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Abstract

Deep learning has achieved huge success in the field

of artificial intelligence, but the performance heavily de-

pends on labeled data. Few-shot learning aims to make

a model rapidly adapt to unseen classes with few labeled

samples after training on a base dataset, and this is use-

ful for tasks lacking labeled data such as medical image

processing. Considering that the core problem of few-shot

learning is the lack of samples, a straightforward solution

to this issue is data augmentation. This paper proposes

a generative model (VI-Net) based on a cosine-classifier

baseline. Specifically, we construct a framework to learn

to define a generating space for each category in the la-

tent space based on few support samples. In this way, new

feature vectors can be generated to help make the deci-

sion boundary of classifier sharper during the fine-tuning

process. To evaluate the effectiveness of our proposed ap-

proach, we perform comparative experiments and ablation

studies on mini-ImageNet and CUB. Experimental results

show that VI-Net does improve performance compared with

the baseline and obtains the state-of-the-art result among

other augmentation-based methods.

1. Introduction

In recent years, deep learning [20] has made great

progress in the computer vision community. Deep net-

works, especially Convolution Neural Networks (CNN),

are playing important roles in various visual tasks such as

recognition [19][32][37][13], detection [29][1][22] and seg-

mentation [44][2][12]. It is undeniable that deep learning

is the main trend now in the field of artificial intelligence.

However, the excellent performance of deep learning are

Figure 1. When the intra-class information is directly transferred

from the reference category to the target one, the generated sample

may be farther away from the distribution center in some cases.

heavily dependent on the amount of training data while col-

lecting enough labeled data is generally high-cost, and this

problem severely limits its application in practice. Although

models can be pre-trained with open-source datasets, the

large domain gap between datasets cannot be ignored. Few-

shot learning [7][40] has therefore been proposed to allevi-

ate such problems.

Generally, few-shot learning aims to enable machines to

learn the concepts from limited labeled data to reduce the

dependence on training data. In the common setting of few-

shot learning, a single task ought to contain a support set

and a query set with shared categories, and the model ex-

pects to predict the category of query samples according to

the support set. A task is usually called the N -way-K-shot

task when its support set only contains N categories with

K samples per class. This way to construct tasks accords

with the motivation mentioned above and has been applied

in most studies on few-shot learning.

In the research of few-shot learning, the main challenge

is how to seek an appropriate feature space and a classifier

to quickly adapt to a novel domain with a small number
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of labeled samples. Some works attempt to learn a good

metric [39][33][36] and some construct meta-learners to im-

prove adaptive capacity [28][8]. Considering that the criti-

cal problem of few-shot learning is the lack of labeled data,

augmentation-based approaches are naturally effective and

straightforward in theory. In fact, there exists many meth-

ods based on this idea, and some of them try to transfer

intra-class information from the reference categories to the

target ones [31][11][3]. As shown in Figure 1, in this aug-

mentation mode, the generated sample may be farther from

the center of the distribuition because the direction of trans-

fer is hard to control.

In this paper, we propose a generative model named VI-

Net ,which aims at defining a generating space for each cat-

egory in the latent space that satisfies the regular distribu-

tion and then generating new feature vectors based on it.

The generated features can be used to extend support sam-

ples per class and finally serve for fine-tuning classifier. It

is worth mentioning that VI-Net does not need external data

from other categories during the generation process.

The main contributions of our work are as follows:

1) We constrain the mapping of the samples belonging

to the same category in the low-dimensional latent space

within a Gaussian distribution by variational inference;

2) We propose a generation strategy based on random

sampling within Gaussian distribution in latent space;

3) Our work is tested on two benchmark datasets mini-

ImageNet and CUB [42] by comparison and ablation stud-

ies, and the results prove the effectiveness of our method.

2. Related Work

2.1. Metric Learning

The core idea of metric learning is to transform the pro-

cess of recognition into the comparison of similarity be-

tween features. This kind of methods expects to find a fea-

ture space where samples of the same category are clus-

tered. Typically, they utilize metrics, such as Euclidean dis-

tance, to measure similarities between samples.

