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Abstract

In this work, we present the Densely Connected Tem-

poral Convolutional Network (DC-TCN) for lip-reading of

isolated words. Although Temporal Convolutional Net-

works (TCN) have recently demonstrated great potential in

many vision tasks, its receptive fields are not dense enough

to model the complex temporal dynamics in lip-reading sce-

narios. To address this problem, we introduce dense con-

nections into the network to capture more robust tempo-

ral features. Moreover, our approach utilises the Squeeze-

and-Excitation block, a light-weight attention mechanism,

to further enhance the model’s classification power. With-

out bells and whistles, our DC-TCN method has achieved

88.36 % accuracy on the Lip Reading in the Wild (LRW)

dataset and 43.65 % on the LRW-1000 dataset, which has

surpassed all the baseline methods and is the new state-of-

the-art on both datasets.

1. Introduction

Visual Speech Recognition, also known as lip-reading,

consists of the task of recognising a speaker’s speech con-

tent from visual information alone, typically the movement

of the lips. Lip-reading can be extremely useful under sce-

narios where the audio data is unavailable, and it has a broad

range of applications such as in silent speech control sys-

tem [42], for speech recognition with simultaneous multi-

speakers and to aid people with hearing impairment. In ad-

dition, lip-reading can also be combined with an acoustic

recogniser to improve its accuracy.

Despite of many recent advances, lip-reading is still a

challenging task. Traditional methods usually follow a two-

step approach. The first stage is to apply a feature extractor

such as Discrete Cosine Transform (DCT) [18, 36, 37] to the

mouth region of interest (RoI), and then feed the extracted

features into a sequential model (usually a Hidden Markov

Model or HMM in short) [14, 38, 13] to capture the tempo-

ral dynamics. Readers are referred to [57] for more details
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about these older methods.

The rise of deep learning has led to significant improve-

ment in the performance of lip-reading methods. Similar

to traditional approaches, the deep-learning-based methods

usually consist of a feature extractor (front-end) and a se-

quential model (back-end). Autoencoder models were ap-

plied as the front-end in the works of [15, 27, 30] to extract

deep bottleneck features (DBF) which are more discrimina-

tive than DCT features. Recently, the 3D-CNN (typically

a 3D convolutional layer followed by a deep 2D Convo-

lutional Network) has gradually become a popular front-

end choice [41, 26, 31, 49]. As for the back-end models,

Long-Short Term Memory (LSTM) networks were applied

in [30, 41, 34, 34] to capture both global and local temporal

information. Other widely-used back-end models includes

the attention mechanisms [10, 32], self-attention modules

[1], and Temporal Convolutional Networks (TCN) [5, 26].

Unlike Recurrent Neural Networks (RNN) such as

LSTMs or Gated Recurrent Units (GRUs) [9] with recur-

rent structures and gated mechanisms, Temporal Convo-

lutional Networks (TCN) adopt fully convolutional archi-

tectures and have the advantage of faster converging speed

with longer temporal memory. The authors of [5] described

a simple yet effective TCN architecture which outperformed

baseline RNN methods, suggesting that TCN can be a rea-

sonable alternative for RNNs on sequence modelling prob-

lems. Following this work, it was further demonstrated in

[26] that a multi-scale TCN could achieve better perfor-

mance than RNNs on lip-reading of isolated words, which is

also the state-of-the-art model so far. Such multi-scale TCN

stacks the outputs from convolutions with multiple kernel

sizes to gain a more robust temporal features, which has al-

ready been shown to be effective in other computer vision

tasks utilising multi-scale information such as the seman-

tic segmentation [6, 55, 7]. The TCN architectures in both

works [5, 26] have adopted dilated convolutions [53] to en-

large the receptive fields of models. Under the scenarios

of lip-reading, a video sequence usually contains various

subtle syllables that are essential to distinguish the word or

sentence, and thus the model’s abilities to compactly cover

those syllables are necessary and important. However, TCN
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architectures in [5, 26] have utilised a sparse connection and

thus may not observe the temporal features thoroughly and

densely.

Inspired by recent success of Densely Connected Net-

works [20, 51, 16], we introduce dense connections into the

TCN structures and propose the Densely Connected TCN

(DC-TCN) for word-level lip-reading. DC-TCNs are able

to cover the temporal scales in a denser fashion and thus

are more sensitive to words that may be challenging to pre-

vious TCN architectures [5, 26]. Specifically, we explore

two approaches of adding dense connections in the paper.

