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Abstract

Motion capture (mocap) and time-of-flight based sens-

ing of human actions are becoming increasingly popular

modalities to perform robust activity analysis. Applica-

tions range from action recognition to quantifying move-

ment quality for health applications. While marker-less mo-

tion capture has made great progress, in critical applica-

tions such as healthcare, marker-based systems, especially

active markers, are still considered gold-standard. How-

ever, there are several practical challenges in both modali-

ties such as visibility, tracking errors, and simply the need

to keep marker setup convenient wherein movements are

recorded with a reduced marker-set. This implies that cer-

tain joint locations will not even be marked-up, making

downstream analysis of full body movement challenging. To

address this gap, we first pose the problem of reconstruct-

ing the unmarked joint data as an ill-posed linear inverse

problem. We recover missing joints for a given action by

projecting it onto the manifold of human actions, this is

achieved by optimizing the latent space representation of a

deep autoencoder. Experiments on both mocap and Kinect

datasets clearly demonstrate that the proposed method per-

forms very well in recovering semantics of the actions and

dynamics of missing joints. We will release all the code and

models publicly.

1. Introduction

With the proliferation of low-cost sensing devices, the

use of action and gesture recognition has created new ca-

pabilities in health tracking, home-based rehabilitation etc.

In many of these applications, the essential task at hand is

inferring high-level semantic quantities such as the health

∗PT partly supported by NSF grant 1452163

of the patient, quality of movement, progression of therapy

protocols and intended gestures. In these situations, marker-

based motion capture, marker-less devices such as Kinect,

and more recently wearables like IMU motion sensors, are

considered critical to obtain accurate health tracking infor-

mation. Marker-based mocap systems, especially with ac-

tive marker sets, which include uniquely colored LEDs per

joint, are more accurate. However, they still suffer from

self-occlusion and portability problems due to the need to

carefully markup many joints. Also, reducing occlusions

would require an expensive setup with a large number of

cameras which is not desirable. Devices such as the Kinect

have not fully realized their potential in this application

space due to similar reasons such as occlusion and track-

ing errors. These errors tend to have a large impact on as-

sessment of human movement quality in health applications

[39]. Further, specific conditions such as postural deformi-

ties may result failure in tracking [29] and in the posture not

even being detected [1]. Thus, there is a growing need to

use reduced marker-sets, while maintaining the accuracy of

tracking afforded by marker-based motion capture systems.

In this paper, we present a framing of this problem from

the perspective of inverse problems, deep priors and dynam-

ical systems theory. Considering human movement as a dy-

namical process, estimating its dynamical system is non-

trivial and would require us to completely observe all sys-

tem variables (all joints), due to large degrees of freedom

and complex interactions between the joints. In applications

requiring inference of higher-level features from movement,

the classical approach has been to seek certain invariant rep-

resentations of the dynamical process that can still be deter-

mined from partial observations [40], for e.g. estimating

the dynamics of human movement from a few skeletal joint

sequences [4, 36]. However, such topological features are

not predictive enough for complex datasets. More recently,

with the availability of large datasets and neural networks,
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we are able to implicitly learn the dynamics much better,

leading to significantly higher performance on challenging

benchmarks [35, 46, 42, 33] but they tend to be very sen-

sitive to changes in measurement settings during train and

test times.

Contributions: In this paper, we focus on the problem of

reconstructing trajectories of unmarked/unobserved mark-

ers for 3D human action sequences at test-time. That is,

given a human skeletal action sequence with a fraction of

joints unmarked throughout the action, can we accurately

reconstruct the dynamics of those unmarked joints and use

the resulting completed action for action recognition with-

out any modifications to the classification architectures? We

study this problem when a significant subset of the joints is

missing at both training as well as test times, with different

rates of dropped joints. In practice, this can occur due to

factors such as occlusions, faulty sensors, non-standard pos-

tures etc. In this setting, conventional deep learning frame-

works fail due to the unaccounted distribution shift between

training and testing data sets, and because when the joints

are missing, a lot of information regarding the dynamics is

lost. To this end,

1. We show that it is possible to effectively recover seman-

tics and dynamics of human actions while having access

to as few as 50% of the joints during both training and

testing.

