely written as a homogeneous matrix-

vector equation,

U(λ)l =

2

6

4

(m1(λ)⇥m
0

1(λ))
>

(m2(λ)⇥m
0

2(λ))
>

(m3(λ)⇥m
0

3(λ))
>

3

7

5
l = 0. (4)

The system of equations (4) has a non-trivial solution l only

if U(λ) is singular, which generates the scalar constraint

equation det U(λ) = 0 on λ. The parameterization for lines

mi(λ) and m
0

i(λ) used by all solver variants results in a

quartic equation in λ, which can be solved in closed form.

After recovering λ, the null space of U is computed, which

gives the vanishing line l. The system of equations in (4) is

agnostic to the construction method for the ui, which gives

a unified way to generate rectifying solvers that use differ-

ent feature types.

Auto-Calibration Upgrade The Manhattan frame direc-

tions defined by the standard basis vectors { ei }
3
i=1 are im-

aged to the distorted vanishing points { ũi }
3
i=1 by (2)

ui = γg(ũi,λ) = KRei, i 2 { 1 . . . 3 }. (5)

See an example of detected imaged Manhattan frame in

Fig. 3. Two finite vanishing points u1 =
�

ux1, uy1, uw1

�>
,

u2 =
�

ux2, uy2, uw2

�>
that are undistorted images of two

Manhattan frame directions are sufficient to recover the fo-

cal length [32]

f =

r

ux1ux2 + uy1uy2

�uw1uw2
. (6)

The relative orientation of the camera with respect to the

Manhattan frame is then computed as following

R =

"

K
�1

u1

kK�1u1k

K
�1

u2

kK�1u2k

K
>(u1 ⇥ u2)

kK>(u1 ⇥ u2)k

#

. (7)

A conjugate rotation KR
>
K
�1 is used to metrically rectify

the Manhattan planes (see Figs. 1, 4, and 7).
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Input Undistorted First Plane Rectified Second Plane Rectified Third Plane Rectified

Figure 4: Auto-calibration results on wide-angle imagery. The scene planes oriented with the Manhattan frame are rectified.

The minimal sample —green circles and blue regions—of the returned solution is depicted on the input image.

4.2. Orthogonal Vanishing Points

The joint auto-calibrating solvers use an invariant that

the preimages of the vanishing points are mutually orthogo-

nal scene directions. The orthogonality constraint is written

as u>i ωuj = 0, where ω = diag(1/f2, 1/f2, 1) is the image

of an absolute conic. The functional forms of the vanishing

points u(λ) are constructed by (3). There are two unknowns

to be recovered — λ and f . Thus, two scalar constraint

equations of the form u
>

i ωuj = 0 are needed, which means

that three vanishing points {ui }
3
i=1 are needed. Rewriting

the constraint equations in the matrix form gives

2

4

u1(λ)� u2(λ)
u1(λ)� u3(λ)
u2(λ)� u3(λ)

3

5

0

@

1
1
f2

1

A = 0, (8)

where � is the entrywise product. By substituting f from

the first row into the second and the third rows we obtain

the system of equations only in λ. The coordinates of a

vanishing point constructed from circular arcs or from point

correspondences are either linear or quadratic in λ, which

gives two polynomial equations in λ of order six. We solve

the resulting system for λ, recover f from the linear system

(8), and compute R by (7). Similarly to (4), the system of

equations in (8) is agnostic to the construction method for

the ui.

4.3. Coincident Vanishing Points

The system of equations (4) is trivially singular if two of

the vanishing points from {ui }
3
i=1 are coincident. This oc-

curs if two vanishing points are constructed by drawing two

pairs of imaged lines that are mutually parallel in the scene.

Similarly, the orthogonality constraint equations (8) are in-

consistent if two of the vanishing points from {ui }
3
i=1 are

coincident. Vanishing point coincidence can be used to

place a constraint on the division model parameter

ui(λ)⇥ uj(λ) = 0. (9)

The coordinates of a vanishing point are either linear or

quadratic in λ, which gives two cubic equations and one

quadratic equation in λ in the system of (9). After solving

for λ we back-substitute and recover l from (4), if the van-

ishing points are collinear, or solve for f and R using (8), if

they are the image of a Manhattan frame.