Siamese Network [18] used parameter-shared CNNs to

extract features from a pair of images and determines if they

are of the same class based on distance. Matching Network

[39] adopted LSTM [14] to encode features based on the re-

lationship between support images and query images. Pro-

totypical Network [33], a classical metric-learning method,

calculated the average of embedding features of each class

as representation and measured the similarity by Euclidean

distance. Besides using fixed metrics, Relation Network

[36] designed a learnable metric module to calculate the re-

lation score. The above methods focused on learning fea-

ture space or similarity metric. TADAM [26] introduced

a TEN network to dynamically adjust parameters of fea-

ture extractor based on task representation. Wertheimer and

Hariharan [43] used the attention module to reduce negative

effects from complex background.

From another point of view, GNN [17] is a practical

tool to model the relationship between samples. Garcia and

Bruna [9] firstly converted discrete points to a graph, where

nodes represented features with one-hot labels and edges

represented hidden relationships. The predictions could be

extracted from nodes after the propagation of the graph.

EGNN [15] took a more direct definition of graphs, it used

edges to represent the intra/inter-class relations between

connected nodes. TPN [23] was a special graph method,

it utilized label propagation to predict class and performed

transductive learning to improve the accuracy rate.

2.2. Meta­Learning

Meta-learning [38] based approaches construct meta-

learners and meta-tasks to make models achieve faster adap-

tion to novel tasks. The significant commonality of these

methods is to make hyper-parameters learnable.

Ravi and Larochelle [28] proposed an LSTM-based

learnable optimizer, which used loss value and partial

derivatives as input, to replace traditional parameter op-

timizations. MAML [8] provided a very classic meta-

learning method for few-shot learning. In MAML, the

initial parameter of the model was the main training ob-

ject, which was updated after fine-tuning based on several

meta tasks. LEO [30] and MTL [35] were all inspired by

MAML. LEO constructed a low-dimensional space for pa-

rameters while MAML updated parameters directly in high-

dimensional space. MTL divided weights of CNN into two

parts, one of which was frozen after pre-training and the

other participated in meta-learning.

2.3. Data Augmentation

The critical limitation of few-shot learning is the lack of

training data, hence data augmentation is a direct and effec-

tive means. Different from image translation, such methods

do not need to generate realistic images, and how to guar-

antee the authenticity of the generated features is the main

argument instead.

Wang et al. [41] considered that generated features

just need to be useful for class distinctions and designed

a simple hallucinator with noise and support samples as in-

put, which could be meta-trained jointly with the classifier.

AFHN [21] added WGAN [24] on this basis and utilized

multiple regularizers to constraint the generator. Another

solution is to hallucinate novel images with the help of ex-

ternal datasets, in other words, is to transform relationships

between external samples to the target ones. Delta-Encoder

[31] expected to extract inter-class deformation between

two classes based on conditional autoencoder, and used re-

construction loss to constraint encoder and decoder. Har-

iharan and Girshick [11] proposed a kind of hallucinator
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Figure 2. Framework of VI-Net. This illustration describes the data flow during a 3-shot-3-way task. After given a set of {S,Q}, VI-Net

feeds all samples into feature extractor and obtains feature embeddings. Considering only support samples are labeled, VI-Net divides

support features into several clusters according to their categories and then utilizes an encoder-decoder generative module to augment the

support set. At last, the combined support set S ∪ S̃ are utilized to fine-tune the cosine-classifier before recognizing query samples.

that is similar to Delta-Encoder. Instead of inter-class de-

formation, they used intra-class deformation from a pair of

images of other class to cause hallucination. DTN [3] im-

proved on this basis, it firstly mapped feature vectors into

low-dimensional space and then fused features using addi-

tion and subtraction operation such as A+(B−C), and the

final generated features could be decoded from them. Dif-

ferent from the above methods based on relationships be-

tween features, IDeMe-Net [5] directly combined two im-

ages using learnable weights after dividing them into sev-

eral patches. SalNet [45] employed saliency detection to

extract foreground and background features from images re-

spectively, and exchanged them with each other to compose

new features.