2. We pose the problem as an ill-posed linear inversion in

the space of actions, and solve it with the help of a deep

prior i.e., in the form of a pretrained temporal convo-

lutional decoder. The solution to the inverse problem is

obtained by approximately projecting the incomplete ac-

tion onto the range of the decoder, as shown in Figure 1.

3. The proposed method is a test-time approach that can

easily handle changes in the configuration and number

of missing joints at test time, when compared to the

training set. We demonstrate its effectiveness using real

world mocap and Kinect datasets. We validate that the

reconstructions recover information about the semantics

and dynamics of the actions and show that in most cases

the recovered actions perform within 5% of fully visi-

ble ground truth data in terms of action recognition on

a pre-trained classifier, and yields a very low 3D joint

reconstruction error of about 3cm.

2. Related Work

2.1. 3D human action acquisition and completion

The two most common methods of capturing 3D human

skeletal actions are using motion capture (mocap) systems,

and using depth-sensing cameras like Kinect and RealSense

and then using a algorithm to estimate the joint locations.

However, both these methods suffer from drawbacks. Not

all joints may be recorded mainly due to occlusions and

non-standard body types/poses. Moreover, in order to re-

duce the cost of mocap systems, we would like to employ

fewer cameras which leads to the possibility of joints being

unseen throughout the actions, which we refer to as unob-

served joints. When the final application is action classi-

fication, it may be possible to classify directly with fewer

joint trajectories, but this suffers from two disadvantages:

(a) it is impractical to train a classifier for every combina-

tion of unobserved joints (b) the recognition performance

is very poor when many joints are missing such as those

considered in this paper. As we will show, we can get ex-

cellent performance when we first reconstruct the complete

set of joint trajectories by exploiting information about the

nature of human actions from a training dataset, and then

performing the classification using a single pretrained clas-

sifier. Earlier works have considered the problem of hu-

man action completion in different ways – human action

prediction where given a few frames of a human action se-

quence, the future frames can be predicted employing ma-

chine learning algorithms [3, 9, 12], human motion synthe-

sis [8] and editing [14], and pose estimation [37]. There

are also traditional methods for human action completion

using k-nearest neighbors from the training set [2], and ma-

trix factorization methods [10]. More recently, Yang et al.

[43] and [41] propose using low-rank and sparsity priors

to model spatial-temporal correlation for 3D human mo-

tion recovery problems. Here, the authors enforce the low-

rankness of a matrix whose columns are the frames of a test

sequence. However, as is in this paper, if the joint trajecto-

ries are missing throughout the action, the matrix is already

low-rank and the optimization cannot yield the solution. In

this paper, we consider the problem of predicting complete

joint trajectories given a subset of joints of every frame in

the sequence and propose a deep learning-based solution.

Kucherenko et al. [17] propose feed-forward pass through

trained a LSTM autoencoder as a way of reconstructing hu-

man actions. We use a baseline similar to this method in our

experiments.

2.2. Deep priors for inverse problems

Several important problems in imaging can be cast as

ill-posed linear inverse problems. The forward operation is

given by y = Ax, where y ∈ R
m,x ∈ R

n,m < n. The

goal in inverse imaging is to reconstruct x from y which is

generally ill-posed by exploiting structure of the desired x

known apriori. In recent years, the prior knowledge comes

in the form of a deep generative model (autoencoders, vari-

ational autoencoder, generative adversarial networks etc.).

The process of reconstruction reduces to the problem of

finding the closest point on the range space of the gener-

ative model x̂ such that Ax̂ ≈ y. This idea also has the-

oretical guarantees as shown by Bora et al. [5] and Shah
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Figure 1: Block diagram illustrating the process of reconstructing dynamics of unobserved joints by projecting onto the manifold of

human actions obtained as the range space of a generative model. For a test sequence with several missing joints, we get an initial estimate

of the reconstruction using its encoder representation z
(0). Then, we optimize over the encoder representation space in order to minimize

the distance between the output of the decoder and the given test sequence, as shown. This procedure can correct for the mismatch between

training and test sets and greatly improves the final reconstructed sequence.