4.4. Solver Generation

The solvers can be generated by constructing vanishing

points {ui} from circular arcs or vanishing points {uj}
from imaged translated point correspondences, where i 6= j
and i, j 2 1 . . . 3. We construct three solver variants: (i) the

hybrid solver 4PC+2CA, that uses a pair of circular arcs

and two pairs of imaged translated point correspondences,

(ii) the hybrid solver 2PC+4CA admitting two pairs of cir-

cular arcs and a pair of imaged translated point correspon-
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(a) Numerical Stability
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5CA [33] 4PC (EVP) [19] 4PC+2CA 2PC+4CA 5CA* 6CA

Figure 5: Numerical Stability and Noise Sensitivity of Solvers. (a) Histogram of the log10 warp error for 1000 synthetic

scenes with noiseless features. (b-c) RMS warp error ∆RMS after 25 iterations of a simple RANSAC on 1000 synthetic

scenes with increasing levels of noise σ added to the point correspondences and/or circular arcs. Results are shown for (b)

the region based solver 4PC (EVP) [19, 21] and proposed hybrid solvers 4PC+2CA and 2PC+4CA; (c) the arc-based solvers

5CA [33], and proposed 5CA* and 6CA.

dences, (iii) and the solver 6CA that uses three pairs of cir-

cular arcs. It is possible to construct a solver from only

point correspondences. If coplanar vanishing points are as-

sumed, then the solver is the same as the 6PC (EVL) solver

proposed in [21]. However, covariant region detections typ-

ically used to extract point correspondences are unlikely to

provide orthogonal structures [21]. The case where two

constructed vanishing points are coincident (see (9)) is han-

dled by the fourth proposed 5CA* solver. Three parallel

scene lines are sufficient to provide constraints on two van-

ishing points that coincide. Thus the 5CA* requires a triple

and a pair of circular arcs. Inputs of the solvers are listed in

Table 1 and input configurations are shown in Fig. 2.

Fig. 4 shows the qualitative performance of the solvers

on challenging images from the Internet. See also Sec. D in

Supplemental for more results.

4.5. Line Construction

The solvers use point correspondences and sets of circu-

lar arcs, where a set of arcs tentatively consists of the images

of parallel scene lines under the division model. Point cor-

respondences consist of points extracted from the image of

translational symmetries. The preimages of the point cor-

respondences must have the same translation direction and

distance of translation in the scene plane. To reduce the ex-

pected number of RANSAC samples, we extract point cor-

respondences from covariant region correspondences.

Imaged Translated Coplanar Repeats The correspond-

ing points of two coplanar translated repeated regions [25]

form parallel scene lines. Thus we can use the point cor-

respondences extracted from distorted images of coplanar

repeated texture [19, 22] to construct the undistorted im-

ages of parallel lines. Let x̃ and x̃
0 be two distorted points

in correspondence. Then a line is constructed as a join of

their undistorted points,

t(λ) = g(x̃,λ)⇥ g(x̃0,λ). (10)

Using (10), parallel lines ti(λ) and t
0

i(λ) can be constructed

from points extracted from imaged translational symmetries

to provide the constraints required by (4) to recover λ and l.

The coordinates of vanishing point ui(λ) = ti(λ) ⇥ t
0

i(λ)
are either linear or quadratic in λ.

Imaged Scene Lines Lines are distorted to circles under

the division model [4, 8, 26, 31], and the normals of a circle

are mapped to the normals of the circle’s undistorted image

by the transposed inverse of the Jacobian of the division

model. This gives the following form of the undistorted line

s(λ)

s(λ) = λ

0

@

ñxx̃
2 + 2ñyx̃ỹ � ñxỹ

2

ñy ỹ
2 + 2ñxx̃ỹ � ñyx̃

2

0

1

A+

0

@

ñx

ñy

�ñ
>
x̃

1

A , (11)

where ñ =
�

ñx, ñy

�>
is a normal to a circle at the point

x̃ =
�

x̃, ỹ
�>

[33]. Thus circles that are distorted images of

parallel scene lines can generate pairs of undistorted lines

si(λ) and s
0

i(λ) that provide the constraints required by

(4) to recover λ and l. The coordinates of vanishing point

ui(λ) = si(λ)⇥ s
0

i(λ) are either linear or quadratic in λ.

