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Abstract

Most existing autonomous driving vehicles and robots

rely on active LiDAR sensors to detect the depth of the sur-

rounding environment, which usually has limited resolution,

and the emitted laser can be harmful to people and the en-

vironment. Current passive image-based depth estimation

algorithms focus on color images from RGB sensors, which

is not suitable for dark and night environment with limited

lighting resource. In this paper, we propose a framework to

estimate the scene depth directly from a single thermal im-

age that can still observe the scene in the low lighting con-

dition. We learn the thermal image depth estimation frame-

work together with RGB cameras, which also mitigates the

training condition due to the easy availability of RGB cam-

eras. With the translated thermal images from color images

from our generative adversarial network, our depth estima-

tion method can explore the unique characteristics in ther-

mal images through our novel contour and edge-aware con-

straints to obtain a stable and anti-artifact disparity. We ap-

ply the commonly available color cameras to navigate the

learning process of thermal image depth estimation frame-

work. With our approach, an accurate depth map can be

predicted without any prior knowledge under various illu-

mination conditions.

1. Introduction

Depth estimation is a fundamental task in computer vi-

sion and is essential for many real-world applications such

as autonomous vehicles and UAV navigation. It has a close

relationship with many other fields in 2D and 3D tasks such

as semantic segmentation, 3D object recognition, visual

odometry and SLAM, objection detection and scene recon-

struction. Previous developments built on either synthetic

[4] [43] or real-world datasets [8] [14], have contributed to

the advancement of this filed. However, few efforts are put

into the depth estimation from stereo pairs under nighttime

scenarios. Traditional works such as in [21] [56] heavily

depend on brightness and gradient constancy assumptions,

which are not available at nighttime situations. Convolu-

tional Neural Networks (CNN) have been successfully ap-

plied to estimate the scene depth from RGB images[10] [31]

[32] [51] [29]. However, these methods mainly focus on su-

pervised learning methods, which require a large amount of

ground truth depth labels from either LiDAR or other depth

sensors. Moreover, these labels are expensive to obtain and

involve extensive human efforts in real-world applications.

Therefore, research has been conducted to explore various

constraints to realize semi-supervised [1] [35] [27] or un-

supervised setting [13] [15] [55] to estimate the depth or

disparity of a scene, which are mainly restricted in proper

illumination conditions. Existing nighttime depth sensor

mainly rely on LiDAR and other active illumination sen-

sors, which usually have small resolution and may harm the

environment due to the emitted laser beams.

In this paper, we explore to estimate the scene depth

by a single thermal image to deal with the low illumina-

tion issue, especially night vision problems. To learn the

single thermal image depth estimation, we first apply the

disparity learned from the color image as the initialization

for the training procedure of the thermal image depth es-

timation. As the thermal camera and color camera main-

tain a baseline distance, the disparity still retains errors,

which we will rely on our neural network and loss con-

straints specifically designed for thermal-color consistency

to eliminate. For multi-spectral images, the stereo image

pair from left and right cameras has an obvious difference

in spectral distribution and appearance variation, for which

multi-spectral stereo matching is challenging. To solve this

issue, we propose to utilize an image-to-image translation

network to transform visible color images to long-wave in-

frared images to mitigate the obvious differences between

them. Then the accurate disparity is estimated without any

prior knowledge and supervision. Considering the charac-

teristics of thermal images, we incorporate the illumination

consistency and contrast information to make sure that the

estimated disparity maps preserve more precise and stable

intensity as the real thermal images.

To summarize, the key contributions are as follows: 1)

We propose a novel single thermal image depth estima-

tion framework, which utilizes visible color images to help

train thermal image depth estimation under dark or night-
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Figure 1: Basic single thermal image depth estimation framework. Translated thermal image from left color image is used together with

the estimated disparity to recover the right thermal view. During the inference, only single thermal image input is required to generate the

estimated disparity.

time environment; 2) The designed image translation net-

work for RGB-thermal pair enables pixel matching between

multi-spectral images that have apparent large discrepancy

in both spectral distribution and visual variation; 3) The en-

tire pipeline is trained under unsupervised learning setting,

which does not require LiDAR or any other depth sensors

for training; 4) The success of thermal depth estimation can

provide an alternative solution of the active illumination

LiDAR sensor for nighttime autonomous driving or other

nighttime vision issues and enjoy the benefits of higher im-

age resolution and less harm to human due to its passive

sensor nature. Experimental results on both public multi-

spectral dataset and our own collected dataset demonstrate

that the proposed method outperforms other depth estima-

tion methods for thermal images. This framework can be

further extended to SfM, SLAM, and other computer vision

tasks based on passive illumination sensors.