VI-Net is mainly inspired by variational FSL [46], which

used variational inference to predict the distribution of sam-

ples. Differently, it expects to construct a sampling space

for each category directly based on few samples instead of

extracting the relationship of external sample pairs. Gaus-

sian distribution parameters of each category can be gained

by a specific fusion strategy, and work for generation finally.

3. Method

3.1. Few­Shot Learning Setup

Considering the particularity of few-shot tasks, the con-

ventional definition mode of tasks no longer applies. In

few-shot learning, a sufficient labeled dataset Dbase is sup-

plied when training the model. However, during the pro-

cess of inference, such a model has to work on a dataset

Dnovel which is disjoint from Dbase completely. Differ-

ent from transfer learning, a few-shot inference task sam-

ples a limited subset from Dnovel every time and divides it

into a support-set S and a query-set Q which shares cate-

gories, and aims to correctly recognize query samples from

Q just based on S directly. It means that the model has

to adapt useful knowledge for each subtask using very few

samples. Vinyals et al. [39] proposed a standard N -way-

K-shot classication scenario to define the format of S as

{xc
1, · · · , xc

K ; yc}Nc=1. This definition is widely used in the

study of few-shot learning, which properly shows the char-

acteristics of tasks.

3.2. Cosine­Similarity based Baseline

Chen et al. [4] have shown that distance-based classifiers

can also perform well just with the convolution networks.

Here we choose a cosine classifier Cω as our predictor and

extract features using convolution network fθ, where ω and

θ mean parameters of networks. Given an image x, the sim-

ilarity score of the i-th class could be computed as:

si = cos (fθ(x), ωi) =
fθ(x) · ωi

∥fθ(x)∥ · ∥ωi∥
, (1)

where ωi means the weight vector of the i-th class. In the

process of prediction, the calculating formula of possibility

can be expressed as:

p(y = i|x) = eγsi
∑N

j=1 e
γsj

, (2)

where N is the number of categories and γ represents scale

factor. Following this method, a basic classification model

can be easily constructed, and the target of pre-training is

just to minimize the cross-entropy loss Lcla over images

from Dbase:
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Lcla = E(x,y)∼Dbase

1

N

N∑

j=1

−y log p(y = j|x). (3)

Considering the purpose of few-shot learning, the pre-

trained extractor needs to perform on Dnovel. The most

common approach is to fine-tune a new classifier based on

support-set S during the testing process, and the prediction

process is similar to the commoin classification process.

As shown in section 4.2, this baseline can obtain a simi-

lar result with many classical models without external mod-

ules. By observing the fine-tuning operation during the test-

ing stage, it is found that the limitation of data is easy to

cause overfitting. To this end we propose a hallucination

method to generate diverse and effective samples that can

make the decision boundary of the classifier sharper.

3.3. Feature Hallucination based Method

3.3.1 Overview of Network

The overall structure of VI-Net is shown in Figure 2. It

mainly contains four modules: feature extractor (F ), dis-

tribution encoder (E), feature decoder (D) and classifier

(C). Given a set of samples X = {S,Q}, where S =
{(xi, yi)|i = 1, 2, · · · , N × K} means support set and

Q = {xi|i = 1, 2, · · · , Nq} means query set, feature vec-

tors can be extracted by F directly (f = F (x) ∈ R
H ). As

mentioned above, there are only K samples of each cate-

gory can be used to adjust the parameters of the N -class

classifier while all categories are novel for the model. Thus

we feed support features into E to establish distribution in

L-dimensional latent space, where L ≪ H , and utilize D to

generate abundant new features f̃ based on distribution in-

formation for each category. At last, C could be fine-tuned

by all combined features set fs∪f̃s and used to complete the

recognition task on Q. Obviously, if new samples can ex-

press category characteristics and possess both diversity and

discriminability, they may effectively alleviate the problem

of underfitting due to the lack of samples. For convenience,

we directly use xi to represent features in the following.