and Hegde [31]. Bora et al. [6] showed that, in some cases,

the generative model can also be trained using the noisy

images. Recent papers apply this idea for time-series im-

putation [22, 44]. However, these techniques are shown to

work for simpler time-series classification problems using

measurements where some information is available from all

dimensions. Also related are the works of Litany et al. [20]

which uses graph convolutional deep priors for 3D shape

completion, and that of Holden et al. [13] who propose a de-

noising neural network for frame-wise denoising of motion

capture data. In contrast to these works, we consider human

action sequences in which certain joints are completely un-

observed i.e., many dimensions of the time-series are miss-

ing. Thus, interpolation techniques in the time domain are

not applicable. Also, current methods for skeleton comple-

tion is not usually performed at the level of actions (such

as Kinect), and do not take long-range dynamics into ac-

count, which is the goal of this paper and necessary for

human action recognition. We use a baseline very similar

to [13] which shows the importance of modeling actions

rather than individual frames. Also, unlike previous litera-

ture, we consider the effect of recovering trajectories of un-

observed joints on the action recognition performance on

a pre-trained classifier, and importantly, the setting where

the training set for the autoencoder itself consists of actions

with unobserved joints.

2.3. Dynamical systems approach to deal with miss­
ing dimensions

In dynamical systems theory, the notion of reconstruct-

ing high-dimensional state-spaces from low-dimensional

observations has been well-studied. For classical state-

estimation approaches to apply, one often needs to

make simplifying assumptions for state-dynamics, such as

Markovian and linear dynamics. Such assumptions are not

always reflective of the complexity of the task at hand – re-

constructing human action sequences. Another approach is

to avoid such assumptions, but use methods from non-linear

dynamics [21] to estimate surrogate state-spaces. From

standard methods in non-linear dynamics, these surrogate

state-spaces are only topologically equivalent to the true

state-spaces, and do not have enough predictive information

for high-level inference [36].

3. Reconstructing dynamics of unmarked

joints as an ill-posed linear inverse problem

Recovering the dynamics of unobserved joints is an ill-

posed inverse problem since we only have access to partial

information of the activity. As we will show, this can be

considered analogous to the inverse problems in imaging

such as super-resolution, image inpainting or compressive

sensing. However, unlike inverse imaging problems, it is

not clear what kinds of priors work for human actions. We

argue that a deep prior learned from a dataset of human ac-

tions acts as a good approximation to the space of all pos-

sible dynamical systems for human actions. As a result, we

are able to implicitly constrain the dynamics of the recov-

ered actions by restricting the solution to lie on the action

manifold. We formalize these ideas next.

Let the total number of joints per frame be denoted by

J and the number of frames per action sequence by N .

Each joint is described by its 3D co-ordinates in space.

Thus, by vectorizing, each skeleton can be represented by

3J−dimensional vector and by stacking the N frames in

columns, we represent the human action as a matrix X of

size 3J × N . Let the number of joints observed be K,

so the number of unobserved joints is J − K. The mea-
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surement operator A then is a sub-sampling operator which

drops 3(J−K) rows of X to give us the observed action Y .

As J−K joints are unobserved, there are 3(J−K) rows of

Y which are unknown and we replace them with 0 before

further processing. Given Y , our eventual goal is to clas-

sify the action. As an intermediate step, we first reconstruct

X̂ from Y which is the main focus of this paper. Clearly,

this is an ill-posed linear inverse problem. The advantage

of viewing it as such helps us adapt algorithms designed for

inverse imaging problems such as image inpainting [27],

super-resolution [7, 19] and compressive imaging [18]. In

this paper, we adapt the most recent approaches based on

generative priors [5, 6, 34]. We note that the advantage of

these methods over other methods in inverse imaging such

as purely data-driven approaches [7, 18], and unrolled iter-

ative methods [30, 25, 45] is that there is no requirement of

paired Y and X for training. Thus, once we have a deep

prior for human action sequences, the problem of recon-

structing dynamics of unobserved joints can be solved using

an optimization problem such that the output of the gener-

ative model X̂ is closest (in some predefined sense) to the

test sequence under consideration Y .

4. Learning the manifold of 3D human actions

In order to approximate space of human actions, we em-

ploy a temporal convolutional autoencoder architecture to

construct the generative model of human action sequences.