One is a fully dense (FD) TCN model, where the input of

each Temporal Convolutional (TC) layers is the concatena-

tions of feature maps from all preceding TC layers. Another

DC-TCN variant employs a partially dense (PD) structures.

We further utilise the Squeeze-and-Excitation (SE) atten-

tion machanism[19] in both DC-TCN variants, which fur-

ther enhances their classification power.

To validate the effectiveness of the proposed DC-TCN

models, we have conducted experiments on the Lip Reading

in the Wild (LRW) [11] dataset and LRW-1000 dataset [52],

which are the largest publicly available benchmark datasets

for unconstrained lip-reading in English and in Mandarin,

respectively. Our final model achieves 88.36 % accuracy

on LRW, surpassing the current state-of-the-art method [26]

(85.3 %) by around 3.1 %. On LRW-1000, our method

gains 43.65 % accuracy and also out-perform all baselines,

demonstrating the generality and strength of the proposed

DC-TCN.

In general, this paper presents the following contribu-

tions :

1. We propose a Densely Connected Temporal Convolu-

tional Network (DC-TCN) for lip-reading of isolated words,

which can provide denser and more robust temporal fea-

tures.

2. Two DC-TCN variants with Squeeze-and-excitation

blocks [19], namely the fully dense (FD) and partially dense

(PD) architectures, are introduced and evaluated in this pa-

per.

3. Our method has achieved 88.36 % top-1 accuracy on

LRW dataset and 43.65 % and on LRW-1000, which have

surpassed all baseline methods and set a new record on these

two datasets.

2. Related Works

2.1. Lip­reading

Early deep learning methods for lip-reading of iso-

lated words were mainly evaluated on small-scale datasets

recorded in constrained environments such as OuluVS2 [2]

and CUAVE [29]. The authors of [30] proposed to use the

combination of deep bottleneck features (DBF) and DCT

features to train a LSTM classifier, which is not end-to-end

trainable. An end-to-end trainable model was first demon-

strated in [46] using Histogram of Oriented Gradient (HOG)

features with LSTMs, and later Petridis et al. [34] trained

an end-to-end model with a Bidirectional LSTM back-end

where the first and second derivatives of temporal features

are also computed, achieving much better results than [46].

The lip-reading accuracy on those small-scale datasets are

further improvded by the introduction of multi-view visual

information [34] and audio-visual fusion [33, 35].

Lip Reading in the Wild (LRW) dataset [11] is the first

and the largest publicly available dataset for unconstrained

lip-reading with a 500-word English vocabulary. It has en-

couraged the emergence of numerous deep learning mod-

els with more and more powerful word-recognising abili-

ties. The WLAS sequence-to-sequence model [10] consists

of a VGG network [39] and a LSTM with dual attention

systems on visual and audio stream, respectively. LipNet

[3] is the first approach to employ a 3D-CNN to extract

spatial-temporal features that are classified by Bidirectional

Gated Recurrent Units (BGRUs). A 2D Residual Network

(ResNet) [17] on top of a 3D Convolutional layer is used

as the front-end in [41] (with an LSTM as the back-end).

Two 3D ResNets are organised in a two-stream fashion (one

stream for image and another for optical flow) in the work

of [49], learning more robust spatial-temporal features at

the cost of larger network size. Cheng et al. [8] propose a

technique of pose augmentation to enhance the performance

of lip-reading in extreme poses. Zhang et al. [54] propose

to incorporate other facial parts in additional to the mouth

region to solve lip-reading of isolated words, and mutual

information constrains are added in [56] to produce more

discriminative features. The current state-of-the-art perfor-

mance on LRW is achieved by [26], which has replaced

RNN back-ends with a multi-scale Temporal Convolutional

Networks (TCN). The same model achieves the state-of-

the-art performance on LRW-1000 [52] dataset which is

currently the largest lip-reading dataset for Mandarin.

2.2. Temporal convolutional networks

Although RNN networks such as LTSMs or GRUs had

been commonly used in lip-reading methods to model

the temporal dependencies, alternative light-weight, faster-

converging CNN models have started to gain attention in

recent works. Such efforts can be traced back to the Time-

Delay Neural Networks (TDNN) [45] in 1980s. Conse-

quently, models with Temporal Convolutions were devel-

oped, including WaveNet [43] and Gated ConNets [12].