3.3.2 Feature Hallucination Module

Zhang et al. [46] proposed that the distributions of cate-

gories can be predicted in embedding space by variational

inference. Instead of directly predicting categories in la-

tent space by probability density, we take the distribution in

latent space as the basis to generate a certain class of fea-

tures. To achieve this goal, the mapping of samples in latent

space should be guided to meet the following conditions: 1)

Latent vectors belonging to the same category have cluster-

ing characteristics and can be described using regular distri-

bution; 2) Latent vectors sampled from distribution can be

Figure 3. Encoder to extract distribution. During the base-

training stage, we suppose that the labels of the query samples

are known and get a larger set of each class containing the support

set and query set at the same time. For a 3-shot task, there are

3 support samples and n query samples for red class, and poste-

rior distribution as well as prior distribution can be obtained by an

encoder based on the support set and the larger set.

recognized by the classifier after being mapped back to the

feature space.

Encoder to extract distribution. As mentioned in varia-

tional FSL [46], Gaussian distribution is very suitable for

describing the distribution of samples. However, in high

dimensional feature space, the distribution of feature vec-

tors is complex and hard to accurately predict by few sam-

ples. Hence we construct a low-dimensional latent space

and suppose that the mapped latent vectors of the same class

satisfy multivariate Gaussian distribution N(µ,Σ). To sim-

plified the form of the parameter, Σ is represented by L-

dimensional vector σ2 that means components in latent vec-

tors are independent.

According to the parameter estimation method based on

the maximum likelihood, the parameters of the specified

distribution can be estimated based on samples, and the

larger the sample set, the more accurate the result. It is

known that in the training stage the number of query sam-

ples is unlimited and all labels are available, so the map-

ping of a large number of samples including both support

and query samples in the latent space can be used to esti-

mate a set of parameters as the prior distribution for every

category. For multivariate Gaussian distribution with inde-

pendent components, the calculation formulas of two key

parameters are as follows:

µall
c =

1

K +Nq

K+Nq∑

i=1

xi, (4)

σ2 all
c =

1

K +Nq

K+Nq∑

i=1

(xi − µall
c )

2
, (5)
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where µall
c and σ2 all

c respectively represent the mean and

variance in the prior distribution of class c. But in Few-

shot Learning tasks, the available samples of the same cat-

egory are very few. Thus we directly use an encoder to pre-

dict distribution by a single sample in turn and then fuse

the distribution information according to the category. The

encoder is a simple fully-connected layer that uses support

samples as input and directly outputs the distribution pa-

rameters (µc, σ
2
c ) ∈ R

L. There is no doubt that the pre-

dicted result of a single sample is unreliable. Therefore, af-

ter given {(µi, σ
2
i )}

K

i=1 predicted by K samples of the same

class, the posterior distribution parameters of this category

can be computed as:

µc =

∑K
i=1 σ

−2
i µi∑K

i=1 σ
−2
i

, (6)

σ−2
c =

1

K

K∑

i=1

σ−2
i . (7)

Figure 3 shows the total process of parameter processing

in latent space when training. To ensure that vectors in la-

tent space can effectively reflect the distribution of each cat-

egory and help the decoder exactly generate useful feature

vectors, the following loss function is designed to constraint

latent space:

Llat =
1

N

N∑

c=1

KL(qϕ(zc|Sc)∥pθ(zc|Sc, Qc)), (8)

where qϕ(zc|Sc) represents the posterior distribution of

class c in latent space based on support samples, and

pθ(zc|Sc, Qc) stands for the assumed prior distribution of

class c based on both support and query samples. Natu-

rally, the posterior distribution is supposed to approximate

the prior by Kullback-Leibler divergence (KL).

Decoder to generate new features. Follow the above en-

coder, features of the same class {(xi, yi)|yi = c} can be

mapped to a pair of distribution parameters (µc, σ
2
c ) ∈ R

L.