2. Related work

Existing feature matching based 3D reconstruction ap-

proaches rely heavily on the accurate feature extraction

and matching, which cannot always be guaranteed in nat-

ural scenes, such as low illumination, low textures, occlu-

sions, dark and foggy environments. Most recent image-

based depth estimation methods applying deep neural net-

works mainly rely on ground truth labels to train the models,

which generate promising results [10]. Liu et al. [31, 32],

Xu et al. [51] and Li et al. [30] proposed to deal with the

depth estimation problem based on deep CNN and Condi-

tional Random Field (CRF) learning. A fully convolutional

residual architecture is proposed to predict the depth infor-

mation given an RGB image in [29, 9, 50]. Semi-supervised

approaches are proposed in [27, 46, 37, 52] to train CNN

by using both supervised and unsupervised learning clues.

Unsupervised learning networks [15, 13, 37] are also pro-

posed to estimate the depth based on intensity consistency

between input image pairs. However, the methods men-

tioned above mainly target at visible images, which con-

tain extensive textures and may not be suitable for images

without vast textures. For images in different modalities,

they cannot estimate the disparity based on pixel intensity

consistency. To deal with this issue, we add an image trans-

lation branch in our framework to translate between visible

and thermal images, which can support to build correspon-

dences between two different modalities’ images.

As for image generation, GAN [17, 5] has been used to

generate a new type of images. Deep convolutional gener-

ative networks [41] generate images and and classify them

simultaneously. As a specific kind of image generation, im-

age translation transforms the source domain images to the

target domain images. “U-Net” architecture [42] has been

applied in Pix2Pix [23] as the generator and a convolutional

neural network classifier as the discriminator. Pix2PixHD

[49], as an extension of [23], incorporates multi-scale gen-

erator and discriminator to translate images with more accu-

rate detailed information. The approaches mentioned above

require paired images for training. He et al. [19], Cycle-

GAN [58], DiscoGAN [26], and DualGAN [53] were pro-

posed to train the translation network using unpaired data in

a CycleGAN. Our focus is on translating the visible images

to thermal images, for which we design a network to ex-

plore the property that facilitates to explore the relationship

between color images and thermal images.

Nighttime vision, however, is still a relatively unex-

plored topic as a result of its numerous challenges. Thermal

images reflecting the temperature of the object surface have

been applied to detect pedestrians or animals [36, 2, 7, 11]

in the nighttime and rescue assignments [12]. Various fea-

tures [38, 44, 33, 34] from thermal images have been stud-

ied and fused to improve the thermal image classification

3834



accuracy. Depth sensors (e.g., Kinect and Intel Realsense)

have been fused with thermal sensors to generate 3D ther-

mal models [48, 3, 18, 6], which are limited in small scale

due to the depth sensors’ valid range limitation. The thermal

image has been applied to estimate the disparity between

two color images to estimate the depth [25, 48] under the

assumption one color camera has exactly the same dispar-

ity of thermal image. As in normal situations, two cameras

usually maintain a baseline distance, the disparity between

two cameras cannot be the same. To solve this issue, differ-

ent from [25] that applies thermal image to estimate color

image disparity, we first apply color stereo images to es-

timate the disparity as the initialization of the thermal im-

age disparity, which can be more accurate. We further use

the translated thermal image from color image to enhance

the accuracy of thermal image disparity from its initializa-

tion. In this process, we build our own neural network and

various loss constraints specially targeting at thermal-color

appearance and illumination consistency to obtain more ac-

curate and robust depth estimation for thermal images.

3. Single Thermal Image Depth Estimation

Thermal images are lack of textures, for which most

commonly used features in computer vision tasks cannot

be extracted and matched on thermal images. As we train

the single thermal image depth estimation framework in an

unsupervised learning scheme, no depth labels are obtained

from depth sensors or human measurement. The ideal sce-

nario is to apply two thermal cameras and apply our CNN

model to train the single image depth estimation network.