Lately, Bai et al. [5] described a simple and generic Tem-

poral Convolutional Network (TCN) architecture that out-

performed baseline RNN models in various sequence mod-

elling problems. Although the TCN introduced in [5] is a

causal one in which no future features beyond the current

time step can be seen in order to prevent the leakage of fu-
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ture information, the model can also be modified into a non-

causal variant without such constrains. The work of [26]

has adopted a non-casual TCN design, where the linear TC

block architecture was replaced with a multi-scale one. To

the best of our knowledge, this work [26] has achieved the

current state-of-the-art performance on the LRW dataset.

However, the receptive field scales in such TCN architec-

tures may not be able cover the full temporal range under

lip-reading scenarios, which can be solved by the employ-

ment of dense connections.

2.3. Densely connected networks

Densely connected network hse received broad attention

since its inception in [20], where a convolutional layer re-

ceives inputs from all its preceding layers. Such densely

connected structure can effectively solve the vanishing-

gradient problem by employing shallower layers and thus

benefiting feature propagation. The authors of [51] have

applied dense connections to dilated convolutions to enlarge

the receptive field sizes and to extract denser feature pyra-

mid for semantic segmentation. Recently, a simple dense

TCN for Sign Language Translation has been illustrated in

[16]. Our work is the first to explore the densely connected

TCN for for word-level lip-reading, where we present both

a fully dense (FD) and a partially dense (PD) block architec-

tures with the addition of the channel-wise attention method

described in [19].

2.4. Attention and SE blocks

Attention mechanism [4, 25, 44, 48] can be used to teach

the network to focus on the more informative locations of

input features. In lip-reading, attention mechanisms have

been mainly developed for sequence models like LSTMs

or GRUs. A dual attention mechanism is proposed in [10]

for the visual and audio input signals of the LSTM mod-

els. Petridis et al. [32] have coupled the self-attention

[44] block with a CTC loss to improve the performance of

Bidirectional LSTM classifiers. Those attention methods

are somehow computational expensive and are inefficient to

be integrated into TCN structures. In this paper, we adopt

a light-weight attention block, which is the Squeeze-and-

Excitation (SE) network [19], to introduce the channel-wise

attention into the DC-TCN network.

In particular, denote the input tensor of a SE block as

U ∈ R
C×H×W where C is the channel number, its channel-

wise descriptor z ∈ R
C×1×1 is first be obtained by a global

average pooling operation to squeeze the spatial dimension

H ×W , i.e. z = GlobalPool(U) where GlobalPool de-

notes the global average pooling. After that, an excita-

tion operation is applied to z to obtain the channel-wise

dependencies s ∈ R
C×1×1, which can be expressed as

s = σ(Wuδ(Wvz)). Here, Wv ∈ R
C

r
×C and Wu ∈ R

C×
C

r

are learnable weights, while σ and δ stands for the sigmoid

Figure 1. The general framework of our method. We utilise a 3D

convolutional Layer plus a 2D ResNet-18 to extract features from

the input sequence, while the proposed Densely Connected TCN

(DC-TCN) models the temporal dependencies. C1, C2, C3 de-

notes different channel numbers, while C4 refers to the total word

classes to be predicted. The batch size dimension is ignored for

simplicity.

activation and ReLU functions and r represents the reduc-

tion ratio. The final output of the SE block is simply the

channel-wise broadcasting multiplication of s and U . The

readers are referred to [19] for more details.

3. Methodology

3.1. Overview

Fig. 1 depicts the general framework of our method. The

input is the cropped gray-scale mouth RoIs with the shape

of T × H × W , where T stands for the temporal dimen-

sion and H , W represent the height and width of the mouth

RoIs, respectively. Note that we have ignored the batch size

for simplicity. Following [41, 26], we first utilise a 3D con-

volutional layer to obtain the spatial-temporal features with

shape T ×H1 ×W1 ×C1, where C1 is the feature channel

number. On top of this layer, a 2D ResNet-18 [17] is applied

to produce features with shape T×H2×W2×C2. The next

layer applies the average pooling to summarise the spatial

knowledge and to reduce the dimensionality to T ×C2. Af-

ter this pooling operation, the proposed Densely Connected

TCN (DC-TCN) is employed to model the temporal dynam-

ics. The output tensor (T × C3) is passed through another

average pooling layer to summarise temporal information

into C4 channels, while C4 represents the classes to be pre-

dicted. The word class probabilities are predicted by the

succeeding softmax layer. The whole model is end-to-end
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Figure 2. An illustration of the non-causal temporal convolution

layers where k is the filter size and d is the dilation rate. The

receptive fields for the filled neurons are shown.

trainable.