Based on the training target described in section 3.3.2, la-

tent vectors zci ∼ N(µc, σ
2
c ) sampled from the latent space

have to make sure that generated samples are meaningful.

As shown in Figure 4, feature vectors can be directly gener-

ated by decoder D with latent vectors zci as input. To ensure

that the generated samples have discriminability, the classi-

fier trained during the pre-training stage is set to compute

the loss Lcla on new features.

It must be noted that there is no constraint to ensure that

new features are close to real features in feature space and

generated features would stay away from real features al-

though can be correctly recognized. To avoid this situation,

the reconstruction loss between features decoded directly

Figure 4. Decoder to generate new features.. Given distribution

information encoded from the encoder, latent vectors can be ran-

domly sampled from distribution and then mapped back to feature

space through the decoder. The augmented set consisting of both

support set and generated set can be used to fine-tune the classifier.

During the base-training stage, support samples need to be fed into

the generative module to be reconstructed to compute Lrec and

generated samples have to be fed into the pre-trained classifier C0

to compute Lcla.

from the means vectors µi and the corresponding support

samples is necessary:

Lrec =
1

N ×K

N∑

c=1

K∑

i=1

∥D(µc
i )− xc

i∥, (9)

where xc
i means the i-th samples of class c and µc

i =
Eµ(xc

i ). With this loss, features from the decoder have to

reflect the link between latent space and feature space.

3.3.3 Algorithm Analysis: Variational Inference

In our generation process, the most important question is

how to infer the distribution in the latent space. Obviously,

variational inference is a suitable approximating approach,

which has been fully discussed in VAE [16][34]. Given a

set of {S,Q}, the target is to generate new features S̃ from

S useful for training a new classifier for Q. Based on op-

timization target log p(S̃), the variational lower bound can

be written as:

log p(S̃) ≥ Eqϕ(z|S) log p(S̃|z)−KL(qϕ(z|S)∥pθ(z)),
(10)

where z denotes the distribution. In this formula, the for-

mer item can be approximated by Lcla and Lrec, and the

latter item just means Kullback-Leibler divergence between

the posterior distribution based on support samples qϕ(z|S)
and the prior distribution pθ(z). But in the actual imple-

mentation, the prior distribution pθ(z) is hard to achieve.

In VAE such prior is manually fixed as N(0, 1), which is
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Algorithm 1 Training Stage

Require: Dbase

1: //Pre-training

2: while not convergent do

3: for Ii ∈ Dbase do

4: Extract feature xi = F (Ii)
5: Compute scores sci for all classes using Eq. 1

6: end for

7: Update F&C by minimizing Eq. 3

8: end while

9:

10: //Base-training

11: Frozen F&C

12: while done do

13: Sample a K-shot-N -way task {S,Q} from Dbase

randomly

14: Extract posterior distribution {(µc, σ
2
c )}

N

c=1 and

prior distribution {(µall
c , σ2 all

c )}Nc=1 using Eq. 4 -

Eq. 7

15: Sample n latent vectors {zj}nj=1 ∼ N(µc, σ
2
c ) for

each class

16: Generate n×N new features and obtain augmented

set S ∪ S̃

17: Compute Lcla based on S̃ using Eq. 3

18: Compute Llat using Eq. 8

19: Compute Lrec using Eq. 9

20: Update E&D by minimizing Eq. 11

21: end while

not applicable for VI-Net because the discrepancy between

Dbase and Dnovel is unpredictable and huge. Therefore, the

prior is set as N(µall
c , σ2 all

c ) to enhance generalization of

the model, as Llat shows.

3.4. Train and Test Strategy

Training stage: The training process based on the base

dataset Dbase can be divided into two stages: pre-training

and base-training. The goal of pre-training is to obtain a

feature extractor F and a base classifier C serving for base-

training using the same train mode as baseline.