5. Features

Contours are constructed by linking sub-pixel Canny

edge detections with morphological operations. The con-

tours are decimated by the Ramer—Douglas—Peucker al-

gorithm [6]. The maximum likelihood fit of a circle to the

contour is estimated by nonlinear least squares, which is ini-

tialized by Taubin’s bias-renormalization fit for conics [29].

Point correspondences are extracted from a covariant re-

gion correspondence [17, 22]. In particular, we use the
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Solver 4PC (EVP) 5CA 4PC+2CA 2PC+4CA 5CA* 6CA Hybrid Arcs All 6CA & 2PC+4CA

% of Top-1 1.5% 10.2% 15.5% 21.7% 25.4% 25.7% - - - -

Median λ Rel. Err. 14.91 2.27 2.81 2.38 2.24 2.29 2.33 2.27 2.14 2.16

Median f Rel. Err. 25.93 1.42 1.82 1.48 1.42 1.4 1.48 1.39 1.38 1.39

Median ∆
RMS 186.51 14.02 15.86 14.9 14.12 13.73 14.77 14.29 13.91 13.35

Table 2: Performance on AIT Dataset. The Top-1 solution is the calibration that has the lowest RMS warp error among the

solvers. The proposed solvers are in grey. Solver combinations used in Hybrid RANSAC are in dark grey. “Hybrid” uses

only the hybrid solvers i.e. 4PC+2CA and 2PC+4CA, “Arcs” uses only the arc solvers i.e. 5CA, 5CA*, and 6CA, and “All”

uses every solver. The AIT dataset was run ten times for a total of 1020 calibrations for each solver or solver combination.

Maximally-Stable Extremal Region detector with the local

affine-frame upgrade [30, 11, 12, 16], which provides three

point correspondences. Affine-covariant regions are tenta-

tively labeled as coplanar repeated texture if the regions are

similar in appearance. Region appearance is embedded by

the RootSIFT descriptor and clustered into tentative repeats

similar to what was done in [21].

5.1. Rejecting Minimal Input Configurations

The configuration of the input sample is apriori un-

known. The possible configurations are illustrated in Fig. 2.

Implausible solutions from the invoked solvers that cannot

handle the sampled input configuration are rejected by test-

ing their geometric consistency with the minimal samples.

Note that the minimal solution will exactly satisfy the alge-

braic constraints of the solver with the minimal sample as

input. However, we test against additional properties of the

minimal sample that are unused by the solver. Verification

against the minimal sample incurs a negligible and justifi-

able computation cost since it can prevent unneeded con-

sensus set evaluation by RANSAC, which is an expensive

computation [10]. The rejection test is outlined for circular

arcs and coplanar repeats in the next two paragraphs.

Consistency of Circular Arcs The minimal solution and

the midpoint where the contour normal is measured are used

to construct a circle through the distorted image of the van-

ishing point of the direction of the scene line that generates

the contour. This construction is similar to a line through

the vanishing point construction in the undistorted space

proposed by Tardif in [28]. The contour midpoint is undis-

torted to x̄, and its join with the vanishing point m = x̄⇥u

is distorted to the circle m̃ = (a, b, c), where (a, b) is the

circle center and c is the radius.

The consistency measure is the mean squared orthogonal

distance between points of the contour { x̃k }
K
k=1 and the

circle m̃ through its midpoint

J =
1

K

K
X

k=1

(
p

(x̃k � a)2 + (ỹk � b)2 � c)2. (12)

The construction is shown in Fig. A.1 of the Supplemental.

Consistency of Coplanar Repeats An affine-covariant

region correspondence that is extracted from a translational

symmetry can provide point correspondences that are trans-

lated in four directions in the scene [21]. See also Fig. A.2

of the Supplemental. The undistorted correspondences in

each direction are used to estimate a vanishing point inci-

dent to the vanishing line recovered by the minimal solver.

This is computed by solving the constrained least squares

problem

min
u

kMuk
2
2 subject to Cu = d, (13)

where C =



l
>

0 0 1

�

,d =

✓

0
1

◆

, M =
⇥

t1 · · · tk
⇤>

, and

t1,...,tk are constructed by (10). The point correspondences

are used to construct circles in the same way as contours,

and the consistencies are measured by (12). Point corre-

spondences used to compute the minimal solution will have

zero error, but the minimal solution can be cross-validated

by points along the unused translation directions provided

by the region correspondence.