However, thermal cameras with sufficient sensitivity and

resolution are much more expensive than regular color cam-

eras. It is our objective to train the system with the mini-

mum cost without using an extra thermal camera which is

not in the use of real applications. Therefore, we apply two

color cameras to learn the single image depth estimation

system together with the thermal camera, which can signif-

icantly reduce the training requirement and cost due to the

much lower price of color cameras. To estimate the accu-

rate scene depth from a single thermal image, three main

steps are involved in the entire framework. The first step

is to apply the stereo color cameras to estimate a disparity

map for the color camera (e.g., right color camera) close to

the thermal camera. As the thermal camera is physically

close to the right color camera, the disparity map can be

used as the initialization for the thermal camera relative to

the left color camera. Once we have the disparity initializa-

tion, the second step is to translate the left color image to

a thermal image. The translation network is under a dual

CycleGAN designed for translating color images to thermal

images, with loss constraints fitting the properties of color

and thermal images. Once we obtained the translated ther-

mal images, we can refine the thermal image disparity map

Figure 2: Our camera system, which involves a thermal camera

(the most left one) and two SLR cameras (second left one and

the most right one). The most right thermal camera is to pair up

with the other thermal camera to generate ground truth depth map,

which is not used in training process.

initialized from the right color camera. The disparity map

is updated through a CNN model. Although we can obtain

a thermal image from a color image through image transla-

tion, it may still maintain difference from the real thermal

image, for which we do not directly estimate the disparity

from translated left thermal image and real right thermal

image. However, with a roughly correct disparity for ini-

tialization, we can accurately converge to the disparity cor-

rectly reflects the pixel motion between left translated ther-

mal image and right real thermal image. As we know the

baseline of the cameras and focal length, the real depth can

be estimated through triangulation. In the testing phase, we

estimate the disparity based on a single thermal image. We

set the same baseline for testing (in real application) as the

training phase, which provides the correct correlation to the

disparity estimated from the single image (see Fig. 1).

3.1. Thermal Image Disparity Initialization
As thermal image cannot directly match the color im-

age, we apply two color cameras to provide an initial dis-

parity map for the thermal image. To realize this idea, we fix

the thermal camera to be close to one of the color cameras.

Therefore relative to the other side of the color camera, the

adjacent color camera’s disparity map can be similar to the

thermal image. Our camera system is shown in Fig. 2. Two

SLR color cameras have been fixed on the rig of the cart.

The thermal camera is set to be close to the right color cam-

era (left in the picture). The left thermal camera is to pair up

with the right thermal camera to create ground truth depth

map to evaluate our method, which is not required in the

training process. For data collection, we use digital single-

lens reflex camera Canon SL1 to capture color images and

FLIR A615 to capture high-quality thermal images. The im-

ages from visible camera are further resized to the same size

as thermal images. Sample images of the collected dataset

are given in Fig. 3.

We use stereo reconstruction to estimate the disparity

from the right color image to the left one. We calibrate the

thermal and color cameras to know the rotation and trans-

lation matrices between them [45]. From the calibration

matrix, we can also roughly crop the overlapping region be-

tween the right color camera and the thermal camera [48]

so that the right color camera’s disparity map can be close
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Figure 3: Image samples from indoor and outdoor scenes of our

collected dataset. The first frame in each row is the color image

from left camera, the second and third frame are the right thermal

and right color images respectively.

to the real thermal image’s disparity. Though the disparity

of the right color camera can be used to train the single ther-

mal image depth estimation, the thermal camera and color

camera still maintain a distance and the overlapping region

is a rough estimation, for which we need to utilize a dis-

parity map specialized for the thermal image to learn the

depth estimation framework. Once we have the thermal im-

age disparity initialization, we will rely on the translated

thermal image and our CNN targeted at thermal images to

obtain an accurate estimation of the disparity map.

3.2. Image Translation from Color to Thermal
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Figure 4: Our color to thermal image translation framework.

Once we have the rough estimation of the real thermal

image disparity, we expect to have a thermal image as real

as possible so that the disparity refinement can be accurate.

To achieve this objective, we design a thermal image trans-

lation network targeting at color to thermal translation. To

mitigate the training requirement, we apply a dual learning

structure for unpaired data. So the color image does not

necessarily have a corresponding thermal image capturing

the same scene.

Under the learning structure, we explore the constraints

for the neural network. We apply cycle consistency loss, cy-

cle adversarial loss, and illumination consistency and con-

trast loss to constrain the network towards the accurate

translation from color image to thermal image. The detailed

image translation framework is shown in Fig. 4.