3.2. Densely Connected TCN

To introduce the proposed Densely Connected TCN

(DC-TCN), we start from a brief explanation of the tempo-

ral convolution in [5]. A temporal convolution is essentially

a 1-D convolution operating on temporal dimensions, while

a dilation [53] is usually inserted into the convolutional fil-

ter to enlarge the receptive fields. Particularly, for a 1-D

feature x ∈ R
T where T is the temporal dimensionality,

define a discrete function g : Z+ 7→ R such that g(s) = xs

where s ∈ [1, T ]∩Z+, let Λk = [1, k]∩Z+ and f : Λk 7→ R

be a 1D discrete filter of size k, a temporal convolution ∗d
with dilation rate d is described as

yp = (g ∗d f)(p) =
∑

s+dt=p

g(s)f(t) (1)

where y ∈ R
T is the 1-D output feature and yp refers to

its p-th element. Note that zero padding is used to keep

the temporal dimensionality unchanged in y. Note that the

temporal convolution described in Eq. 1 is non-casual, i.e.

the filters can observe features of every time step, similarly

to that of [26]. Fig. 2 has provided a intuitive example of

the non-casual temporal convolution layers.

Let TCl be the l-th temporal convolution layer, and let

x
l ∈ R

T×Ci and y
l ∈ R

T×Co be its input and output

tensors with Ci and Co channels, respectively, i.e. y
l =

TCl(xl). In common TCN architectures, yl is directly fed

into the (l+1)-th temporal convolution layer TCl+1 to pro-

duce its output yl+1, which is depicted as

x
l+1 = y

l

y
l+1 = TCl+1(xl+1).

(2)

In DC-TCN, dense connections [20] are utilised and the

input for the following TC layer (TCl+1) is the concatena-

tion between x
l and y

l, which can be written as

x
l+1 = [xl,yl]

y
l+1 = TCl+1(xl+1).

(3)

Note that xl+1 ∈ R
T×(Ci+Co) has additional channels (Co)

than x
l, where Co is defined as the growth rate following

[20].

We have embedded the dense connections in Eq. 3 to

constitute the block of DC-TCN. More formally, we de-

fine a DC-TCN block to consist of temporal convolution

(TC) layers with arbitrary but unique combinations of fil-

ter size k ∈ K and dilation rate r ∈ D, where K and

D stand for the sets of all available filter sizes and dila-

tion rates for this block, respectively. For example, if we

define a block to have filter sizes set K = {3, 5} and di-

lation rates set D = {1, 4}, there will be four TC layers

(k3d1, k5d1, k3d4, k5d4) in this block.

In this paper, we study two approaches of constructing

DC-TCN blocks. The first approach applies dense connec-

tions for all TC layers, which is denoted as the fully dense

(FD) block, as illustrated at the top of Fig. 3, where the

block filter sizes set K = {3, 5} and the dilation rates set

D = {1, 4}. As shown in the figure, the output tensor of

each TC layer is consistently concatenated to the input ten-

sor, increasing the input channels by C0 (the growth rate)

each time. Note that we have a Squeeze-and-Excitation

(SE) block [19] after the input tensor of each TC layer to

introduce channel-wise attentions for better performance.

Since the output of the top TC layer in the block typically

has much more channels than the block input (e.g. Ci+4C0

channels in Fig. 3), we employ a 1×1 convolutional layer to

reduce its channel dimensionality from Ci + 4C0 to Cr for

efficiency (“Reduce Layer” in Fig. 3). A 1×1 convolutional

layer is then applied to convert the block input’s channels if

Ci 6= Cr. In the fully dense architecture, TC layers are

stacked in a receptive-field-ascending order.