6. Experiments

The proposed solvers are quantitatively evaluated against

the state-of-the-art solvers listed in Table 1 on synthetic and

real data. Synthetic Manhattan scenes are used to assess the

stabilities and noise sensitivities of the solvers. The stan-

dard AIT dataset of barrel-distorted images introduced by

Wildenauer et al. in [33] is used to assess the solver accu-

racy for the auto-calibration task on challenging real im-

ages.

6.1. Warp Error

The warp error introduced in [23] is adapted to jointly

assess the accuracy of the estimated calibrations. Ground

truth absolute orientation of the camera with respect to the

Manhattan frame is usually unknown for real images, thus

the performance is assessed based on the intrinsics. The im-

age is tessellated by an N ⇥N grid of points { x̃i }
N2

i=1. The

tessellation ensures that the error is uniformly sampled. The

image points x̃i are back-projected to rays using ground-

truth. The rays are projected by the estimated intrinsics and
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(a) Minimal
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(b) Locally Optimized
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Figure 6: Cumulative distributions of the warp error on AIT dataset [33]. Results are shown for (a) the minimal i.e. initial

solutions and (b) locally optimized i.e. final solutions. See also the distributions of the relative error of the division model

parameter λ and the focal length f in Fig. C.1 of Supplemental.

the reprojection error between the projected rays and tessel-

lation is used to define the warp error

∆i = d(x̃i, g
d(K̂K�1g(x̃i,λ), λ̂)), (14)

where d(·, ·) is the Euclidean distance and gd is the distor-

tion transformation. The root mean square warp error for

{ x̃i }
N2

i=1 is reported and denoted as ∆
RMS. The warp er-

ror provides a geometric measure of calibration accuracy;

however, an error in focal length can be compensated by an

error in undistortion and vice-versa. Example warp errors

are illustrated in Sec. B of the Supplemental.

6.2. Numerical Stability

The numerical stability measures the RMS warp error

∆
RMS of the solvers on noiseless features. Configurations

of coplanar mutually orthogonal translated regions and par-

allel lines that are consistent with each solver’s required in-

puts are generated for realistic scenes and camera configu-

rations. Fig. 5a reports the distribution of log10 ∆
RMS on

1000 synthetic scenes. All of the proposed solvers demon-

strate good numerical stability, which is consistent with the

simple structure of the solvers. The arc-based solver 5CA of

[33] has similar structure to the proposed solvers and nearly

as stable. The 4PC (EVP) solver of [21] fails frequently. It

is generated with the Gröbner bases method, which solves a

complicated system of polynomial equations.

6.3. Noise Sensitivity

The proposed and state-of-the-art solvers are evaluated

for their robustness to sensor noise (see Figs. 5c and

5b). White noise generated from N (02,σ
2
I2) is added

to the imaged translated symmetries and parallel lines.

Solver sensitivity is measured at noise levels of σ 2
{ 0.1, 0.5, 1, 2 }. The solvers are used in a basic RANSAC

estimator that minimizes the RMS warp error ∆RMS over

25 minimal samples for 1000 scenes at each noise level. As

expected, the solvers admitting arcs give superior perfor-

mance since the entire contour is used to regress the arc.

The proposed 6CA is the most robust, while the proposed

5CA* and state-of-the-art 5CA solver [33] are both com-

petitive. The proposed 4PC+2CA is significantly more ro-

bust than the state-of-the-art 4PC (EVP) solver [19], and

the proposed 2PC+4CA is competitive with the arc-based

solvers.

6.4. Real Data

The solvers are evaluated on the AIT dataset introduced

in [33], which consists of 102 barrel-distorted images taken

by Canon EOS 500D camera with a Walimex Pro 8mm 170�

HFOV fisheye lens. An offline calibration is provided with

the dataset and used as the ground truth. The image cen-

ter, distortion center, and principal point are assumed to be

the same, and lens undistortion is modeled with the division

model. The calibrated focal length is 1126.3 pixels and di-

vision model parameter is �2.4951 ⇥ 10�7 pixels for the

AIT images at a resolution of 3000⇥ 2000.

The number of iterations was set to 1000 for the region

based 4PC (EVP) solver, and 500 for the other solvers. The

reprojection threshold is 5.05 pixels for points of covariant

regions and 1.26 pixels for contour points. The consistency

of the features with an auto-calibration used for evaluation

is similar to (12), and the models with maximal consensus

sets are locally optimized by a method similar to [18].