Inspired by the cycle structure in [58], we apply the cy-

cle consistency as the primary structural constraint of the

entire network. Though we are more interested in the trans-

lation relationship from color to thermal domain, accurate

translation from thermal to color domain and maintaining

the consistency between the original color image and the

translated color image can also enhance the translation ef-

fect from color to thermal images. The output thermal im-

age from the main generator can be the input of the auxiliary

generator to output a translated color image. The cycle con-

sistency is to enforce the input color image and the trans-

lated color image as close as possible. The loss constraint

can be denoted as the following equation:

Lcycle = Ec∈ori(c)[‖Ga(Gm(c))− c‖1] (1)

The cycle loss Lcycle is based on the expectation E of all

the training samples distance between the generated color

image Ga(Gm(c)) and the original color image c. The

main generator Gm translates the original color image x
to a thermal image Gm(c), which is further translated to

a color image Ga(Gm(c)) by the auxiliary generator Ga.

Through enforcing the cycle consistency, we can improve

the translation performance of both color to thermal modal-

ity and thermal to color modality.

To learn the transformation relationships between im-

ages in the source and target domains, we apply the adver-

sarial loss to combine generator and discriminator pairs at

the same time. Adversarial loss is for the discriminator to

distinguish the real images and the generated images, which

evaluates both generator and discriminator and can reduce

the distribution variation of both types of images. Still, we

focus on the translation from color image to thermal image,

whose adversarial loss is as follows:

LGAN,C→T = Et∈Tori(t)
[1− logD(t)]

+Ec∈Cori(c)
[logD(G(c))]

(2)

For the adversarial loss translating color image to ther-

mal image LGAN,C→T , the discriminator D distinguishes

whether the image is original (output 1) or generated (out-

put 0). Once the input is thermal image t in the original

thermal dataset T , the discriminator can reduce the loss by

output 1 from [1−logD(t)]. Similarly, if the input is a color

image c in the original color dataset C, the discriminator is

expected to output 0 for the generated thermal image G(c).
Besides the cross-domain cycle consistency and domain

adversarial constraints, spatial constraints can also be ap-

plied to train the network. As thermal and color images are

two quite different modalities, the translated spectral values

may also be quite different. We therefore propose to en-

hance the spectral similarity between the original and the

translated images. More specifically, we expect the trans-

lated and the original images to be highly correlated and

their average illumination strength to be close for each local

patch. At the same time, we expect the illuminance contrast
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within a patch between generated and original images to be

similar as well, which represents the illuminance distribu-

tion and can be evaluated by the intensity variance. Our

illuminance loss combines correlation relationship, average

illuminance coefficient, and a contrast term together into

consideration defined as follows:

Llocal lx(x, x
′) =

σx,x′

σxσx′

·
2x̄x̄′

(x̄2 + x̄′
2
)
·
2σxσx′

σ2
x + σ2

x′

(3)

where x and x’ are the original image and translated im-

age in the same modality. The first term is the correlation

relationship between the original data and predicted data.

The second term is to reduce the variation of average illu-

minance between x and x’. The third term is to measure

the intensity contrast to guarantee that they are in similar

distribution. By minimizing their structural difference in

illuminance, correlation, and contrast in the images from

statistical characteristics, the quality of the generated image

can be improved. As we desire to improve the image qual-

ity of each local region, we choose to scan the entire image

by sliding a 5-pixel dimensional square window through the

entire image with a moving step size as 2. Assuming there

are M steps in this process, the whole image illuminance

loss is provided by:

Llx =
1

M

M∑

i=1

(1− Li
local lx) (4)

which averages all the local region illuminance consistency

and contrast.

3.3. Neural Network Structure for Single Thermal
Image Depth Estimation

Once we obtain the left and right thermal images, we tar-

get at estimating the left and right disparity maps simulta-

neously once provided a pair of images from the calibrated

stereo cameras. The problem can be defined as follows:

given every image pair from the stereo camera, our model

constructs two CNN networks to predict their correspond-

ing disparity maps respectively. As a result, the correspond-

ing predicted output disparity maps can be used to recon-

struct original input images from the stereo pair. Apply-

ing the basic idea from [15], our model further introduces

a two CNN block scheme to extract geometry features and

learns a regression pixel-wise output both from the left and

right image with encoder-decoder structure. After extract-

ing feature representations from the encoder, the decoder

network further constrains the output disparity to produce

the warped image Ĩw (Ĩ l or Ĩr) by moving pixels from the

original input image along the epipolar line using bilinear

sampling [24] in the surrounding positions. The relation-

ship between the warped image Ĩw, predicted disparity map

d̃, and the original input image I can be expressed as:

Ĩw = I(x+ d̃) (5)

Then the reconstructed image can be expressed as:

Ĩ(p) =
∑

i∈(t,b),j∈(r,l)

wij Ĩw(pij) (6)

The final predicted depth map is able to be calculated based

on the stereo triangulation D̃ = fB/d̃. Here, f is the fo-

cal length of the camera and B is the known baseline of

the stereo cameras. After obtaining the initial depth predic-

tion for a pyramid of multiple resolutions, we can refine the

depth map based on our reconstruction errors and edge con-

sistency constraints to produce more accurate results. We

design loss constraints from both spectral and spatial per-

spectives to guide the training process.

3.3.1 Appearance Matching

Each of the CNN networks in our single image depth esti-

mation branch produces a corresponding disparity map d̃,

and the reconstructed image is generated by the other orig-

inal image together with its estimated disparity map. Ap-

pearance matching loss is introduced to enforce the esti-

mated reconstructed images to be the same as the origi-

nal images at the corresponding pixels. By combining the

Structural Similarity Index Metric (SSIM) structure [15]

and the introduced Charbonnier loss factor, the appearance

matching loss for the right and left images is defined as:

Lmatch =
1

N

∑

ij

a

2
p̃(1− SSIM(Iij , Ĩij))

+(1− a)p̃(||Iij − Ĩij ||1)

(7)

where ‖·‖1 is used to represent L1 norm operator which cal-

culates the mean absolute value. Iij represents the original

input left and right images, and Ĩij represents our recon-

structed left and right images. α is a constant parameter

and here we choose 0.85 as its value. The value for SSIM

ranges from 0 and 1, where 1 means that they can realize a

perfect matching.

3.3.2 Edge-aware Smoothness

Edge-aware smoothness is introduced as a penalty term to

further prevent small divergent depth values from occluded

regions and low-textured areas. It attempts to minimize

depth-related Laplacian of Gaussian (LoG) filter whose

each element is weighted by the corresponding image gra-

dient, described as follows:

Ledge = w

∥∥∥∥
| ▽2 (D ⊗G)|

‖▽I‖

∥∥∥∥
1

×
1

‖D‖
(8)

where ▽ and ▽2 refer to the gradient and Laplacian op-

erator respectively. G represents a 5 × 5 Gaussian kernel.

D and I correspond to the predicted disparity map and in-

put image respectively. w is the weight parameter and is
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set to 0.25 in our network. Through scaling the first term by

dividing the mean disparity value, the output can be normal-

ized. Based on the edge-aware loss, we can present small

depth changes due to the noise, which is especially helpful

for thermal images, as the thermal image representing the

object surface temperature usually maintains uniform and

contains noise due to the sensor sensitivity.

Hence, the full objective function that optimizes the

network parameters becomes Ltotal = λcycleLcycle +
λGAN,C→TLGAN,C→T + λlxLlx + λmatchLmatch +
λedgeLedge, where λcycle, λGAN,C→T , λlx, λmatch and

λedge represent weights for different loss constraints and

are set as 10, 1, 0.5, 1, 0.5 respectively.

4. Experimental Results

4.1. Data Collection

The proposed framework is trained on a rectified multi-

spectral stereo dataset which contains 10000 image pairs

covering different scenes including campus, indoor and out-

door halls. The depth maps obtained from the color RGB

images by stereo reconstruction are transformed to the ther-

mal image. We use the thermal image stereo reconstruction

result as the ground truth to verify the single thermal im-

age depth estimation framework. Before applying stereo re-

construction [47] on thermal images, we also use the color

stereo disparity to limit the correspondence search range,

which can enhance the stereo reconstruction speed and ac-

curacy relying on color stereo reconstruction result. The

second thermal camera is used to create the ground truth

disparity. However, our training procedure does not require

the second thermal camera. The thermal stereo setting is

mainly for ground truth depth map generation.

As there is no available public datasets for stereo multi-

spectral applications sharing the same setting and purpose

as our collected dataset, we further verify our method on

popular KITTI benchmarks for autonomous driving. We ap-

plied trained model to translate raw color images into long-

infrared thermal domain, and then train our depth estima-

tion pipeline for single thermal image on it. As the thermal

image and right color image have the same camera extrinsic

in this case, we apply the rotation and translation operation

on the translated right thermal images based on our thermal-

to-right-color camera calibration matrix to reassembly our

camera setting. 2000 testing images are randomly chosen

to obtain the visual comparison with other methods.