During the base-training stage, the task as described in

part 3.1 are constructed to train both encoder E and de-

coder D. Specifically, for each episode in training, a set

of support-set S = {(xi, yi)}N×K
i=1 and a query-set Q =

{(xi, yi)}Nq

i=1 are sampled from Dbase. It is worth noting

that labels of query samples are available during the train-

ing stage. Then we fix the parameters of F and C and feed

S into the encoder-decoder module to obtain new features,

and minimize total loss to train E and D:

Ltotal = Lcla + αLrec + βLlat, (11)

Algorithm 2 Testing Stage

Require: Dnovel, F, E,D

1: while done do

2: Sample a task {S,Q} from Dnovel

3: Initialize a new classifier C

4: Extract class distribution {(µc, σ
2
c )}

N

c=1 using Eq. 6

- Eq. 7

5: Sample n latent vectors {zj}nj=1 ∼ N(µc, σ
2
c ) for

each class

6: Generate n×N new features and obtain augmented

S̃

7: while epoch ≤ 100 do

8: for xi ∈ S ∪ S̃ do

9: Compute scores sci for all classes using Eq. 1

10: end for

11: Update C by minimizing Eq. 3

12: end while

13: Output C and recognize samples in Q

14: end while

where α is set to 0.75, and β is set to 0.25 in our experi-

ments. Algorithm 1 describes the training process in detail.

Testing stage: In the testing stage, when facing a few-shot

learning task {S,Q}, we first use the encoder-decoder mod-

ule to augment the support set and then achieve a new task

{S ∪ S̃, Q} with more samples per class. Like other fine-

tuning based method, a new cosine classifier is built and

trained with Lcla based on the augmented set, and finally,

can recognize samples in Q. Algorithm 2 provides the test-

ing process.

4. Experiments

4.1. Implementation Details

Just like other few-shot methods, the experiments are

only performed on two kinds of tasks: 1-shot-5-way and 5-

shot-5-way. We take average accuracy over the above tasks

as the performance of VI-Net and prove that it has obtained

the state-of-the-art result among augmentation-based algo-

rithms by fair comparison.

Datasets: VI-Net is tested on two common datasets: mini-

ImageNet and CUB [42], which are usually used to evaluate

models about few-shot learning.

Among them, the mini-ImageNet dataset is the most fre-

quently used because of its universality. As a subset of

the famous dataset ImageNet [6], mini-ImageNet contains

100 categories with 600 images per class and covers vari-

ous kinds of objects. It was first proposed by Vinyals et al.

[39] and has been gradually standardized in the process of

the development of few-shot learning. In most works today,

mini-ImageNet is randomly split into 64, 16, 20 classes re-

spectively for training, validation and testing. To be fair, we
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choose the same split file as Vinyals et al. [39] which is

most wildly used.

The CUB dataset only consists of bird images and

mainly serves for fine-grained recognizing. It has also been

used to evaluate few-shot algorithms in recent years. Be-

cause of its small inter-class and intra-class differences,

it can help us evaluate algorithms from new perspectives.

CUB contains 200 categories and 11788 images in total

(about 60 per class) and is usually randomly split into 100,

50, 50 classes for training, validation and testing.

Architectures: As introduced in section 3.3.1, VI-Net is

composed of feature extractor (F ), distribution encoder (E),

feature decoder (D) and classifier (C). Because VI-Net

adopts the two-stage training mode, ResNet18 [13] is more

suitable as our feature extractor for more precise distribu-

tion. When images are resized to 224× 224, the dimension

of the output features is 512. The encoder and decoder are

both fully-connected layer, with ReLu function as the acti-

vation layer, and the dimension of latent space is set to 64.

The classifier is also a fully-connected layer, whose output

dimension is equal to the number of classes to recognize. It

should be noted that both input features and weights should

be normalized before dot-multiplication to ensure that the

output vector represents cosine distance.