Auto-calibrations on the AIT dataset are accumulated

over ten runs. Table 2 reports the percentage of Top-1 solu-

tions achieved by each solver, where a Top-1 solution is the

auto-calibration that has the minimal RMS warp error for

an image. We also report the median relative focal length

and lens undistortion errors and the median RMS warp er-

ror. The best performing arc-based solver is the proposed

6CA with twice as many Top-1 solutions and a 2% reduc-
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Input 4PC (EVP) [19] 5CA [33] 4PC+2CA 2PC+4CA 5CA* 6CA

Figure 7: Example scenes for which either the arc-based or hybrid solvers have an advantage. The input image is on the

left, and the dominant plane metrically-rectified for each solver is on the right. RMS warp errors are reported in the top right

corners. Best results are in green.

tion in the warp error compared to the state-of-the-art 5CA

solver. The 2PC+4CA hybrid solver is the best perform-

ing for solvers using points, and it significantly outperforms

the state-of-the-art 4PC (EVP). As shown by Table 2, sub-

sets of the AIT dataset are best solved by particular solvers,

which suggests that using combinations of solvers is neces-

sary to recover the best calibration across the dataset. Hy-

brid RANSAC was used to sample arcs and points accord-

ing to the input types listed in Table 1 [5]. The solver ad-

mitting the sampled input is invoked to hypothesize an auto-

calibration. We used the following solvers together: (i) all

hybrid solvers, (ii) all arc-based solvers (iii) all solvers, and

(iv) only the 6CA and 2PC+4CA solvers. The configura-

tion using all solvers gave the most accurate estimates of

focal length and division model parameter, while the com-

bination of 6CA and 2PC+4CA gave the lowest warp error.

Fig. 6 reports the cumulative distributions of errors re-

ported in Table 2 for the individual solvers and for the

combination of all solvers, as well as using the 6CA and

2PC+4CA in combination. The proposed 5CA*, 6CA,

2PC+4CA and the state-of-the-art 5CA of [33] give com-

parably good performance. The region-based 4PC (EVP)

solver of [19] performs poorly, due to noisy covariant re-

gion detections. The solver combinations are better than all

individual results. Notably, the performance of the 6CA and

2PC+4CA combination matches the use of all solvers and

exceeds the performance of the individual solvers. This sug-

gests that the dataset is saturated if only arc-based solvers

are used, and the inclusion of a point-based solver is nec-

essary to improve calibration accuracy. Inclusion of more

solvers gives only a small increase in accuracy across the

dataset, which may show up in Top-1 solutions, but is not

impactful enough to justify adding extra solvers. Choosing

the two best individual arc and hybrid solvers—6CA and

2PC+4CA—works well.

Fig. 7 shows diverse scene content for which either the

arc-based or hybrid solvers have an advantage. Note that the

scenes where the 4PC+2CA and 2PC+4CA hybrid solvers

perform best have high-contrast lines in only one direction,

which suggests that translational symmetries are needed to

constrain the second Manhattan frame direction.

7. Conclusions

We propose rectifying and calibrating minimal solvers

that use combinations of circular arcs and point correspon-

dences, which are images of parallel lines and translational

symmetries in the scene, respectively. The proposed solvers

extend accurate rectification and auto-calibration to dis-

torted images of scenes that lack either coplanar texture or

parallel scene lines. No individual solver emerged as a clear

winner for the task of auto-calibration on the standard AIT

dataset. Instead, we found that the solvers are complemen-

tary. Each solver works best on scenes with content that

reflect its particular input configuration. There is a benefit

to including the constraints from imaged translational sym-

metries even though the point correspondences extracted

from covariant regions are more noisy than the circular arcs.

However, experiments suggest that a significant improve-

ment could be achieved by refining translational symme-

tries detected from covariant region correspondences. We

achieve state-of-the-art performance on the AIT dataset by

using multiple solvers in a RANSAC variant that samples

different combinations of point correspondences and arcs

as input for each of the solvers.
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[10] Jiřı́ Matas and Ondrej Chum. Randomized ransac with se-

quential probability ratio test. In Tenth IEEE International

Conference on Computer Vision (ICCV’05) Volume 1, vol-

ume 2, pages 1727–1732 Vol. 2, 2005.
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