4.2. Implementation Details

We train the network on a GTX 1080Ti GPU with 11G

memory with input image size of 640×480. The Adam op-

timizer is applied with β1=0.9 and β2=0.99. The learning

rate starts with 1e−4 and gradually decreases to the half of

the original rate in every 20 epochs. Horizontal flip is uti-

lized to augment the training data to prevent potential over-

fitting. The weights of the depth estimation network and

image translation network are initialized with Kaiming ini-

tialization method [20] with a batch size of 4. The network

is trained for 50 epochs.

4.3. Comparison with Stateoftheart methods

Method Abs Rel Sq Rel RMSE RMSE log δ <1.25 δ <1.252 δ <1.253

SfMLearner [57] 0.24 2.12 10.43 2.31 0.19 0.36 0.53

Geonet [54] 0.22 1.93 11.20 2.23 0.22 0.40 0.61

Monodepth [15] 0.19 1.38 8.11 1.64 0.45 0.66 0.77

3-Net [40] 0.19 1.27 7.91 1.52 0.48 0.69 0.81

PydNet [39] 0.22 1.51 7.98 1.54 0.46 0.66 0.80

Lai et.al [28] 0.31 2.69 13.58 3.21 0.16 0.27 0.43

Monodepth2 [16] 0.17 1.32 7.87 1.46 0.49 0.67 0.78

Ours 0.17 1.15 7.29 1.37 0.54 0.72 0.83

Table 1: Comparison results when evaluating on the testing set of

our collected dataset. Each image is associated with a ground truth

depth. The proposed method is compared with the state-of-the-art

monocular depth estimation techniques [57] [54] and stereo tech-

niques [15] [40] [39] [28][16] [28]. The first four columns repre-

sent the error metrics(lower means better). The last three columns

are the accuracy metrics(higher means better).

The performance of our proposed approach is evalu-

ated with other recent methods using multiple standard

evaluation metrics, including absolute relative difference

(Abs Rel), squared relative difference (Sq Rel), Root Mean

Square Error (RMSE), RMSE log, and the maximum ratio

δ between the predicted depth and the ground truth depth to

be within the threshold of 1.25, 1.252, and 1.253. For the er-

ror metrics of absolute relative difference, squared relative

difference, RMSE, and RMSE log, the lower value means

the better performance, and for accuracy fitting depth ra-

tio threshold, the higher number indicates more images has

small difference compared with ground truth, which repre-

sents better performance.

We perform a quantitative analysis for the accuracy and

error of the proposed method with respect to the other state-

of-the-art methods based on the single thermal image as in-

put. As can observed in Table. 1, our proposed model for

thermal image depth estimation provides the best depth esti-

mation results based on all the evaluation metrics compared

to other state-of-the-art methods for single image depth es-

timation trained by both monocular video sequence [57]

[54] and stereo cameras [15] [40] [39] [28][16], especially a

large improvement in the accuracy metrics, which demon-

strates the superior effectiveness of our method in single

thermal image depth estimation. For single image depth es-

timation based on monocular video sequence, we train the

network based on the original thermal images. For single

image depth estimation methods for comparison, we apply

the original thermal image and the translated left thermal

image from left color image to compose the thermal image

pair to train the network, which enforces the training data to

be in the same modality for a fair comparison.

Besides quantitative analysis, Fig. 5 provides a visual

comparison with different existing methods on the collected

dataset. Our model can generate superior depth estimation

output. Compared with [15] [40] [39] [16], the proposed
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Figure 5: Estimated depth maps of our method compared with other state-of-the-art methods trained on the collected dataset. First row:

input thermal images; Second row: predicted depth maps from [15]; Third row: predicted depth maps from [40]; Fourth row: predicted

depth maps from [39]; Fifth row: predicted depth maps from [16]; Sixth row: our predicted depth maps.

Figure 6: Estimated depth maps of our method compared with other state-of-the-art methods on KITTI dataset. First row: input thermal

images; Second row: predicted depth maps from [15]; Third row: predicted depth maps from [40]; Fourth row: predicted depth maps from

[39]; Fifth row: predicted depth maps from [16]; Sixth row: our predicted depth maps.

method is able to get rid of many wrong predictions such

as in the sky and on the walls. Overall, the estimated depth

maps based on thermal images prove the effectiveness of

our proposed method on the single thermal image depth es-

timation tasks for both indoor and outdoor scenes.