Hyper-Parameters: We pre-train F and C with 300 epochs

for mini-ImageNet and 200 epochs for CUB, using SGD

optimizer with the learning rate 0.1. When training E and

D, we random construction 40000 5-shot-5-way tasks with

15 generated features per class and change the optimizer

to Adam with learning rate 5e-4. During fine-tuning in the

testing stage, we train the new classifier by support set for

100 epochs and use SGD optimizer with learning rate 1e-2.

4.2. Comparative Results

Table 1 reports the results on mini-ImageNet compared

with other existing methods. We collect lots of results of

existing methods and divide them into three classes: base-

line, representative methods and augmentation-based meth-

ods. The baseline is described in section 3.2, which has

been studied in many works [4][10][27][25]. Results show

that VI-Net performs better than baseline by about 4%, it

means our proposed generative module is effective for fine-

tuning classifiers. The further analysis about the functions

of modules is shown in section 4.3. Representative methods

are all chosen from famous methods and can reflect classic

ideas in few-shot learning. It should be pointed out that

some methods only provide results with ConvNet-4 back-

bone. ConvNet-4 is a frequently-used simple convolution

structure in few-shot learning methods, which only contains

4 blocks, and each block is composed of a 3 × 3 convo-

lutional layer, a batch normalization layer, a ReLu activa-

tion layer and a 2 × 2 max-pooling layer. However, such a

simple structure is not suitable for VI-Net and we choose a

Methods Backbone 1-shot 5-shot

Baseline Cosine-classifer[4] ResNet-18 51.87 75.68

Representative

Matching Network[39] ConvNet-4 43.56 55.31

Meta-LSTM[28] ConvNet-4 43.44 60.60

MAML[8] ConvNet-4 48.70 63.11

Prototypical Network[33] ConvNet-4 49.42 68.20

Relation Network[36] ConvNet-4 50.44 65.32

FSL-GNN[9] ConvNet-4 50.33 66.41

TADAM[26] ResNet-12 58.50 76.70

TPN[23] ResNet-12 59.46 75.65

Variational FSL[46] ResNet-12 61.23 77.69

LEO[30] WRN-28-10 61.76 77.59

Augmentation

Meta-GAN[47] ConvNet-4 52.71 68.63

Delta-Encoder[31] VGG-16 59.90 69.70

IDeMe-Net[5] ResNet-18 59.14 74.63

SalNet[45] ResNet-101 62.22 77.95

DTN[3] ResNet-12 63.45 77.91

AFHN[21] ResNet-18 62.38 78.16

VI-Net ResNet-18 61.05 78.60

Table 1. Classification accuracies (%) on mini-ImageNet. When a

method both provides results with ConvNet-4 and a deeper back-

bone, we only show the deeper one.

Methods Backbone 1-shot 5-shot

Baseline Cosine-classifer[4] ResNet-18 67.02 83.58

Representative

Matching Network[39] ConvNet-4 49.34 59.31

Meta-LSTM[28] ConvNet-4 40.43 49.65

MAML[8] ConvNet-4 38.43 59.15

Prototypical Network[33] ConvNet-4 45.27 56.35

Augmentation

Delta-Encoder[31] ResNet-18 69.80 82.60

DTN[3] ResNet-12 72.00 85.10

AFHN[21] ResNet-18 70.53 83.95

VI-Net ResNet-18 74.76 86.84

Table 2. Classification accuracies (%) on CUB.

deeper backbone ResNet18 [13]. It means that more atten-

tion should be paid to results with deep backbones. When

compared with other augmentation-based methods, VI-Net

performs better than all methods with the 5-shot-5-way set-

ting and achieve the state-of-the-art result. However, for 1-

shot-5-way tasks, VI-Net is unsatisfactory and can not de-

feat DTN based on external data. This is mainly because

VI-Net needs multiple samples to modify the predicted dis-

tribution, but in 1-shot tasks, only one sample is available.