Another DC-TCN block design is depicted at the bot-

tom of Fig. 3, which we denote as the partially dense (PD)

block. In the PD block, filters with identical dilation rates

are employed in a multi-scale fashion, such as the k3d1
and k5d1 TC layers in Fig. 3 (bottom), and their outputs

are concatenated to the input simultaneously. PD block is

a essentially a hybrid of the multi-scale architectures and

densely connected networks, and thus is expected to benefit

from both. Just like in FD architectures, SE attention is also

attached after every input tensor, while the ways of utilising

the reduce layer is the same to that of fully dense blocks.

A DC-TCN block, either fully or partially dense, can be

seamlessly stacked with another block to obtain finer fea-

tures. A fully dense / partially dense DC-TCN model can

be formed by stacking B identical FD / PD blocks together,

where B denotes the number of blocks.

There are various important network parameters to be

determined for a DC-TCN model, including the filter sizes

K and the dilation rates D in each block, the growth rate Co,

and the reduce layer channel Cr and the blocks number B.

The optimal DC-TCN architecture along with the process
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Figure 3. The architectures of the fully dense block (Up) and the partially dense block (bottom) in DC-TCN. We have selected the block

filter sizes set K = {3, 5} and the dilation rates set D = {1, 4} for simplicity. In both blocks, Squeeze-and-Excitation (SE) attention is

attached after each input tensor. A reduce layer is involved for channel reduction.

Figure 4. The block receptive field size when combining four TC

layers (with a receptive field size of 3, 5, 9 and 17) in a linear (left)

or in a multi-scale (right) method.

of determining it can be found in Sec. 4.3.

3.3. Advantages of DC­TCN

The receptive field size R for a filter with kernel size k

and dilation rate d can be calculated as

R = k + (d− 1)(k − 1). (4)

Stacking two TC layers with receptive fields R1 and R2 will

produce a receptive field size of (R1 +R2 − 1). The recep-

tive field sizes for the four TC layers described in Fig. 3

are 3, 5, 9 and 17, respectively. If they are connected lin-

early as in [5], the resulting model can see a temporal range

of (3, 7, 15, 31). A multi-scale structure [26] will lead to

receptive fields of (3, 5, 9, 17). The linearly connected ar-

chitecture retains a larger maximum receptive size than the

multi-scale one, however, it also generate more sparse tem-

poral features. We have illustrated the receptive fields for

these two block architectures in Fig. 4.

Unlike the linearly connected [5] or multi-scale [26]

TCN, our DC-TCN can extract the temporal features at

denser scales and thus increase the features’ robustness

without reducing the maximum receptive field size. Fig.

5 depicts the temporal range covered by our partially dense

and fully dense blocks, which consist of the four identical

TC layers as shown in Fig. 4. Since we have introduced

dense connection (“DC” in the figure) into the structure, a

TC layer can see all the preceding layers and therefore the

varieties of its receptive sizes are significantly enhanced. As

shown in Fig. 5 (left), our partially dense block can observe

a total of eight different ranges, which is double of that in

linear or multi-scale architectures (only 4 scales). The fully

dense block in Fig. 5 (right) can produce feature pyramid

from 15 different receptive fields with the maximum one to

be 31 (larger than multi-scale and equal to linear). Such

dense receptive fields can ensure that the information from

a wide range of scales can be observed by the model, and

thus strengthen the model’s expression power.

4. Experiments

4.1. Datasets

We have conducted our experiments on the Lip Reading

in the Wild (LRW) [11] and the LRW-1000 [52] dataset,

which are the largest publicly available dataset for lipread-

ing of isolated words in English and in Mandarin, respec-

tively.
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Figure 5. The block receptive field sizes when combining four TC

layers (with a receptive field size of 3, 5, 9 and 17) in our partially

dense (left) or fully dense (right) block. The dense connection de-

scribed in Eq. 3 is denoted as “DC”. Compared with the structures

in Fig. 4, our DC-TCN can observe denser temporal scales with-

out shrinking the maximum receptive field and thus can produce

more robust features.

The LRW dataset has a vocabulary of 500 English words.

The sequences in LRW are captured from more than 1 000

speakers in BBC programs, and each sequence has a du-

ration of 1.16 seconds (29 video frames). There are a to-

tal of 538 766 sequences in this dataset, which are split

into 488 766/25 000/25 000 for training/validation/testing

usages. This is a challenging dataset due to the large num-

ber of subjects and variations in head poses and lighting

conditions.