Further visual comparison with various of most recent

methods on KITTI dataset is shown in Fig. 6. Our model

is capable to generate a reasonable prediction output with

clear boundaries on objects. Compared with [15] [40] [39]

[16], the proposed method is able to get rid of many wrong

predictions such as in sky and on walls. Our estimated

depth maps based on thermal images recover an accurate

relative positions and object boundaries from given scenes,

and prove that the effectiveness of our proposed method on

single thermal image depth estimation.
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4.4. Image Translation Evaluation

PSNR SSIM COS RMSE

MUNIT [22] 11.67 0.52 0.72 0.37

DualGAN [53] 9.40 0.34 0.75 0.39

Pix2PixHD [49] 16.91 0.72 0.83 0.34

Ours 18.04 0.77 0.89 0.24

Table 2: Translation results from color to IR on the collected datat-

set analyzed from PSNR, SSIM, COS similarity and RMSE.

Figure 7: Image samples translated from color visible domain to

infrared radiation domain on our collected dataset. The first col-

umn: color image input. The second column: translated thermal

image output.

Right thermal

Left color

Appearance

Matching

loss

Edge-aware loss

Texture-aware loss
Disparity output

Left translated thermal

Figure 8: Ablation study to train the framework structure using one

thermal image and one color image without initialization stage.

As part of our entire pipeline, image translation module

from visible image to thermal image also plays a critical

role. To evaluate the image translation effectiveness, we

conduct three experiments to test the visual and quantitative

performance on both KITTI and our collected dataset. First,

we show the visual performance of our trained model when

applying on KITTI dataset [14] to successfully translate the

input color visible image to synthetic thermal image.

Then we provide both quantitative and visual perfor-

mance of the proposed model on the new collected dataset.

Table. 2 analyses commonly used four measurement met-

rics of image quality during the evaluation, which are

Peak Signal to Noise Ratio (PSNR), Structural Similarity

(SSIM), COS Similarity (COS) and Root Mean Squared Er-

ror (RMSE). For the first three metrics, the one that with the

highest value means that the translated output is the closest

to the target ground truth. For the last metric, the lowest

value means it shows the best performance on translation.

It can be observed from Table. 2 that our results achieve

the best performance on both of the four metrics, especially

for RMSE. Visual performance of the translated thermal im-

age results on our collected dataset is shown as Fig. 7, in

comparison with the ground truth thermal image. The re-

sult demonstrates that the output from our translation frame-

work is able to recover the subtle temperature contrast coin-

ciding with the ground truth thermal image collected from

our high-resolution thermal camera. This provides a criti-

cal support for our depth estimation pipeline compared with

two different settings, as discussed in Section 4.5.

4.5. Ablation analysis

To prove the effectiveness of the proposed method that

we first apply color stereo images to estimate an initial dis-

parity as the thermal image disparity, we conduct an ab-

lation study here with different framework setting to train

our depth estimation model and show the visual results.

We compare against two configurations as shown in Fig.

8. Compared with our framework, there is no initialization

from stereo color images to help with the learning process.

As a result, the depth estimation effect is weakened. The

depth estimation result compared with the framework Fig.

1 is shown as Fig. 9.

Figure 9: Comparison of the estimated results from pipeline of

Fig. 8 and Fig. 1. From left to right: Input thermal image; Result

from the framework as Fig. 8; Result from framework as Fig. 1

5. Conclusion
We propose an unsupervised single thermal image depth

estimation framework to estimate scene depth in the envi-

ronment with low illumination as an alternative of the ac-

tive sensor LiDAR, which suffers low resolution and brings

harm to the environment due to the emitted laser. To

roughly obtain the disparity for the thermal image relative to

another color camera, we apply two color cameras to pro-

vide a disparity initialization for the thermal camera. we

further translate the color camera to the thermal domain

through our color-to-thermal image translation network to

refine the disparity. The network recovers the disparity with

multiple designed constraints targeting at thermal images

from both spectral and spatial perspectives. Experiments

demonstrate the outstanding performance of our single ther-

mal image depth estimation method, which enables exten-

sive tasks (e.g., autonomous driving) that is mainly avail-

able in daytime to be also possible in nighttime.
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