We choose an autoencoder over generative adversarial net-

works [11] or variational autoencoders [16] because – (1)

autoencoders are much easier to train compared to the other

frameworks and (2) the purpose of using the generative

model in this paper is to perform reconstruction of test se-

quences rather than sampling new actions, which, as we will

show, can be readily performed using an autoencoder. We

can also employ more complex deep priors which can better

model spatial relationships using graphs as recently shown

by Wang et al. [38], however this is not the focus of this

paper. Note that the term generative model is more broadly

used here. Even though we cannot easily sample new ac-

tions using an autoencoder, once an initial valid latent space

is given, we can move in the latent space in order to refine

the output, based on some metric. We discuss this aspect in

detail in Section 5.1.

4.1. Autoencoder architecture

As the generative model, we employ a temporal convolu-

tional autoencoder. Both the encoder (E) and decoder (D)

consists of a series of 1D convolutional layers operating in

the temporal domain with ReLU non-linearity. After ev-

ery convolution, we use average pooling to reduce the num-

ber of frames by half. We then use a fully-connected (FC)

layer which produces the encoded/latent representation of

the action, denoted by z. The decoder reverses these oper-

ations with a series of transposed convolutional layers. The

networks are trained using full/complete actions with ac-

cess to information of all joint trajectories. The network

is trained to minimize the Euclidean loss between the in-

put sequence and the output of the decoder: L(X, X̂) =
∑N

n=1

∑J

j=1

∥

∥

∥
Xn,j − X̂n,j

∥

∥

∥

2

2
, where Xn,j refers to the jth

3D joint location in the nth frame of the sequence. Other

training details are provided in the supplementary material.

We note that we can add an additional adversarial loss term

to the above loss function in order to make the actions more

realistic [27]. However, in our experiments, we did not

observe any significant improvements using this additional

loss term.

4.2. Training the autoencoder with partially ob­
served joint sequences

The autoencoders in Sections 4.1 are trained using com-

plete actions with all joint sequences fully observed, X .

However, complete actions may not be available at the train-

ing stage. An important contribution of this paper is show-

ing that we can construct the manifold of human actions

by training solely on action sequences with only a subset

of the joints observed, Y . We later show that this pro-

tocol leads to superior reconstruction compared to train-

ing with full actions. To this end, we modify the loss

function as follows. The forward operator A is the sam-

pling operator which has the effect of dropping a subset of

the joints. Using the knowledge of A, we use a masked

loss function between the ground-truth measured sequence

Y = AX and the reconstructed sequence X̂: L(Y, X̂) =
∑N

n=1

∑J

j=1

∥

∥

∥
Yn,j −AX̂n,j

∥

∥

∥

2

2
. The network architectures

and the training protocols are identical to those trained us-

ing fully observed action sequences.

5. Reconstruction via approximate projection

onto the action manifold

Once we have the deep prior model, in our case the de-

coder stage of the autoencoder, the training process is com-

plete. The next step is to use the prior model in order to

reconstruct the trajectories of unobserved joints given an

incomplete action sequence. To this end, we propose to

project the incomplete action to the range space of the gen-

erator, which ideally is the same as the manifold of com-

plete human action sequences.

Initialization: Feed-forward pass through the trained

autoencoder: As a baseline method, we can simply feed

the incomplete action sequence through the autoencoder

and use the output of the decoder as the reconstruction. This

is expected to fail, because of the distribution shift between
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training and test set, especially in the case of the autoen-

coder trained with complete actions. However, in the case of

the autoencoder trained on subsets of joint trajectories, even

this simple method can provide a reasonable reconstructed

sequence. This is used as initialization for the optimization

algorithm below, z(0).

5.1. Optimizing the latent representation

We can further improve the reconstruction quality from

above by directly optimizing the encoded/latent representa-

tion, z, such that the Euclidean distance between the recon-

structed action sequence and the input incomplete sequence.

This method is inspired by Bora et al. [5] where the authors

propose this method for inverse problems in imaging. The

optimization problem is given by

z
∗ = argmin

z

‖Y −AD(z)‖
2
2 , X̂ = D(z∗). (1)

This ameliorates the train/test distribution-shift issue and

allows a better exploration of the output space of the de-

coder. We solve this optimization problem using gradient

descent-type method. As the optimization problem is non-

convex, the optimization returns a z
∗ which is guaranteed

to be only locally optimal. Empirically, we find that the so-

lutions obtained using this procedure provide high quality

reconstructions.