The LRW-1000 dataset contains a total of 718 018 sam-

ples for 1 000 mandarin words, recorded from more than

2 000 subjects. The average duration for each sequence is

0.3 second, and the total length of all sequences is about

57 hours. The training/validation/testing splits consist of

603 193/63 237/51 588 samples, respectively. This dataset

is even more challenging than LRW considering its huge

variations in speaker properties, background clutters, scale,

etc.

4.2. Experimental setup

Pre-processing We have pre-processed the LRW

dataset following the same method as described in [26]. We

first detect 68 facial landmarks using dlib [22]. Based on the

coordinates of these landmarks, the face images are warped

to a reference mean face shape. Finally, the mouth RoI of

size 96×96 is cropped from each warped face image and

is converted into grayscale. For LRW-1000, we simply use

the provided pre-cropped mouth RoIs and resize them to

122×122 following [52].

Evaluation metric Top-1 accuracy is used to evaluate

the model performance, since we are solving word-level lip-

reading classification problems.

Training settings The whole model in Fig. 1, in-

cluding the proposed DC-TCN, is trained in an end-to-end

fashion, where the weights are randomly initialised. We

employ identical training settings for both LRW and LRW-

1000 datasets except of some slight differences to cope with

their different input dimensions. We train 80 epochs with a

batch size of 32/16 on LRW/LRW-1000, respectively, and

measure the top-1 accuracy using the validation set to de-

termine the best-performing checkpoint weights. We adopt

AdamW [24] as the optimiser, where the initial learning rate

is set to 0.0003/0.0015 for LRW and LRW-1000, respec-

tively. A cosine scheduler [23] is used to steadily decrease

the learning rate from the initial value to 0. BatchNorm lay-

ers [21] are embedded to accelerate training convergence,

and we use dropouts with dropping probabilities 0.2 for reg-

ularisation. The reduction ratio in the SE block is set to 16,

and the channel value C2 of DC-TCN’s input tensor is set

to 512. Besides, we adopt the variable length augmentation

as proposed in [26] to increase the model’s temporal robust-

ness.

Explorations of DC-TCN structures We evaluate

DC-TCN with different structure parameters on LRW

dataset to determine the best-performing one. In particu-

lar, we first validate the effectiveness of different filter sizes

K and dilation rates D in each DC-TCN block while freez-

ing other hyper-parameters such as the growth rate Co and

the reduce layer channels Cr. Then we select the most ef-

fective K and D values to fine-tune other structural options,

including the growth rate Co and whether to use SE atten-

tion. We explore structures for both FD and PD blocks.

Baseline methods On the LRW dataset, the perfor-

mance of the proposed DC-TCN model is compared with

the following baselines: 1) the method proposed in the

LRW paper [11] with a VGG backbone [39], 2) the WLAS

model [10], 3) the work of [41] where a ResNet [17] and

a LSTM is used, 4) the End-to-End Audio-Visual network

[31], 5) the multi-grained spatial-temporal model in [47], 6)

the two-stream 3D CNN in [49], 7) the Global-Local Mu-

tual Information Maximisation method in [56], 8) the face

region cutout approach by authors of [54], 9) the multi-

modality speech recognition method in [50], and 10) the

multi-scale TCN proposed by [26].

LRW-1000 is a relatively new dataset and there are

somehow fewer works on it. We have selected the follow-

ing methods as baselines on this dataset: 1) the work of [41],

2) the multi-grained spatial-temporal model in [47], 3) the

GLMIM method in [56] and 4) the multi-scale TCN [26].

Implementations We implement our method in the

PyTorch framework [28]. Experiments are conducted on

a server with eight 1080Ti GPUs. It takes around four days

to train a single model end-to-end on LRW using one GPU

and five days for LRW-1000. Note that this training time
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Filter Sizes K
Dilation

Rates D

Acc.

(%, FD)

Acc.

(%, PD)

{3,5} {1,2,3} 86.68 86.84

{3,5,7}
{1,2} 86.88 87.01

{1,2,4} 87.07 87.48

{1,2,5} 87.11 87.50

{3,5,7,9}
{1,2} 86.99 87.26

{1,2,4} 86.92 87.15

{1,2,5} 86.85 87.16

Table 1. Performance on the LRW dataset of DC-TCN consisting

of different filter sizes K and dilation rates D. The top-1 accuracy

of fully dense (FD) and partially dense (PD) blocks is reported.