Similarly, Table 2 shows the results on CUB. Because

many methods did not report results on CUB, the number

of methods is much less than Table 1. From the results,

we can observe that the baseline method already has good

performance for the 5-shot-5-way setting, but VI-Net can

still beat it by 3.26%. For the 1-shot-5-way setting, VI-

Net also obtains the state-of-the-art result and beats DTN by

2.76%. The reason why VI-Net can get the state-of-the-art

results both on 1-shot tasks and 1-shot tasks is that images

in CUB have high intra-class similarity, and just one sample

can predict the distribution well after adequate training.

From the above results, it can be observed that VI-Net is

especially effective on datasets such as CUB, whose sam-

ples have smaller intra-class differences. This can be ex-

plained by the fact that the distribution of data with small

intra-class differences is easier to predict.
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Methods
Loss Function Results

CLA REC LAT 1-shot 5-shot

Baseline
√

51.87 75.68

Ablation

√
58.8 76.72√ √

59.59 76.74√ √
55.43 75.42

VI-Net
√ √ √

61.05 78.6

Table 3. Classification accuracies (%) on the baseline and VI-

Net with different loss-functions on mini-ImageNet. CLA: Lcla,

REC: Lrec, LAT: Llat.

1-shot 5-shot

2 59.21 77.28

5 61.05 78.6

10 60.21 77.76

20 57.02 75.34

50 56.79 75.64

Table 4. Classification accuracies (%) with different numbers of

generated samples per class.

4.3. Ablation Study

In this section, we mainly focus on two issues: the ef-

fectiveness of the generative module and the impact of the

number of generated samples per class. We design some

experiments to compare results using ablation methods on

mini-ImageNet, and summary results in tables and figures.

As described in section 3.3.2, there are three compo-

nents in loss function to constraint encoder and decoder.

Through experiments, if the loss function is separated into

3 components and only 1-2 components are used to train

the generative module, the accuracy evidently decreased

when compared with the complete method. In table 3, ab-

lation methods mean different loss functions during train-

ing. Obviously, Lcla plays the most import role in train-

ing the generative module by raising the result to 76.72%

while Lcla + Lrec only raises the result to 76.74%. It is

worth mentioning that Llat cannot constraint decoder with-

out Lrec, so only using Lrec+Llat may even reduce model

accuracy. In summary, the generative module in VI-Net in-

deed assists the fine-tuning process and every component of

the loss function is indispensable.

In order to more intuitively understand the impact of

each component on the generation ability of VI-Net, we

utilize t-SNE visualization tool to show the distribution sta-

tus of samples in the feature space. It is easy to observe

from Figure 5 that the composition of the loss function di-

rectly affects the distribution of the generated features. With

Lcla+Lrec, all generated samples are concentrated near one

point because the variance of classes will gradually disap-

pear without Llat. With Lcla +Llat, as mentioned in 3.3.2,

there is a clear gap between the generated samples and the

real samples. Only with Lcla + Lrec + Llat can module

Figure 5. t-SNE visualization of features. Different categories

are indicated by colors. It should be noted that the query samples

are only used to help express the real distribution.

generate suitable features, which have similar distribution

characteristics as support features.

Although the generated features have been proven use-

ful for the fine-tuning stage, they are not real essentially.

When the number of new features is too large, they may be-

come noise and seriously affect the performance. In Table 4,

we do not change the number of generated samples during

base-training, and just make the module generates differ-

ent numbers of samples during testing on mini-ImageNet.

From the results, VI-Net performs best when the hyperpa-

rameter is set to 5, and when the hyperparameter is over 20,

there is a significant decline in performance.

5. Conclusion

In this paper, we propose a new augmentation-based

model named VI-Net for few-shot learning. It utilizes a

generative module based on distribution information to ex-

pand the support set. Specifically, VI-Net constructs a

low-dimensional latent space to constrain samples of the

same category within a multivariate Gaussian distribution

by variational inference, and then generates new feature

vectors by random sampling to make the decision bound-

ary of the cosine-classifier sharper during the fine-tuning

process. Through experiments, it is proved that VI-Net

does achieve the state-of-the-art result when compared with

other augmentation-based methods and every module in our

model is meaningful.
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