6. Measuring reconstruction performance

Our main goal in this paper is to recover trajectories

of unobserved joints from incomplete human actions. We

choose the following three methods for measuring the qual-

ity of reconstructed actions.

6.1. Reconstruction error

We measure the root-mean-square error (RMSE) be-

tween the reconstructed actions and the ground-truth ac-

tions. For a reconstructed sequence X̂ and the corre-

sponding ground-truth sequence X , RMSE is given by

RMSE(X, X̂) =

√

1
NJ

∑N

n=1

∑J

j=1

∥

∥

∥
Xn,j − X̂n,j

∥

∥

∥

2

2
.

6.2. Classification performance

An important reason for reconstructing action sequences

is to employ predefined classification pipelines without any

modification. Therefore, we train a single action classifier

on sequences with information of all joints, feed the recon-

structed sequences as test inputs, and use the classification

performance as a metric for quality of reconstructed actions.

Classifier architecture: In all our experiments, we em-

ploy a simple popular architecture for 3D human ac-

tion recognition based on temporal convolutional networks

(TCNs) [15]. The classifer consists of a series of tempo-

ral convolutional blocks. Each block consists of layers of

1D convolutional layers operating in the temporal domain

with ReLU non-linearity. We employ batch normalization

for each layer. Residual connections are employed from one

block to the next. After every block, average pooling is em-

ployed to reduce the number of frames by half. Finally a

fully-connected (FC) layer with softmax is used to map to

a probability distribution over the classes. As there may be

a domain shift between the original actions and the recon-

structed actions from the autoencoder, we train a single clas-

sifier on complete action sequences. Other training details

are provided in the supplementary material. We also visual-

ize the effectiveness of the reconstructions for downstream

applications, like classification, with t-SNE embeddings in

2D [23]. We use the feature maps of the penultimate layer

of the trained classifier and are shown in the supplement.

7. Experimental results

In the experiments section, we simulate mocap and

Kinect with unmarked/unobserved joints using benchmark

datasets which have fully observed joints.

7.1. Baselines
Dictionary learning and sparse coding [24, 28]: This is

a commonly used algorithm for solving ill-posed problems.

We first construct a dictionary based on all the action se-

quences in the training set. Dictionary learning is perform-

ing by using matrix factorization with sparsity and norm

constraints on the matrix factors. Given a test sequence,

in which joint trajectories are missing, we express the test

sequence as a sparse linear combination of the atoms in

the dictionary. The linear combination is used as the com-

pleted sequence. The sparse code is found using orthogonal

matching pursuit. Please see the supplement for details.

Frame-wise completion with deep learning: In order

to demonstrate the effect of modeling temporal variations

(which is one of the main contributions of this paper),

jointly with purely frame-wise information, we construct a

baseline very similar to that in Section 4. The only differ-

ence is that instead of encoding and decoding actions di-

rectly, the action is split into frames and the decoding is

done on a per-frame basis. Thus, no temporal correlations

are modeled in the deep prior. Further details about the ar-

chitecture are given in the supplement. This baseline is sim-

ilar in spirit to the work of Litany et al. [20] for 3D human

shape completion.

Decoder reconstruction: As described in Section 4.2, a

feed-forward pass through the trained autoencoder itself can

be used to complete the sequence. And we use this as a

baseline to compare with the further latent space optimiza-

tion we propose in this paper.
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7.2. HDM05 mocap dataset [26]

Dataset details: HDM05 is a large publicly available and

challenging database of 3D human actions with 2337 ac-

tion samples. There are 130 different types of actions per-

formed by 5 subjects and recorded in a laboratory setting

using an optical motion capture system. Each skeleton is

made up of 31 joints. For our experiments, we resample all

the actions such that the length of the every action sequence

N = 100. Thus X,Y, X̂ ∈ R
93×100. All sequences are

normalized so that the hip joint is fixed at the origin in 3D

space. We perform 5-fold cross-validation. For each run,

we use 4 subjects for training and the remaining subject for

testing with about 1850 samples for training and the rest for

testing. Note that, in all cases, as a pre-processing step, the

unobserved joint trajectories are replaced with the respec-

tive mean trajectories computed over the observed joints in

the training set. However, simply using zeros as the ini-

tialization for the missing joints produces nearly identical

results and these are shown in the supplement.