Other network parameters are fixed, and for simplicity all SE at-

tention is temporarily disabled.

Growth

rate Co

Adding SE
Acc.

(%, FD)

Acc.

(%, PD)

64 - 87.11 87.50

64 X 87.40 87.91

128 - 87.64 88.13

128 X 88.01 88.36

Table 2. Performance on the LRW dataset of DC-TCN with dif-

ferent growth rate Co and using SE or not. The top-1 accuracy

of fully dense (FD) and partially dense (PD) blocks are reported.

The filter sizes K and dilation rates D are selected as {3, 5, 7} and

{1, 2, 5}, respectively, while the reduce layer channels Cr and the

total block number B are set to 512 and 4.

is significantly lower than other works [31] which requires

approximately three weeks per GPU for a training cycle.

4.3. Results

DC-TCN architectures To find an optimal structure

of DC-TCN, we first evaluate the impact of various filter

sizes K and dilation rates D on LRW while keeping the

value of other hyper-parameters fixed. In particular, we fix

the growth rate Co and the reduce layer channels Cr to be

64 and 512, respectively, and stack a total of 4 DC-TCN

blocks without SE attention. As shown in Table 1, both

Fully Dense (FD) and Partially Dense (PD) blocks achieve

optimal performance when K and D are set to be {3, 5, 7}
and {1, 2, 5}, respectively. Therefore, we decide to use this

setting for K and D in subsequent experiments.

Once the optimal values of K and D are found, we have

further investigated the effect of different growth rate Co

settings and the addition of SE block, while the reduce layer

channels Cr and the total block number B are set to 512

and 4, respectively. As shown in 2, it is evident that: 1.

the performance of using 128 for Co exceeds that of using

64, and 2. the effectiveness of adding SE in the block is

validated since it consistently leads to higher accuracy when

Co stays the same.

Methods Front-end Back-end Acc. (%)

LRW [11] VGG-M - 61.1

WLAS [10] VGG-M LSTM 76.2

ResNet+BLSTM

[41]

3D Conv +

ResNet34
BLSTM 83.0

End-to-End

AVR [31]

3D Conv +

ResNet34
BLSTM 83.4

Multi-grained

ST [47]

ResNet34 +

DenseNet3D

Conv-

BLSTM
83.3

Two-stream

3D CNN [49]

(3D

Conv)×2
BLSTM 84.1

ResNet18 +

BLSTM[40]

3D Conv +

ResNet18
BLSTM 84.3

GLMIM [56]
3D Conv +

ResNet18
BGRU 84.4

Face cutout [54]
3D Conv +

ResNet18
BGRU 85.0

Multi-modality

SR [50]

3D

ResNet50
TCN 84.8

Multi-scale

TCN [26]

3D Conv +

ResNet18
MS-TCN 85.3

Ours
3D Conv

+ ResNet18

DC-TCN

(PD)
88.36

DC-TCN

(FD)
88.01

Table 3. A comparison of the performance between the baseline

methods and ours on the LRW dataset. We report the best results

from the fully dense (FD) and the partially dense (PD) blocks,

respectively.

To sum up, we have selected the following hyper-

parameters as the final DC-TCN model configuration for

both FD and PD: the filter sizes K and dilation rates D in

each block are set to K = {3, 5, 7} and D = {1, 2, 5},

with the growth rate Co = 128, the reduce layer channel

Cr = 512 and the block number B = 4, where SE attention

is added after each input tensor.

Performance on the LRW and LRW-1000 datasets

In Table 3 and 4 we report the performance of our method

and various baseline approaches on the LRW and LRW-

1000 datasets, respectively. On LRW, our method has

achieved an accuracy of 88.01 % (FD blocks) and 88.36 %

(PD blocks), which is the new state-of-the-art performance

on this dataset with an absolution improvement of 3.1 %

over the current state-of-the-art method [26] on the LRW

dataset. Besides, our method also produces higher top-1

accuracy (43.65 % and 43.11 % by using PD and FD, re-

spectively) than the best baseline method [26] (41.4 %) on

LRW-1000, which has further validated the generality and
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Methods Front-end Back-end Acc. (%)

ResNet+LSTM

[52]

3D Conv +

ResNet34
LSTM 38.2

Multi-grained

ST [47]

ResNet34 +

DenseNet3D

Conv-

BLSTM
36.9

GLMIM [56]
3D Conv +

ResNet18
BGRU 38.79

Multi-scale

TCN [26]

3D Conv +

ResNet18
MS-TCN 41.4

Ours
3D Conv

+ ResNet18

DC-TCN

(PD)
43.65

DC-TCN

(FD)
43.11

Table 4. A comparison of the performance between the baseline

methods and ours on the LRW-1000 dataset.

Drop N Frames → N=0 N=1 N=2 N=3 N=4 N=5

End-to-End

AVR [31] 1 84.6 80.2 71.3 59.5 45.9 32.9

MS-TCN [26] 85.3 83.5 81.2 78.7 75.7 71.5

Ours (PD) 88.4 86.2 84.0 81.0 77.5 73.3

Ours (FD) 88.0 86.4 83.6 81.3 77.7 73.8

Table 5. The top-1 accuracy of different methods on LRW where

N frames are randomly removed from each testing sequence.

effectiveness of the proposed DC-TCN model.

4.4. Discussion

Difficulty Categories To intuitively illustrate why our

DC-TCN can out-perform the baseline methods, we have

examined the classification rates of different methods on

five word categories with various difficulty levels. To be

specific, we have divided the 500 classes in the LRW test

set into five categories (100 words per category) based on

their classification difficulty in [26], which are “very easy”,

“easy”, “medium”, “difficult” and “very difficult”. Then

we compare the performance of our DC-TCN (FD and

PD) with two baseline methods (End-to-End AVR [31] and

Multi-scale TCN [26]) on those five difficulty categories, as

demonstrated in Fig. 6. We observe that our methods re-

sult in slightly better performance than the baselines on the

“very easy” and “easy” categories, however, improvements

over the baselines are more significant on the other three

groups, especially on the “difficult” and the “very difficult”

categories. Since the improvement of our methods is mainly

achieved on those more difficult words, it is reasonably to

deduce that our DC-TCN can extract more robust temporal

features.

Variable Lengths We further evaluate the temporal ro-

13D Conv+ResNet18 as front-end and BGRU as back-end.

Figure 6. A comparison of our method and two baseline methods

(End-to-End AVR [31] and Multi-scale TCN [26]) on the five diffi-

culty categories of the LRW test set. Our method shows significant

improvement over the baselines on these more challenging word

classes, which demonstrates that our DC-TCN models can provide

more robust temporal features.

bustness of different models against video sequences with

variable lengths, i.e. N frames are randomly dropped from

each testing sequence in LRW dataset where N ranges from

0 to 5. As shown in Table 5, the performance of End-to-

End AVR [31] drops significantly as increasing frames are

randomly removed from the testing sequences. In contrast,

MS-TCN [26] and our DC-TCN (both PD and FD) demon-

strate better tolerance to such frame removals, mainly due to

the usage of variable length augmentation [26] during train-

ing. Besides, the accuracy of our models (both PD and FD)

constantly outperforms that of MS-TCN [26] no matter how

the number of frames to remove varies, which verifies the

superior temporal robustness of our method.

5. Conclusion

We have introduced a Densely Connected Temporal

Convolution Network (DC-TCN) for word-level lip-reading

in this paper. Characterised by the dense connections and

the SE attention mechanism, the proposed DC-TCN can

capture more robust features at denser temporal scales and

therefore improve the performance of the original TCN ar-

chitectures. DC-TCN have surpassed the performance of all

baseline methods on both the LRW dataset and the LRW-

1000 dataset. To the best of our knowledge, this is the first

attempt to adopt a densely connected TCN with SE attention

for lip-reading of isolated words, resulting in new state-of-

the-art performance.

Acknowledgements

The work of Pingchuan Ma has been partially supported

by Honda and the “AWS Cloud Credits for Research” pro-

gram. The work of Yujiang Wang has been partially sup-

ported by China Scholarship Council (No. 201708060212)

and the EPSRC project EP/N007743/1 (FACER2VM).

2864



References

[1] Triantafyllos Afouras, Joon Son Chung, Andrew Senior,

Oriol Vinyals, and Andrew Zisserman. Deep audio-visual

speech recognition. IEEE transactions on pattern analysis

and machine intelligence, 2018.

[2] Iryna Anina, Ziheng Zhou, Guoying Zhao, and Matti
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