Network architectures: The encoder consists of 4 tem-

poral convolution layers with filter size of 4, and the num-

ber of feature maps in each layer is set to 75 (equal to the

number of channels at the input layer). We use a latent space

dimension of 200. The decoder consists of 4 temporal trans-

posed convolutional layers. For our experiments, we train

multiple autoencoders with actions consisting of random

subsets of joint sequences sampled from the actions. Dif-

ferent fractions of joints included for training each autoen-

coder: 100%, 75%, 50%. We will use the term Observed-to-

Total Percentage (OTP) = K
J
× 100, to denote this quantity.

For classification, we use a TCN classifier similar [15]. It

consists of 3 TCN blocks with one convolutional layer each.

Reconstruction performance and visualization: We

compare the results of the proposed method with the base-

lines described in Section 7.1. As explained in Section 5.1,

using our proposed method, we can achieve significantly

better reconstructions by using an optimization procedure

over the latent space of the autoencoder model in order to

minimize the Euclidean distance between the reconstruc-

tion and input test sequence with only a subset of observed

joint trajectories. Note that the parameters of the generative

model, the decoder D in our case, are held fixed for this op-

timization. We use Adam optimizer for 500 iterations with

an initial learning rate of 1.0. As the initialization, we use

the latent representation of the incomplete action obtained

by a feed-forward pass through the autoencoder. We carry

out reconstruction experiments on the test set for autoen-

coders trained with different fractions of observed joints.

In order to better test the generalization ability, we use

test-time OTPs that are different from training-time OTPs.

For the reconstructed sequences thus obtained, we use a pre-

trained classifier to classify the test set reconstruction into

one of the pre-defined 130 classes for different variants and

test-time OTPs of the autoencoders. The RMSE of the re-

constructed sequences as well as the action recognition per-

formance, averaged over the five folds, are shown in Tables

1 and 2, and a few sample reconstructed skeletal sequences

are shown in Figure 2.

Results: We observe in all cases where either the training or

test OTP is less than 100%, the proposed method of solving

the optimization problem in Equation (1) i.e., using D(z∗)
leads to significantly better results compared to baselines

including using a single feed-forward pass through the au-

toencoder i.e., D(E(Y )), where D and E are the decoder

and encoder respectively. In almost all cases, using the op-

timization approach yields accuracies within 5% points of

the oracle action recognition performance and about 3 cm

error in terms of RMSE. We also observe for the cases with

training OTP = 100%, using a different test OTP causes

more degradation in performance than when the train OTP

= 75%, 50%. We note that we also tested two additional

simpler baselines: (1) perform reconstruction of skeletons

per frame by replacing every unobserved joint with the clos-

est observed joint in the skeleton, and then use the pre-

trained classifier and (2) train the classifier directly on the

action sequences with only a subset of joints observed. Irre-

spective of the train/test OTP, both these baselines fail and

yield only accuracies which are close to chance.

In the supplement, we provide an additional baseline us-

ing a denoising autoencoder (DAE) framework where the

only difference from the framework presented here is that,

we assume that we have access to a training set with all

joints trajectories available and the DAE maps from incom-

plete actions to complete ones. That is, rather than measur-

ing the error only in the subset of joints (Equation 2), we

measure the error for all the joints as the ground-truth train-

ing actions are assumed to be perfect. The results show this

extra supervision actually hurts the final test performance

when the Train and Test OTPs are different, compared to

the proposed method. As in the other cases, latent space

optimization helps improve the performance. We also per-

formed an experiment where, different joints are missing

for different frames, rather than joints missing for the entire

sequence. The proposed method can be applied without any

modifications, and the results show that the performance

and trends remains the same as in the case of completely

missing joints (which is the focus of this paper). These re-

sults are also provided in the supplement.

Reconstruction using structured masks: In the above,

we trained and tested autoencoders with random subsets of

joints dropped. In this experiment, we drop joints in a struc-

tured fashion during test time. We carry out four sets of

experiments with the joints corresponding to the following

body parts dropped: right arm (6 joints), left arm (6), right

leg (4) and left leg (4). This demonstrates how occlusion
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Figure 2: Reconstructed actions for the HDM05 database for train OTP / test OTP = 75/50. From the top row, the actions shown

are “Cartwheel” ,“Hand waving” and “Grab low”. The first column shows the reconstructions obtained by a simple feedforward pass

through the trained autoencoder: D(E(Y )). The middle column shows the output of the proposed approach which solves the optimization

problem in Equation 1: D(z∗). Blue dots represent the observed joints and red dots represent the unobserved. We clearly observe that the

optimization approach produces superior reconstructions.

Train OTP / Test OTP Method HDM NTU

RMSE (cm) Acc (%) RMSE (cm) Acc (%)

100/100 D(E(Y )) 3.48 79.23 2.67 74.77

100/75
D(E(Y )) 6.21 61.21 6.18 55.90

D(z∗) 2.18 78.04 3.33 72.26

100/50
D(E(Y )) 9.87 28.99 9.39 31.89

D(z∗) 2.99 73.47 5.19 65.15

75/75
D(E(Y )) 6.07 68.72 6.08 59.15

D(z∗) 2.27 78.61 3.49 71.64

75/50
D(E(Y )) 8.52 44.81 9.11 37.38

D(z∗) 2.98 74.71 5.30 64.81

50/50
D(E(Y )) 8.77 43.55 9.37 34.93

D(z∗) 3.05 74.37 5.29 64.59

Table 1: Experimental results for HDM05 (averaged over 5 folds) and NTU datasets for varying train/test OTPs in terms of RMSE and

action recognition accuracy (Acc). We observe easily that the proposed optimization-based reconstruction is far superior to a feedforward

pass through the autoencoder in terms of all the metrics considered. As the train OTP is reduced, performance degrades more gracefully

in the case of the optimization-based approach. In all cases, we can get to within 5% points of the oracle action recognition performance

(train /test OTP = 100/100).

of different limbs can affect the performance of our algo-

rithm. Note that the autoencoders were trained on random

subsets of joints, as before. The results are shown in Table

3. We see once again that the proposed algorithm yields

good recognition performance compared to the baselines

considered. These results also illustrate another important

aspect of the work—even though the train and test OTP are

nearly the same as in the case of occluding right/left leg,

the baseline method’s performance suffers significantly as

the distribution of the joints being dropped is very differ-

ent from the training scenario (random subsets of joints are

dropped), and the proposed latent space optimization tech-

nique allows better exploration of the decoder space in order

to find better reconstructions.

Generalizing to unseen actions: Here, instead of having

a test set having actions from an unseen subject, the test

set actions also belong to classes which are unseen during

training time. For our experiment, we use a random split of

100 and 30 action classes for the train and test set respec-

tively. The joint RMSE results shown in Table 4 show that

our method is indeed able to yield good results in this chal-

lenging setting, showing that the proposed method is able

to generalize to both unseen subjects and unseen classes.

7.3. NTU RGB­D dataset [32]
Dataset details: This is a large database of about 56000
3D skeletal action sequences obtained from Kinect of ac-

tions belonging to 60 classes and performed by 45 subjects.

For each skeleton, 25 joint locations are provided. We re-

sample all the sequences to have N = 50 frames. Thus

X,Y, X̂ ∈ R
75×50. We perform the experiments in the

cross-subject setting and use the train-test split as suggested
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Method HDM NTU

RMSE (cm) Acc (%) RMSE (cm) Acc (%)

Sparse Coding [24] 20.27 11.30 19.32 7.22

Frame-wise

DF (EF (YF ))
similar to [13]

21.47 12.30 20.40 9.69

Frame-wise

DF (zF
∗)

21.28 13.44 20.19 8.62

Action D(E(Y )) 8.52 44.81 9.11 37.38

Action D(z∗)
(Proposed)

2.98 74.71 5.30 64.81

Table 2: Experimental results for HDM05 (averaged over 5 folds)

and NTU datasets compared to different baselines for train/test

OTP = 75/50. We observe easily that the proposed optimization-

based reconstruction is superior to all the baselines considered.

DF and EF refer to the fact that the encoder and decoder operate

on a single frame at a time, rather than an action sequence.

Occluded limb/

Frac. joints dropped

Train

OTP
Method

RMSE

(cm)

Recog.

Acc. (%)

Right arm/

6/31 ≈ 20%

90
D(E(Y )) 9.66 48.97

D(z∗) 7.03 61.55

75
D(E(Y )) 9.43 51.62

D(z∗) 6.54 64.89

Left arm/

6/31 ≈ 20%

90
D(E(Y )) 9.51 51.53

D(z∗) 6.88 65.29

75
D(E(Y )) 9.38 52.29

D(z∗) 6.55 68.49

Right leg/

4/31 ≈ 13%
90

D(E(Y )) 6.32 58.61

D(z∗) 4.25 67.95

Left leg/

4/31 ≈ 13%
90

D(E(Y )) 6.50 53.30

D(z∗) 4.24 64.20

Table 3: Average classification results (over 5 folds) of re-

constructed actions on the HDM05 database. The inputs are

actions with contiguous body parts that are hidden or unob-

served. Here, D(E(Y )) is the baseline and D(z∗) is the

proposed optimization strategy.

by the authors of the dataset. The training set consists of

about 40000 examples and the remaining are in the test set.

All sequences are normalized so that the hip is fixed at the

origin in 3D space.

Network architectures: The generative mode is a tem-

poral convolutional autoencoder. The encoder consists of

3 temporal convolution layers with filter size of 8, and the

number of feature maps in each layer is set to 75 (equal to

the number of channels at the input layer). We use a latent

space dimension of 200. The decoder consists of 3 tempo-

ral transposed convolutional layers. As the action classifier,

we use a TCN classifier identical to that proposed by Kim

and Reiter [15]. It consists of 3 TCN blocks with 3 convo-

lutional layers each.

Reconstruction performance: We conduct an identical

set of experiments as in the case of the HDM05 dataset.

Train OTP / Test OTP Method RMSE (cm)

100/100 D(E(Y )) 1.79

100/75
D(E(Y )) 5.34

D(z∗) 1.43

100/50
D(E(Y )) 9.42

D(z∗) 2.14

75/75
D(E(Y )) 5.55

D(z∗) 1.99

75/50
D(E(Y )) 6.92

D(z∗) 2.68

50/50
D(E(Y )) 6.67

D(z∗) 2.76

Table 4: Experimental results for HDM05 when training and test

action classes are different, for varying train/test OTPs in terms

of RMSE. The results are averaged over 5 runs where for each

run, we randomly select the action classes for train and test. We

observe easily that the proposed optimization-based reconstruction

is far superior to a feedforward pass through the autoencoder.

The action classfication accuracies and RMSE are shown in

Tables 1 and 2. Skeletal visualizations are provided in the

supplement. The trends observed are the same as those in

HDM05. Compared to all the baselines considered includ-

ing (1) sparse coding (2) frame-wise completion and (3) us-

ing the autoencoder reconstruction, the proposed method of

latent space optimization achieves far superior results es-

pecially when train and test OTPs are considerably differ-

ent, and gets close to oracle classification performance and

RMSE even with just 75% of observed joints. Results for

other train/test OTPs are provided in the supplement.

8. Conclusions

We consider the problem of reconstructing completely

unobserved dimensions of a multi-variate time series. The

problem is traditionally studied in the framework of sys-

tem identification and non-linear dynamics. However, for

tractability, such methods make strong assumptions on the

data such as linearity of the underlying dynamical system,

sparsity of observations in transform domains etc. In this

paper, we study the specific example of reconstructing dy-

namics of unobserved joints from 3D human actions, for

which we cannot easily construct hand-crafted priors. We

propose to first construct a deep prior of complete actions,

even when the training data has up to 50% of the joints

missing. The reconstruction problem then can be solved

by projecting the observed action with missing joints onto

the action manifold, which is done via optimization in the

latent space. Through extensive experiments and different

metrics, we show that the proposed approach can effectively

recover the dynamics of unobserved joints. Interesting ex-

tension of this ideas for human actions include designing

stronger priors using spatio-temporal graph convolutional

autoencoders and different improved loss functions for la-

tent space optimization.
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